[go: up one dir, main page]

JPH05157376A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH05157376A
JPH05157376A JP32043591A JP32043591A JPH05157376A JP H05157376 A JPH05157376 A JP H05157376A JP 32043591 A JP32043591 A JP 32043591A JP 32043591 A JP32043591 A JP 32043591A JP H05157376 A JPH05157376 A JP H05157376A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
compressor
blower
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32043591A
Other languages
Japanese (ja)
Inventor
Seiji Ito
誠司 伊藤
Masayoshi Enomoto
雅好 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP32043591A priority Critical patent/JPH05157376A/en
Publication of JPH05157376A publication Critical patent/JPH05157376A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

PURPOSE:To provide effective and comfortable heating at a time of initial rising by adjusting the air volume of a fan to be an optimum value corresponding to heating performance of a freezing cycle device of evaporation type. CONSTITUTION:In a piping 20 connecting a compressor 10 and an evaporator 14 and bypassing a condenser 11, a pressure reducing device 22 is provided on a refrigerant inlet side of the evaporator 14. An air blower 34 to send air to the evaporator 14 is driven by a motor 33. A pressure sensor 31 to sense the refrigerant discharging pressure is provided on a refrigerant discharging side of the compressor 10. A control circuit 32 to receive a detection signal from the pressure sensor 31 calculates an optimum air volume of the air blower 34 and outputs a driving signal corresponding to the operation result to the motor 33. At a time of heating, as a compressing work by the compressor 10 turns into a heating work. At this time, heat of high temperature and high pressure gas is reduced in the pressure reducing device 22, so that heat of the high temperature and high pressure gas is released by the evaporator 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空調装置に関するもの
で、特に車両に搭載される空調装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner, and more particularly to an air conditioner mounted on a vehicle.

【0002】[0002]

【従来の技術】従来の車両に搭載される空調装置として
は、一般に、車両に搭載される内燃機関の冷却温水を利
用した温水ヒータが用いられている。この温水ヒータを
主暖房装置にし、電気ヒータ、燃焼ヒータ、ヒートポン
プ等が主暖房装置を補足する補助暖房装置として用いら
れている。
2. Description of the Related Art As a conventional air conditioner mounted on a vehicle, a hot water heater utilizing the hot water for cooling the internal combustion engine mounted on the vehicle is generally used. This hot water heater is used as a main heating device, and an electric heater, a combustion heater, a heat pump, etc. are used as an auxiliary heating device that supplements the main heating device.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の空調装置によると、主暖房装置の温水ヒータ
に加えて補助暖房装置として電気ヒータ、燃焼ヒータ、
ヒートポンプを併用した暖房装置では、内燃機関の始動
時に冷却水温が低い場合、温水ヒータの立ち上がりが悪
いうえ、補助暖房装置として電気ヒータを併用するもの
は電力不足の問題があり、燃焼ヒータを併用するものは
安全性の低下の問題があり、ヒートポンプを併用するも
のは寒冷地での使用不能等の問題がある。
However, according to such a conventional air conditioner, in addition to the hot water heater of the main heating device, an electric heater, a combustion heater, and an auxiliary heating device are provided.
In a heating device that also uses a heat pump, if the temperature of the cooling water is low when the internal combustion engine is started, the hot water heater will not start up properly, and the auxiliary heating device that also uses the electric heater will have a problem of insufficient power. There is a problem that the safety is deteriorated, and a product that uses a heat pump has a problem that it cannot be used in cold regions.

【0004】本発明は、このような問題点を解決するた
めになされたもので、温水ヒータ等の主暖房装置に加え
蒸発式冷凍サイクル中の高温高圧ガス冷媒(ホットガ
ス)を用いた暖房能力を向上した簡易な構成をもつ空調
装置を提供することを目的とする。また本発明は、冷凍
サイクル装置の暖房能力に応じて送風機の風量を調節す
ることで、初期立ち上がり時の効果的かつ快適な暖房を
実現する空調装置を提供することを目的とする。
The present invention has been made to solve the above problems, and has a heating capacity using a high-temperature high-pressure gas refrigerant (hot gas) in an evaporative refrigeration cycle in addition to a main heating device such as a hot water heater. It is an object of the present invention to provide an air conditioner having a simple configuration with improved air conditioning. Another object of the present invention is to provide an air conditioner that realizes effective and comfortable heating at the initial start-up by adjusting the air volume of the blower according to the heating capacity of the refrigeration cycle apparatus.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
の本発明による空調装置は、主暖房装置を備えた空調装
置であって、冷媒を圧送する圧縮機と、この圧縮機の冷
媒吐出側に接続されるコンデンサと、前記圧縮機の冷媒
吸入側に接続されるエバポレータであって、このエバポ
レータを流通する空気流路と前記主暖房装置で加熱され
る空気流路とが少なくとも一部一致するように前記主暖
房装置に対し直列に設けられるエバポレータと、前記圧
縮機と前記コンデンサとを結ぶ経路に設けられる三方弁
と、前記コンデンサを迂回して前記三方弁から前記コン
デンサと前記エバポレータとを結ぶ経路に接続されるバ
イパス管と、前記エバポレータの冷媒入口側に設けられ
る減圧装置と、前記エバポレータに空気を流す送風機の
駆動手段と、前記圧縮機の冷媒吐出圧力、冷媒吸入圧
力、冷媒吐出温度、前記エバポレータ入口前の冷媒温度
の少なくとも一つの冷媒状態を検知するセンサと、前記
センサの出力に応じて前記送風機の最適風量を演算し、
この演算結果に基づいて前記送風機の駆動信号を前記駆
動手段に出力する制御手段とを備えたことを特徴とす
る。
An air conditioner according to the present invention for achieving the above object is an air conditioner provided with a main heating device, and a compressor for pumping a refrigerant and a refrigerant discharge side of the compressor. A condenser connected to the compressor, and an evaporator connected to the refrigerant suction side of the compressor, wherein an air flow path flowing through the evaporator and an air flow path heated by the main heating device at least partially coincide with each other. As described above, an evaporator provided in series with the main heating device, a three-way valve provided in a path connecting the compressor and the condenser, and a bypass of the condenser to connect the condenser and the evaporator from the three-way valve. A bypass pipe connected to the path, a pressure reducing device provided on the refrigerant inlet side of the evaporator, a blower drive means for flowing air through the evaporator, A sensor for detecting the refrigerant discharge pressure of the compressor, the refrigerant suction pressure, the refrigerant discharge temperature, at least one of the state of refrigerant in the refrigerant temperature of the evaporator inlet before, calculates the optimum air volume of the blower in accordance with an output of said sensor,
And a control means for outputting a drive signal of the blower to the drive means based on the calculation result.

【0006】[0006]

【作用】本発明の空調装置によると、暖房時、圧縮機の
なす圧縮仕事が熱仕事となって減圧装置を経てエバポレ
ータで放熱される。この圧縮仕事を与える内燃機関は、
その排熱が内燃機関の冷却温水に伝達されるから、その
冷却温水の流れるヒータコアからの放熱量が増加するた
め、空調装置のエバポレータの放熱量に加え温水ヒータ
の放熱量に加えられるので、発熱量が増大し、暖房能力
がアップする。
According to the air conditioner of the present invention, during heating, the compression work performed by the compressor becomes heat work and is radiated by the evaporator through the pressure reducing device. The internal combustion engine that gives this compression work is
Since the exhaust heat is transferred to the cooling hot water of the internal combustion engine, the amount of heat radiation from the heater core through which the cooling hot water flows increases, so that it is added to the amount of heat radiation of the hot water heater in addition to the amount of heat radiation of the evaporator of the air conditioner. The amount increases and the heating capacity increases.

【0007】このとき、冷媒状態を検知するセンサの出
力に応じて最適風量を制御手段で演算し、この演算結果
に対応するように送風機を駆動する。
At this time, the control means calculates the optimum air volume according to the output of the sensor for detecting the refrigerant state, and the blower is driven so as to correspond to the calculation result.

【0008】[0008]

【実施例】以下、本発明の実施例を図面にもとづいて説
明する。車両用空調装置に本発明を適用した第1実施例
の冷媒回路を図1に示す。車両に搭載した内燃機関1の
ウォータジャケット内に連通する冷却水配管2は、温水
ヒータ3のヒータコア3aのチューブ内に連通し、この
ヒータコア3aのチューブは冷却水戻し配管4によって
内燃機関1のウォータジャケットに連通する。冷却水戻
し配管4には開閉弁5が設けられている。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 shows a refrigerant circuit of a first embodiment in which the present invention is applied to a vehicle air conditioner. A cooling water pipe 2 communicating with a water jacket of an internal combustion engine 1 mounted on a vehicle communicates with a tube of a heater core 3a of a hot water heater 3, and the tube of the heater core 3a is connected to a water jacket of the internal combustion engine 1 by a cooling water return pipe 4. Communicate with the jacket. An on-off valve 5 is provided in the cooling water return pipe 4.

【0009】一方、空調装置6の冷媒回路は、内燃機関
1により駆動される圧縮機10、コンデンサ11、レシ
ーバ12、第1の減圧装置13、エバポレータ14、ア
キュームレータ15が配管16により順に接続されてい
る。そして圧縮機10とコンデンサ11の間に設けられ
る三方弁18は、コンデンサ11を迂回するバイパス管
20の一端20aが接続され、バイパス管20の他端2
0bは第1の減圧装置13とエバポレータ14の間の配
管16に連通する。バイパス管20には、第2の減圧装
置22が設けられている。
On the other hand, in the refrigerant circuit of the air conditioner 6, a compressor 10, a condenser 11, a receiver 12, a first pressure reducing device 13, an evaporator 14 and an accumulator 15 driven by the internal combustion engine 1 are connected in order by a pipe 16. There is. The three-way valve 18 provided between the compressor 10 and the condenser 11 is connected to one end 20 a of a bypass pipe 20 that bypasses the condenser 11 and the other end 2 of the bypass pipe 20.
0b communicates with the pipe 16 between the first pressure reducing device 13 and the evaporator 14. The bypass pipe 20 is provided with a second pressure reducing device 22.

【0010】この第2の減圧装置22により制御される
ガス冷媒の適正な圧力は、第2の減圧装置22の高圧側
で15〜20kg/cm2 、低圧側で2〜4kg/cm
2 である。これは、外気温が低い場合、低圧側の温度も
低いため十分な暖房能力を得るために高圧側の圧力を高
く保持し、圧縮機10の負荷増大による圧縮仕事を大き
くする必要があるからであり、そのためには第2の減圧
装置22の高圧側の圧力は15〜20kg/cm2 の範
囲が望ましい。
The proper pressure of the gas refrigerant controlled by the second pressure reducing device 22 is 15 to 20 kg / cm 2 on the high pressure side of the second pressure reducing device 22 and 2 to 4 kg / cm 2 on the low pressure side.
Is 2 . This is because when the outside air temperature is low, the temperature on the low pressure side is also low, so that the pressure on the high pressure side must be kept high to increase the compression work due to the increased load on the compressor 10 in order to obtain sufficient heating capacity. Therefore, the pressure on the high pressure side of the second pressure reducing device 22 is preferably in the range of 15 to 20 kg / cm 2 .

【0011】レシーバ12と第1の減圧装置13との間
の配管16には逆止弁24が設けられている。逆止弁2
4は冷媒がコンデンサ11に逆流し冷媒不足となるのを
防止する。またアキュームレータ15は、冷媒が過剰に
なった場合の冷媒を溜め圧縮機10への液戻りを防止
し、冷媒回路内に常に熱ガス冷媒が循環するようにして
いる。
A check valve 24 is provided in the pipe 16 between the receiver 12 and the first pressure reducing device 13. Check valve 2
Reference numeral 4 prevents the refrigerant from flowing back into the condenser 11 and becoming insufficient. Further, the accumulator 15 stores the refrigerant when the refrigerant becomes excessive and prevents the liquid from returning to the compressor 10, so that the hot gas refrigerant always circulates in the refrigerant circuit.

【0012】そして主暖房装置を構成するヒータコア3
aと暖房時に補助暖房装置として機能するエバポレータ
14とは通風ダクト26内に直列に配置され、送風ファ
ン34により通風ダクト26内に取り入れた空気をエバ
ポレータ14およびヒータコア3aを経由して図示しな
い吹出口から車室内に送風する。圧縮機10の吐出側の
配管16には、冷媒吐出圧力を検出する圧力センサ31
が設けられる。この圧力センサ31は、検出した冷媒吐
出圧力に対応する電気信号を発生する。この電気信号を
入力する制御回路32は、前記圧力センサ31からの信
号に基づいて送風ブロア34の最適送風量に対応するブ
ロア電圧Vを演算し、このブロア電圧Vに対応する駆動
信号をモータ33に出力する。モータ33により送風ブ
ロア34が駆動される。
The heater core 3 which constitutes the main heating device
a and the evaporator 14 that functions as an auxiliary heating device during heating are arranged in series in the ventilation duct 26, and the air taken into the ventilation duct 26 by the blower fan 34 passes through the evaporator 14 and the heater core 3a and is not shown in the drawings. Blows into the passenger compartment. The pipe 16 on the discharge side of the compressor 10 has a pressure sensor 31 for detecting the refrigerant discharge pressure.
Is provided. The pressure sensor 31 generates an electric signal corresponding to the detected refrigerant discharge pressure. The control circuit 32, which receives this electric signal, calculates a blower voltage V corresponding to the optimum blowing amount of the blowing blower 34 based on the signal from the pressure sensor 31, and outputs a drive signal corresponding to this blower voltage V to the motor 33. Output to. The blower blower 34 is driven by the motor 33.

【0013】冷房時、三方弁18は圧縮機10からの冷
媒をコンデンサ11側にのみ流し、圧縮機10からの冷
媒を、コンデンサ11、レシーバ12、第1の減圧装置
13、エバポレータ14、アキュームレータ15、圧縮
機10の順に循環する。エバポレータ14では、送風フ
ァン28からエバポレータ14内に送られた空気が冷媒
に熱を奪われて冷風となり通風ダクト26から図示矢印
方向に流れ、ヒータコア3aを通過し車室内に吹き出さ
れる。このとき開閉弁5は閉じており、ヒータコア3a
には温水は流れていない。
During cooling, the three-way valve 18 allows the refrigerant from the compressor 10 to flow only to the condenser 11 side, and allows the refrigerant from the compressor 10 to pass through the condenser 11, the receiver 12, the first pressure reducing device 13, the evaporator 14, and the accumulator 15. , The compressor 10 in this order. In the evaporator 14, the air sent from the blower fan 28 into the evaporator 14 is deprived of heat by the refrigerant to become cold air, which flows from the ventilation duct 26 in the direction of the arrow in the drawing, passes through the heater core 3a, and is blown out into the vehicle interior. At this time, the on-off valve 5 is closed and the heater core 3a
There is no hot water flowing in.

【0014】暖房時、三方弁18は、圧縮機10からの
冷媒をバイパス管20側にのみ流し、圧縮機10からの
冷媒を第2の減圧装置22、エバポレータ14、アキュ
ームレータ15、圧縮機10の順に循環する。圧縮機1
0により吹出される高温高圧の冷媒ガスは、第2の減圧
装置22により減圧され、高温低圧のガス冷媒に状態変
化する。
During heating, the three-way valve 18 allows the refrigerant from the compressor 10 to flow only to the bypass pipe 20 side, and allows the refrigerant from the compressor 10 to flow through the second pressure reducing device 22, the evaporator 14, the accumulator 15, and the compressor 10. Cycle in order. Compressor 1
The high-temperature high-pressure refrigerant gas blown out by 0 is decompressed by the second decompression device 22, and changes into a high-temperature low-pressure gas refrigerant.

【0015】第2の減圧装置22を通る高温低圧の熱ガ
ス冷媒がエバポレータ14に導入されると、この高温ガ
スから熱を奪った空気が加熱され、さらに図示矢印方向
の下流側の温水ヒータ3のヒータコア3a中の温水から
熱を奪ってさらに空気が加熱され、この加熱された温風
が図示しない吹出口から車室内に吹き出される。前記実
施例によると、圧縮機10を内燃機関1により駆動する
ため、内燃機関1の負荷が増大し、内燃機関で発生する
熱が冷却温水に伝達され、この冷却温水のもつ熱がヒー
タコア3aで送風温度を上昇させ、ヒータコア3aの暖
房能力も増大する。従って、エバポレータ14での高温
低圧の熱ガス冷媒により空気が加熱され、この加熱され
た空気はさらにヒータコア3aで内燃機関冷却温水から
熱を奪ってさらに高温に加熱される。従って、空調装置
6による暖房能力はかなり増大する。これにより急速暖
房が可能となる。
When the high-temperature low-pressure hot gas refrigerant passing through the second pressure reducing device 22 is introduced into the evaporator 14, the air that has taken heat from the high temperature gas is heated, and the hot water heater 3 on the downstream side in the direction of the arrow in the drawing is further heated. The heat is taken from the warm water in the heater core 3a to further heat the air, and the heated warm air is blown into the vehicle compartment through a blow-out port (not shown). According to the above-described embodiment, since the compressor 10 is driven by the internal combustion engine 1, the load of the internal combustion engine 1 increases, the heat generated in the internal combustion engine is transferred to the cooling hot water, and the heat of the cooling hot water is transferred to the heater core 3a. The blast temperature is raised and the heating capacity of the heater core 3a is also increased. Therefore, the high-temperature low-pressure hot gas refrigerant in the evaporator 14 heats the air, and the heated air is further deprived of heat from the internal combustion engine cooling hot water by the heater core 3a to be heated to a higher temperature. Therefore, the heating capacity of the air conditioner 6 is considerably increased. This enables rapid heating.

【0016】次に、前記実施例の作動を図2に示す制御
フローに基づいて詳述する。まず、図1に示す補助暖房
装置Aが作動しているか否かを判定する(ステップ4
0)。補助暖房装置Aが作動していない場合、図3に示
すように、内燃機関の冷却水温に応じた送風ブロア34
の風量を算出する(ステップ45)。補助暖房装置Aが
作動している場合は(ステップ40)、圧縮機10の冷
媒吐出圧力を検出する(ステップ41)。この検出は、
圧力センサ31の発生する信号により制御回路32で検
出される。次いで、圧縮機10の冷媒吐出圧力を基準に
送風ブロア34の風量を算出する(ステップ42)。こ
の送風ブロア34の風量の算出は、例えば図4に示すよ
うに圧縮機10の冷媒吐出圧力に応じた風量に設定す
る。
Next, the operation of the above embodiment will be described in detail based on the control flow shown in FIG. First, it is determined whether or not the auxiliary heating device A shown in FIG. 1 is operating (step 4
0). When the auxiliary heating device A is not operating, as shown in FIG. 3, the blower blower 34 according to the cooling water temperature of the internal combustion engine.
The air volume of is calculated (step 45). When the auxiliary heating device A is operating (step 40), the refrigerant discharge pressure of the compressor 10 is detected (step 41). This detection is
The control circuit 32 detects the signal generated by the pressure sensor 31. Next, the air volume of the blower blower 34 is calculated based on the refrigerant discharge pressure of the compressor 10 (step 42). The air volume of the blower blower 34 is set to an air volume according to the refrigerant discharge pressure of the compressor 10 as shown in FIG. 4, for example.

【0017】ここで、圧縮機10の冷媒吐出圧力がある
所定値、例えば5kgf/cm2 G以下の時は送風ブロ
ア34を駆動するモータ33を停止する。これは、圧縮
機10の冷媒吐出圧力が十分に低い状態においては、補
助暖房装置Aの暖房能力も低いから吹き出し空気温度が
過度に低くなるためであり、また圧縮機10の冷媒吐出
圧力が前記所定値に到達するまで送風ブロア34を停止
状態に保持すると、補助暖房装置Aの初期立ち上がり時
のエバポレータ14での放熱量が大となり、立ち上がり
補助暖房特性が良好になるからである。
Here, when the refrigerant discharge pressure of the compressor 10 is a predetermined value, for example, 5 kgf / cm 2 G or less, the motor 33 for driving the blower blower 34 is stopped. This is because in a state where the refrigerant discharge pressure of the compressor 10 is sufficiently low, the heating capacity of the auxiliary heating device A is also low, and the temperature of the blown air becomes excessively low. This is because if the blower blower 34 is held in the stopped state until the predetermined value is reached, the amount of heat radiated by the evaporator 14 at the initial startup of the auxiliary heating device A will be large, and the startup auxiliary heating characteristics will be good.

【0018】圧縮機10の冷媒吐出圧力が前記所定値を
超えると、ブロア風量を圧縮機10の冷媒吐出圧力に応
じてリニアに制御する。この場合ブロア風量をVa,圧
縮機吐出圧力をPdとすると、Va=k1 ・Pd+k2
(k1 、k2 は定数)で表される。このようにして最適
ブロア風量を決定し、これに基づくブロア電圧を決定し
(ステップ43)、このブロア電圧をモータ33に駆動
電圧として印加する(ステップ44)。
When the refrigerant discharge pressure of the compressor 10 exceeds the predetermined value, the blower air volume is linearly controlled according to the refrigerant discharge pressure of the compressor 10. In this case, if the blower air volume is Va and the compressor discharge pressure is Pd, then Va = k 1 · Pd + k 2
(K 1 and k 2 are constants). In this way, the optimum blower air volume is determined, the blower voltage based on this is determined (step 43), and this blower voltage is applied to the motor 33 as a drive voltage (step 44).

【0019】前記実施例においては、圧縮機10の冷媒
吸入圧力を検知しこの検知信号に基づいて送風ブロア3
4の風量を決定するようにしたが、送風ブロア34の風
量を最適風量にするための検知信号として、例えば、圧
縮機10の冷媒吸入圧力、圧縮機10の冷媒吐出温度、
エバポレータ14の冷媒入口前の冷媒温度等に基づいて
送風ブロア34の最適風量を決定することも可能であ
る。
In the above embodiment, the refrigerant suction pressure of the compressor 10 is detected, and the blower blower 3 is detected based on this detection signal.
Although the air flow rate of No. 4 is determined, as the detection signal for making the air flow rate of the blower blower 34 the optimum air flow rate, for example, the refrigerant suction pressure of the compressor 10, the refrigerant discharge temperature of the compressor 10,
It is also possible to determine the optimum air volume of the blower blower 34 based on the refrigerant temperature or the like before the refrigerant inlet of the evaporator 14.

【0020】なお、本発明の前記実施例では、内燃機関
の冷却温水を熱源とするヒータコアと冷媒回路に循環さ
れる冷媒(ホットガス)とを本暖房装置の主装置および
補助装置の熱源としているが、前記主装置の熱源は内燃
機関の冷却温水に限られず、その他の熱源であっても良
いことはもちろんである。また圧縮機の駆動源は内燃機
関としたが、これに代えて、電圧源を用いてもよい。
In the above embodiment of the present invention, the heater core, which uses the hot water for cooling the internal combustion engine as a heat source, and the refrigerant (hot gas) circulated in the refrigerant circuit are used as the heat sources of the main device and the auxiliary device of the present heating device. However, it goes without saying that the heat source of the main device is not limited to the hot water for cooling the internal combustion engine, and may be another heat source. Although the internal combustion engine was used as the drive source of the compressor, a voltage source may be used instead of this.

【0021】[0021]

【発明の効果】以上説明したように、本発明の空調装置
によれば、冷媒回路の高温高圧のガス冷媒を用いた簡易
な暖房装置が構成されるから、この暖房装置を主暖房装
置に加えると暖房能力がアップされるので、急速暖房が
可能になるという効果がある。また本発明の空調装置に
よれば、空調装置の冷媒状態つまり暖房能力に応じて送
風機の風量を制御することにしたため、初期立ち上がり
時などに効果的な暖房が行え、かつ快適な暖房フィーリ
ングを供与することができるという効果がある。
As described above, according to the air conditioner of the present invention, a simple heating device using a high-temperature and high-pressure gas refrigerant in the refrigerant circuit is constructed, so this heating device is added to the main heating device. And since the heating capacity is improved, there is an effect that rapid heating becomes possible. Further, according to the air conditioner of the present invention, since the air volume of the blower is controlled according to the refrigerant state of the air conditioner, that is, the heating capacity, effective heating can be performed at the time of initial startup, and a comfortable heating feeling can be obtained. The effect is that it can be donated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例による空調装置の冷媒回路
を示す回路図である。
FIG. 1 is a circuit diagram showing a refrigerant circuit of an air conditioner according to a first embodiment of the present invention.

【図2】本発明の第1実施例の制御フローを示すフロー
チャート図である。
FIG. 2 is a flowchart showing a control flow of the first embodiment of the present invention.

【図3】本発明の第1実施例で用いた内燃機関の冷却水
温と送風ブロアの風量との関係を示す特性図である。
FIG. 3 is a characteristic diagram showing the relationship between the cooling water temperature of the internal combustion engine used in the first embodiment of the present invention and the air volume of the blower blower.

【図4】本発明の第1実施例で用いた圧縮機の冷媒吐出
圧力と送風ブロアの風量との関係を示す特性図である。
FIG. 4 is a characteristic diagram showing the relationship between the refrigerant discharge pressure of the compressor used in the first embodiment of the present invention and the air volume of the blower blower.

【符号の説明】[Explanation of symbols]

1 内燃機関 3 温水ヒータ(主暖房装置) 10 圧縮機 11 コンデンサ 13 第1の減圧装置 14 エバポレータ 18 三方弁 20 バイパス管 22 第2の減圧装置 31 圧力センサ(センサ) 32 制御回路(制御手段) 33 モータ(駆動手段) 34 送風ブロア(送風機) 1 Internal Combustion Engine 3 Hot Water Heater (Main Heating Device) 10 Compressor 11 Condenser 13 First Pressure Reduction Device 14 Evaporator 18 Three-way Valve 20 Bypass Pipe 22 Second Pressure Reduction Device 31 Pressure Sensor (Sensor) 32 Control Circuit (Control Means) 33 Motor (driving means) 34 Blower blower (blower)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】主暖房装置を備えた空調装置であって、 冷媒を圧送する圧縮機と、 この圧縮機の冷媒吐出側に接続されるコンデンサと、 前記圧縮機の冷媒吸入側に接続されるエバポレータであ
って、このエバポレータを流通する空気流路と前記主暖
房装置で加熱される空気流路とが少なくとも一部一致す
るように前記主暖房装置に対し直列に設けられるエバポ
レータと、 前記圧縮機と前記コンデンサとを結ぶ経路に設けられる
三方弁と、 前記コンデンサを迂回して前記三方弁から前記コンデン
サと前記エバポレータとを結ぶ経路に接続されるバイパ
ス管と、 前記エバポレータの冷媒入口側に設けられる減圧装置
と、 前記エバポレータに空気を流す送風機の駆動手段と、 前記圧縮機の冷媒吐出圧力、冷媒吸入圧力、冷媒吐出温
度、前記エバポレータ入口前の冷媒温度の少なくとも一
つの冷媒状態を検知するセンサと、 前記センサの出力に応じて前記送風機の最適風量を演算
し、この演算結果に基づいて前記送風機の駆動信号を前
記駆動手段に出力する制御手段とを備えたことを特徴と
する空調装置。
1. An air conditioner having a main heating device, comprising a compressor for pumping a refrigerant, a condenser connected to a refrigerant discharge side of the compressor, and a refrigerant suction side of the compressor. An evaporator, which is provided in series with the main heating device such that an air flow passage flowing through the evaporator and an air flow passage heated by the main heating device at least partially coincide with each other, and the compressor. And a bypass pipe connected to the condenser, a bypass pipe bypassing the condenser and connected to a path connecting the condenser and the evaporator from the three-way valve, and a refrigerant inlet side of the evaporator. A decompression device, a driving means of a blower for flowing air through the evaporator, a refrigerant discharge pressure of the compressor, a refrigerant suction pressure, a refrigerant discharge temperature, the evaporator A sensor that detects at least one refrigerant state of the refrigerant temperature before the inlet of the relator, calculates an optimum air volume of the blower according to the output of the sensor, and outputs a drive signal of the blower to the drive means based on the calculation result. An air conditioner comprising a control means for outputting.
JP32043591A 1991-12-04 1991-12-04 Air conditioner Pending JPH05157376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32043591A JPH05157376A (en) 1991-12-04 1991-12-04 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32043591A JPH05157376A (en) 1991-12-04 1991-12-04 Air conditioner

Publications (1)

Publication Number Publication Date
JPH05157376A true JPH05157376A (en) 1993-06-22

Family

ID=18121417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32043591A Pending JPH05157376A (en) 1991-12-04 1991-12-04 Air conditioner

Country Status (1)

Country Link
JP (1) JPH05157376A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6105666A (en) * 1997-10-30 2000-08-22 Calsonic Corporation Vehicular air conditioning apparatus
US6604576B2 (en) 1996-11-15 2003-08-12 Calsonic Kansei Corporation Automotive air conditioning system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6604576B2 (en) 1996-11-15 2003-08-12 Calsonic Kansei Corporation Automotive air conditioning system
US6105666A (en) * 1997-10-30 2000-08-22 Calsonic Corporation Vehicular air conditioning apparatus

Similar Documents

Publication Publication Date Title
JP3237187B2 (en) Air conditioner
JP3307466B2 (en) Air conditioner for electric vehicle
US7559206B2 (en) Supercritical heat pump cycle system
CA2421481C (en) Automotive air conditioning system
US10647178B2 (en) Air conditioner for vehicle
JP3189255B2 (en) Air conditioner
CN103287239A (en) Heat pump system for vehicle and method of controlling the same
JP3356142B2 (en) Refrigeration cycle device
US6058728A (en) Refrigerant cycle for vehicle air conditioner
JP2004338447A (en) Air conditioner
WO2020021840A1 (en) Vehicle air conditioner
JP2010159006A (en) Air conditioner for vehicle
JP2020075623A (en) Vehicle air conditioner
JPH05157376A (en) Air conditioner
JP2002234335A (en) Vehicular air conditioner
JPH10115448A (en) Air conditioner
JPH06262936A (en) Air conditioner for automobile
JP3339040B2 (en) Vehicle air conditioner
JP2006044501A (en) Vehicular air-conditioner
JP4036015B2 (en) Air conditioner
JP3858738B2 (en) Air conditioner for vehicles
JP2011219048A (en) Air conditioning apparatus for vehicle
CN110998198B (en) Refrigeration cycle device
JP4014760B2 (en) Air conditioner for vehicles
JP4133084B2 (en) Air conditioner for vehicles