[go: up one dir, main page]

JPH05151828A - Pressure-sensitive conductive material - Google Patents

Pressure-sensitive conductive material

Info

Publication number
JPH05151828A
JPH05151828A JP3316274A JP31627491A JPH05151828A JP H05151828 A JPH05151828 A JP H05151828A JP 3316274 A JP3316274 A JP 3316274A JP 31627491 A JP31627491 A JP 31627491A JP H05151828 A JPH05151828 A JP H05151828A
Authority
JP
Japan
Prior art keywords
film
pressure
conductive material
sensitive
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3316274A
Other languages
Japanese (ja)
Inventor
Yoshihiro Soeda
田 善 弘 添
Takako Ishii
井 貴 子 石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP3316274A priority Critical patent/JPH05151828A/en
Publication of JPH05151828A publication Critical patent/JPH05151828A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Adjustable Resistors (AREA)
  • Push-Button Switches (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To meet formation of a thin film by forming an organic molecule film on the surface of a film-like conductive material. CONSTITUTION:Conductive material is made to have pressure sensitive conductivity by forming an organic molecule film on the surface of a film-like conductive material. That is, the organic molecule film exists as an insulating layer on the surface of the conductive material so that an electrode and the conductive material are conducted with the molecule film compressed according to an amount of pressure at the time of being pressed, though the electrode and the conductive material are not conducted at the time of being not pressed. And then when released again, the compressed film returns to a non-conductive state, that is, the film changes the state reversibly to carry the pressure sensitive conductivity and consequently to be able to meet needs of thin-film formation. Thereby, it is applicable to an input/output device and the like for various kinds of pressure sensitive sensors, touch-panels and so on. And also since the sensitivity of the pressure sensitive conductivity is weakened by formation of an organic molecule film on the surface of the film, it is applicable to various kinds of use.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は感圧導電材料に関する。FIELD OF THE INVENTION This invention relates to pressure sensitive conductive materials.

【0002】[0002]

【従来の技術】感圧導電材料はキーボードスイッチ、自
動ドアのスイッチ、各種圧力接点スイッチ、その他のセ
ンサーとして広範囲に利用されている。
2. Description of the Related Art Pressure-sensitive conductive materials are widely used as keyboard switches, automatic door switches, various pressure contact switches, and other sensors.

【0003】導体または半導体材料(以下合わせて導電
性材料と称する)を感圧導電性のものとする工夫とし
て、フィルム状の導電性材料の表面に突起を設けたり
(実開昭61−114727)、絶縁性線状スペーサー
を設ける(特開昭58−68147)方法がある。これ
らの使用態様を突起を設けた場合について説明すると、
導電性材料のフィルムの少なくとも片面に絶縁性の突起
を形成し、該フィルムの両側に電極を設けて非押圧時に
おいては突起状物が電極と導電性材料とを絶縁して導通
しないが、押圧時はその圧力の大きさに応じて電極と導
電材料との接触面積が増加し、電気抵抗が小さくなるよ
うに設計される。
As a device for making a conductor or a semiconductor material (hereinafter collectively referred to as a conductive material) a pressure-sensitive conductive material, a projection is provided on the surface of a film-shaped conductive material (Shokai 61-114727). There is a method of providing an insulating linear spacer (Japanese Patent Laid-Open No. 58-68147). Explaining these usage modes when a protrusion is provided,
Insulating protrusions are formed on at least one side of a film of conductive material, electrodes are provided on both sides of the film, and when not pressed, the protrusions insulate the electrodes from the conductive material and do not conduct, At this time, the contact area between the electrode and the conductive material is increased according to the magnitude of the pressure, and the electrical resistance is designed to be small.

【0004】このようなフィルム状の導電性材料の表面
に突起を設けるかあるいはスペーサーを設けて感圧導電
性を付与する工夫は突起自身あるいはスペーサー自身が
0.1から3.0mmの厚さを有している。一方、感圧
センサーの用途である電子機器、加重−電圧変換器等々
においては、感圧導電材料として薄膜タイプのものが要
求されているが、上記の感圧導電性を付与する工夫は薄
膜化に充分に対応できるものでは無い。
The protrusion itself or the spacer itself has a thickness of 0.1 to 3.0 mm in order to provide pressure-sensitive conductivity by providing a protrusion or a spacer on the surface of such a film-shaped conductive material. Have On the other hand, in electronic devices, weight-voltage converters, etc., which are applications of pressure-sensitive sensors, thin-film type materials are required as pressure-sensitive conductive materials. It is not something that can fully cope with.

【0005】[0005]

【発明が解決しようとする課題】かくして本発明は薄膜
化に対応できる感圧導電材料の提供を目的としている。
The object of the present invention is thus to provide a pressure-sensitive conductive material which can be made thinner.

【0006】[0006]

【課題を解決するための手段】即ち、本発明によればフ
ィルム状の導電材料の表面に有機分子膜を有する、好ま
しくは該有機分子膜がブロジェット法により形成された
ものであるフィルム状感圧導電材料が提供される。
That is, according to the present invention, a film-like feeling having an organic molecular film on the surface of a film-like conductive material, preferably the organic molecular film formed by a blow jet method A piezoelectric material is provided.

【0007】フィルム状の導電材料の表面に有機分子膜
を形成することにより導電材料が感圧導電性を有するよ
うになる事実は予想外の発見であり、驚くべきことであ
った。
The fact that the conductive material has pressure-sensitive conductivity by forming an organic molecular film on the surface of the film-shaped conductive material was an unexpected discovery and was surprising.

【0008】有機分子膜の形成により感圧導電性の性質
を帯びる理由に関しては定かではないが、有機分子膜が
導電材料の表面を絶縁層として存在することにより非押
圧時においては電極と導電材料は導通しないが、押圧時
においては分子膜が圧力の大きさに応じて圧縮され電極
と導電材料とが導通し、再び解放されると圧縮された膜
が回復し非導通状態になるという圧力の変化に対応して
膜が可逆的に変化するためと推定している。
The reason why the formation of the organic molecular film imparts the pressure-sensitive conductive property is not clear. However, since the organic molecular film has the surface of the conductive material as an insulating layer, the electrode and the conductive material are not pressed. Does not conduct, but when pressed, the molecular film is compressed according to the magnitude of the pressure and the electrode and the conductive material conduct, and when released again, the compressed film recovers and becomes non-conductive. It is presumed that the membrane changes reversibly in response to the change.

【0009】このような、有機分子膜の厚さは20〜5
0Å程度のものであり、従来技術の突起状物あるいはス
ペーサーを設ける工夫と比較して感圧導電性を与えるた
めの手段のための空間が実質的に存在しないことと同じ
であり、感圧導電材料の薄膜化の方向のニーズに合致し
ている。
The thickness of such an organic molecular film is 20 to 5
It is about 0 Å, which is the same as the absence of a space for a means for giving pressure-sensitive conductivity as compared with the conventional technique of providing a protrusion or a spacer. It meets the needs of thinning materials.

【0010】更に、有機分子膜を形成するフィルム状導
電材料として感圧導電性のものを用いた場合、その感圧
導電性の感度が鋭くなるという驚くべき事実も発見し
た。
Further, it was discovered that when a pressure-sensitive conductive material is used as a film-shaped conductive material for forming an organic molecular film, the pressure-sensitive conductivity becomes sharp.

【0011】以下本発明の構成につき詳述するが、本発
明の目的及び利点がより明確になるであろう。
The structure of the present invention will be described in detail below, but the objects and advantages of the present invention will become clearer.

【0012】本発明の導電材料は特に限定されるもので
は無いが、通常体積固有抵抗値で10-6〜108 Ω・c
m、好ましくは、10-5〜102 Ω・cmのものが推奨
される。
The conductive material of the present invention is not particularly limited, but usually has a volume resistivity value of 10 −6 to 10 8 Ω · c.
m, preferably 10 −5 to 10 2 Ω · cm is recommended.

【0013】具体的にはポリエチレン、ポリプロピレ
ン、ポリ塩化ビニル、ポリアミド樹脂、ポリエステル樹
脂、ポリカーボネート、ポリフェニレンエーテルなどの
熱可塑性樹脂、あるいはフェノール樹脂、ユリア樹脂、
メラミン樹脂、不飽和ポリエステル樹脂、エポキシ樹
脂、ケイ素樹脂、ポリウレタン樹脂などの熱硬化性樹
脂、ニトロセルロース、エチルセルロース等の繊維素誘
導体、塩化ゴム、シリコーンゴム等のゴム誘導体、さら
には、上記の各樹脂の各種変性体などに、カーボンブラ
ック、グラファイト、銀、ニッケル、炭化チタンおよび
表面を導電性材料でコートしたマイカや繊維などの導電
性を有する充填剤を混合したものなどが挙げられる。
Specifically, thermoplastic resins such as polyethylene, polypropylene, polyvinyl chloride, polyamide resin, polyester resin, polycarbonate and polyphenylene ether, or phenol resin, urea resin,
Thermosetting resins such as melamine resins, unsaturated polyester resins, epoxy resins, silicon resins and polyurethane resins, fibrin derivatives such as nitrocellulose and ethyl cellulose, rubber derivatives such as chlorinated rubber and silicone rubber, and the above resins In addition to various modified substances of (1), carbon black, graphite, silver, nickel, titanium carbide and a conductive filler such as mica or fiber whose surface is coated with a conductive material are mixed.

【0014】また、導電性材料としてそれ自体が感圧導
電性を有するものであっても良い。そのような材料とし
て本願出願人が特開平2−186604号で提案した有
機高分子材料と導電性材料および前記導電性材料の1/
100以下の電気伝導度を有する半導体材料および絶縁
材料からなる組成物を挙げることができる。
Further, the conductive material itself may have pressure-sensitive conductivity. As such a material, an organic polymer material and a conductive material proposed by the applicant in Japanese Patent Application Laid-Open No. 2-186604, and 1 /
A composition made of a semiconductor material and an insulating material having an electric conductivity of 100 or less can be mentioned.

【0015】このような導電性材料はその素材に応じて
フィルム状に成形されるが、そのフィルムの厚さは感圧
導電性材料の用途に応じて適宜に設定され、通常10〜
60ミクロンの厚さである。
Such a conductive material is formed into a film according to its material, and the thickness of the film is appropriately set according to the use of the pressure-sensitive conductive material, and is usually 10 to 10.
It is 60 microns thick.

【0016】本発明のフィルム状の導電性材料は、その
表面に有機分子膜を有する。有機分子膜は有機分子の単
分子膜であっても良いし、単分子膜が複数積層した累積
膜であっても良い。
The film-shaped conductive material of the present invention has an organic molecular film on its surface. The organic molecular film may be a monomolecular film of organic molecules, or may be a cumulative film in which a plurality of monomolecular films are laminated.

【0017】有機分子膜を構成する有機分子としては、
ミリスチン酸、ペンタデカン酸、パルミチン酸、ヘプタ
デカン酸、ステアリン酸で例示されるC10〜C20の長鎖
脂肪酸およびそのエステル類、ピレニルデカン酸、ブチ
ルピレニルヘキサン酸などの縮合多環芳香族を含む脂肪
酸及びそのエステル類、その他シアニン染料、アゾベン
ゼン誘導体、フタロシアニン誘導体などを挙げることが
できる。
The organic molecules forming the organic molecular film include
Myristic acid, pentadecanoic acid, palmitic acid, heptadecanoic acid, stearic acid, exemplified by C 10 to C 20 long-chain fatty acids and their esters, pyrenyldecanoic acid, butylpyrenylhexanoic acid, and other condensed polycyclic aromatic fatty acids. And esters thereof, other cyanine dyes, azobenzene derivatives, phthalocyanine derivatives and the like.

【0018】このような有機分子を適宜選択することに
より又、有機分子の積層数を変化することにより本発明
の感圧導電性材料の感圧特性を適宜に変化させることが
可能である。一般的には、有機分子の炭素数が増加する
につれて一層当たりの分子鎖長が長くなるため、荷重を
印加しない際の絶縁性が向上する。又、積層数が増加す
るにつれて感圧導電性が向上する。しかし、積層数が多
すぎると、分子鎖を形成することが困難である上、単な
る絶縁体層となってしまい、感圧導電性を失ってしま
う。従って、有機分子の炭素数ならびにその有機分子鎖
の積層数は、要求される感圧導電性に応じて適宜選択さ
れる。
By appropriately selecting such an organic molecule or by changing the number of stacked organic molecules, the pressure-sensitive property of the pressure-sensitive conductive material of the present invention can be appropriately changed. Generally, the molecular chain length per layer becomes longer as the carbon number of the organic molecule increases, so that the insulating property when no load is applied is improved. Also, the pressure-sensitive conductivity is improved as the number of laminated layers is increased. However, if the number of laminated layers is too large, it is difficult to form a molecular chain, and a mere insulator layer is formed, resulting in loss of pressure-sensitive conductivity. Therefore, the number of carbon atoms in the organic molecule and the number of stacked organic molecular chains are appropriately selected according to the required pressure-sensitive conductivity.

【0019】導電性材料のフィルムに有機分子膜を形成
するには、それ自体公知の所謂ブロジェット法により行
なうことができる。即ち、上記の有機化合物の単分子膜
を水面上に展開し、一定の表面圧を加えて最密状態の凝
縮膜を作り、導電性材料フィルムを膜面に対して上下す
ることによって凝縮膜を移しとり該フィルムに分子膜を
形成することができる。
The formation of an organic molecular film on a film of a conductive material can be carried out by a so-called blow jet method known per se. That is, a monomolecular film of the above-mentioned organic compound is spread on the water surface, a constant surface pressure is applied to form a condensed film in the most dense state, and the conductive material film is moved up and down with respect to the film surface to form the condensed film. A molecular film can be formed on the transfer film.

【0020】このようにして得られる有機分子膜がその
表面に形成されたフィルム状の導電材料は感圧導電性を
示す。又、フィルム状の導電材料がそれ自体感圧導電性
の場合、感圧特性がより鋭くなる。
The film-like conductive material having the organic molecular film thus obtained formed on its surface exhibits pressure-sensitive conductivity. Further, when the film-shaped conductive material itself is pressure-sensitive conductive, the pressure-sensitive property becomes sharper.

【0021】本発明の感圧導電材料は従来の用途、例え
ばキーボードスイッチ、自動ドアのスイッチ、各種圧力
接点スイッチのセンサなどに用いられる他、特に薄膜化
が要請されているタッチパネル等の入出力装置などに好
んで用いられる。
The pressure-sensitive conductive material of the present invention is used for conventional applications such as keyboard switches, switches for automatic doors, and sensors for various pressure contact switches, and also input / output devices such as touch panels for which thinning is particularly required. It is preferably used for such purposes.

【0022】[0022]

【実施例】以下実施例を以って、具体的に本発明を説明
する。
EXAMPLES The present invention will be specifically described with reference to the following examples.

【0023】(実施例1)日本アチソン社製導電性ペー
ストエレクトロダク423SS(40Ω/□ 25μ
m)をポリエステルフィルム上、バーコーターを用いて
印刷し、加熱乾燥後、膜厚40μmの導電性層を当該フ
ィルム上に形成した。このフィルムにラングミュアー・
ブロジェット法で、ステアリン酸の分子膜を2層及び4
層を形成した。このようにして作製した本発明の感圧材
を平らな櫛目電極上に載置し、直径10mmの平坦な先
端部を有する棒で加圧および除圧を繰り返し、特性を観
察した。得られた感圧材の加圧力と電気抵抗との関係
は、加圧が始まると直ちにかつ滑らかに電気抵抗が低下
して導通状態となり、加圧が解除されると直ちにかつ滑
らかに抵抗値にもどる優れた特性を有するものであっ
た。また、本発明の感圧材において、抵抗値の対数を縦
軸に、加圧力の対数を横軸にしてその関係をグラフにし
た際の直線の傾きを“勾配”といい(図1参照)、通常
の感圧材においては、この勾配の絶対値が大きいほど良
好な感圧性を有するものとなる。
(Embodiment 1) Conductive paste ELECTRODUC 423SS (40Ω / □ 25μ, manufactured by Nippon Acheson Co., Ltd.)
m) was printed on a polyester film by using a bar coater, dried by heating, and then a conductive layer having a thickness of 40 μm was formed on the film. Langmuir on this film
Blodgett method, using two layers of stearic acid molecular film and four
Layers were formed. The pressure-sensitive material of the present invention thus produced was placed on a flat comb electrode, and pressure and depressurization were repeated with a rod having a flat tip having a diameter of 10 mm to observe the characteristics. The relationship between the applied pressure and the electric resistance of the obtained pressure-sensitive material is that the electric resistance immediately and smoothly decreases when the pressure starts and becomes a conductive state, and when the pressure is released, the resistance value immediately and smoothly changes. It had excellent properties for returning. In the pressure-sensitive material of the present invention, the slope of the straight line when the relationship is plotted in a graph with the logarithm of the resistance value as the vertical axis and the logarithm of the pressing force as the horizontal axis is referred to as "gradient" (see FIG. 1). In a normal pressure sensitive material, the larger the absolute value of this gradient, the better the pressure sensitivity.

【0024】(実施例2)特開平2−186604号の
実施例1に記載の感圧材を厚さ125μmのポリエステ
ルフィルム上に、バーコーターを用いて印刷し、加熱乾
燥後、膜厚40μmの感圧導電層を当該フィルム上に形
成した。このフィルムにラングミュアー・ブロジェット
法で、ステアリン酸の分子膜を2層および4層形成し
た。このようにして作製した本発明の感圧材を平らな櫛
目電極上に載置し、直径10mmの平坦な先端部を有す
る棒で加圧および除圧を繰り返し、特性を観察した。得
られた感圧材の加圧力と電気抵抗との関係は、加圧が始
まると直ちにかつ滑らかに電気抵抗が低下して導通状態
となり、加圧が解除されると直ちにかつ滑らかに元の抵
抗値にもどる優れた特性を有するものであった。
Example 2 The pressure-sensitive material described in Example 1 of JP-A-2-186604 was printed on a 125 μm-thick polyester film by using a bar coater, and after heating and drying, a film thickness of 40 μm was obtained. A pressure sensitive conductive layer was formed on the film. Two and four molecular films of stearic acid were formed on this film by the Langmuir-Blodgett method. The pressure-sensitive material of the present invention thus produced was placed on a flat comb-shaped electrode, and pressurization and depressurization were repeated with a rod having a flat tip having a diameter of 10 mm to observe the characteristics. The relationship between the applied pressure and the electric resistance of the obtained pressure-sensitive material is that the electric resistance immediately and smoothly decreases immediately after the pressurization starts and becomes a conductive state, and when the pressurization is released, the original resistance immediately and smoothly. It had excellent properties returning to the values.

【0025】(実施例3)(株)アサヒ化学研究所製の
抵抗性材料PTFペーストTU−1K−5(1KΩ/□
25μm)を厚さ125μmのポリエステルフィルム
上に、バーコーターを用いて印刷し、加熱乾燥後、膜厚
40μmの電気抵抗性層を当該フィルム上に形成した。
このフィルムにラングミュアー・ブロジェット法で、ス
テアリン酸の分子膜を2層および4層形成した。このよ
うにして作製した本発明の感圧材を平らな櫛目電極上に
載置し、直径10mmの平坦な先端部を有する棒で加圧
および除圧を繰り返し、特性を観察した。得られた感圧
材の加圧力と電気抵抗との関係は、加圧が始まると直ち
にかつ滑らかに電気抵抗が低下して導通状態となり、加
圧が解除されると直ちにかつ滑らかに元の抵抗値にもど
る優れた特性を有するものであった。
Example 3 Resistive material PTF paste TU-1K-5 (1 KΩ / □ manufactured by Asahi Chemical Laboratory Co., Ltd.)
25 μm) was printed on a 125 μm-thick polyester film using a bar coater, and after heating and drying, an electrically resistive layer having a film thickness of 40 μm was formed on the film.
Two and four molecular films of stearic acid were formed on this film by the Langmuir-Blodgett method. The pressure-sensitive material of the present invention thus produced was placed on a flat comb electrode, and pressure and depressurization were repeated with a rod having a flat tip having a diameter of 10 mm to observe the characteristics. The relationship between the applied pressure and the electrical resistance of the obtained pressure-sensitive material is that the electrical resistance immediately and smoothly decreases when the pressure starts and becomes conductive, and when the pressure is released, the original resistance immediately and smoothly. It had excellent properties returning to the values.

【0026】(比較例1〜3)実施例1、実施例2、実
施例3で用いた導電材、感圧材、電気抵抗材にラングミ
ュアー・ブロジェット法でのステアリン酸分子膜を形成
せずに、実施例記載と同様の方法にて、感圧特性を観察
した。以上の実施例および比較例の導電材料の感圧性を
表1に示した。
(Comparative Examples 1 to 3) A stearic acid molecular film was formed by the Langmuir-Blodgett method on the conductive material, the pressure sensitive material and the electric resistance material used in Examples 1, 2 and 3. Instead, the pressure-sensitive characteristics were observed by the same method as described in the examples. Table 1 shows the pressure sensitivity of the conductive materials of the above Examples and Comparative Examples.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【発明の効果】本発明の感圧導電材料はフィルム状の導
電材料の表面に単に有機分子膜を設けて構成されている
ので、感圧導電材料の薄膜化が要請されている各種感圧
センサー、力−電圧変換装置、タッチパネル等の入出力
装置等に用いることが可能である。又、有機分子膜を形
成する前の感圧導電材料自体が感圧導電性を有している
場合、そのフィルム表面に有機分子膜を形成することに
より感圧導電性の感度が鋭くなり、各種用途に使用する
ことができる。
Since the pressure-sensitive conductive material of the present invention is constituted by simply providing an organic molecular film on the surface of a film-shaped conductive material, various pressure-sensitive sensors for which thinning of the pressure-sensitive conductive material is required. , A force-voltage converter, an input / output device such as a touch panel, and the like. Also, when the pressure-sensitive conductive material itself before forming the organic molecular film has pressure-sensitive conductivity, forming the organic molecular film on the surface of the film sharpens the sensitivity of the pressure-sensitive conductivity. It can be used for various purposes.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の感圧材料の圧力と抵抗値の関係を示
すグラフである。
FIG. 1 is a graph showing the relationship between pressure and resistance of a pressure-sensitive material of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】フィルム状導電材料の表面に有機分子膜を
有する感圧導電材料。
1. A pressure-sensitive conductive material having an organic molecular film on the surface of a film-shaped conductive material.
【請求項2】有機分子膜がブロジェット法により形成さ
れた膜である請求項1に記載の感圧導電材料。
2. The pressure-sensitive conductive material according to claim 1, wherein the organic molecular film is a film formed by a jet method.
JP3316274A 1991-11-29 1991-11-29 Pressure-sensitive conductive material Withdrawn JPH05151828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3316274A JPH05151828A (en) 1991-11-29 1991-11-29 Pressure-sensitive conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3316274A JPH05151828A (en) 1991-11-29 1991-11-29 Pressure-sensitive conductive material

Publications (1)

Publication Number Publication Date
JPH05151828A true JPH05151828A (en) 1993-06-18

Family

ID=18075281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3316274A Withdrawn JPH05151828A (en) 1991-11-29 1991-11-29 Pressure-sensitive conductive material

Country Status (1)

Country Link
JP (1) JPH05151828A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344791B1 (en) 1998-07-24 2002-02-05 Brad A. Armstrong Variable sensor with tactile feedback
US6404584B2 (en) 1997-10-01 2002-06-11 Brad A. Armstrong Analog controls housed with electronic displays for voice recorders
US6415707B1 (en) 1997-10-01 2002-07-09 Brad A. Armstrong Analog controls housed with electronic displays for coffee makers
US6469691B1 (en) 1999-05-11 2002-10-22 Brad A. Armstrong Analog controls housed with electronic displays for hand-held web browsers
US6532000B2 (en) 1997-10-01 2003-03-11 Brad A. Armstrong Analog controls housed with electronic displays for global positioning systems
US6563415B2 (en) 1996-07-05 2003-05-13 Brad A. Armstrong Analog sensor(s) with snap-through tactile feedback
KR100372624B1 (en) * 1995-04-18 2003-05-16 코닌클리케 필립스 일렉트로닉스 엔.브이. Touch sensing devices and methods of making such
US6906700B1 (en) 1992-03-05 2005-06-14 Anascape 3D controller with vibration
US7345670B2 (en) 1992-03-05 2008-03-18 Anascape Image controller
JP2017016811A (en) * 2015-06-30 2017-01-19 住友理工株式会社 Pressure-sensitive conductive elastomer composition and pressure-sensitive conductive elastomer crosslinked product

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7345670B2 (en) 1992-03-05 2008-03-18 Anascape Image controller
US6906700B1 (en) 1992-03-05 2005-06-14 Anascape 3D controller with vibration
KR100372624B1 (en) * 1995-04-18 2003-05-16 코닌클리케 필립스 일렉트로닉스 엔.브이. Touch sensing devices and methods of making such
US6563415B2 (en) 1996-07-05 2003-05-13 Brad A. Armstrong Analog sensor(s) with snap-through tactile feedback
US6470078B1 (en) 1997-10-01 2002-10-22 Brad A. Armstrong Analog controls housed with electronic displays for telephones
US6496449B1 (en) 1997-10-01 2002-12-17 Brad A. Armstrong Analog controls housed with electronic displays for clocks
US6518953B1 (en) 1997-10-01 2003-02-11 Brad A. Armstrong Analog controls housed with electronic displays for remote controllers having feedback display screens
US6529185B1 (en) 1997-10-01 2003-03-04 Brad A. Armstrong Analog controls housed with electronic displays for electronic books
US6532000B2 (en) 1997-10-01 2003-03-11 Brad A. Armstrong Analog controls housed with electronic displays for global positioning systems
US6538638B1 (en) 1997-10-01 2003-03-25 Brad A. Armstrong Analog controls housed with electronic displays for pagers
US6415707B1 (en) 1997-10-01 2002-07-09 Brad A. Armstrong Analog controls housed with electronic displays for coffee makers
US6404584B2 (en) 1997-10-01 2002-06-11 Brad A. Armstrong Analog controls housed with electronic displays for voice recorders
US6344791B1 (en) 1998-07-24 2002-02-05 Brad A. Armstrong Variable sensor with tactile feedback
US6504527B1 (en) 1999-05-11 2003-01-07 Brad A. Armstrong Analog controls housed with electronic displays for computer monitors
US6559831B1 (en) 1999-05-11 2003-05-06 Brad A. Armstrong Analog controls housed with electronic displays for personal digital assistants
US6469691B1 (en) 1999-05-11 2002-10-22 Brad A. Armstrong Analog controls housed with electronic displays for hand-held web browsers
JP2017016811A (en) * 2015-06-30 2017-01-19 住友理工株式会社 Pressure-sensitive conductive elastomer composition and pressure-sensitive conductive elastomer crosslinked product

Similar Documents

Publication Publication Date Title
Geng et al. Effect of acid treatment on carbon nanotube-based flexible transparent conducting films
JP3894571B2 (en) Flexible electrode carrying article
Shehzad et al. Effects of carbon nanotubes aspect ratio on the qualitative and quantitative aspects of frequency response of electrical conductivity and dielectric permittivity in the carbon nanotube/polymer composites
US5393597A (en) Overvoltage protection element
Hu et al. Patternable transparent carbon nanotube films for electrochromic devices
KR100456045B1 (en) Pressure Sensitive Ink, Pressure Sensitive Ink Device, and Methods of Use
JP5374984B2 (en) Dielectric actuator
Galantini et al. Functionalized carbon nanotubes as a filler for dielectric elastomer composites with improved actuation performance
US5209967A (en) Pressure sensitive membrane and method therefor
JPH01282802A (en) Pressure-sensitive resistance element
US8449974B2 (en) Electrically responsive composite material, a method of manufacture and a transducer produced using said material
CN108349194A (en) Multilayer materials including adhesive and one or more nanofiber sheets
JPH05151828A (en) Pressure-sensitive conductive material
Quinsaat et al. Conductive silicone elastomers electrodes processable by screen printing
CN100358056C (en) Conductive resin film, collector and production methods therefore
KR101650827B1 (en) Conductive complex composite having piezoresistivity and piezoresistive device using the same
JP2002501949A (en) Polymer composition
US20090135146A1 (en) Touch screen with resistive electrode
Hajian et al. Cellulose nanopaper with monolithically integrated conductive micropatterns
WO2004023845A1 (en) Seat-like heating units using carbon nanotubes
Dhakal et al. Electrically conductive nanocomposites based on poly (lactic acid)/flexible copolyester blends with multiwalled carbon nanotubes
Xu et al. Preparation and properties of flexible conductive polydimethylsiloxane composites containing hybrid fillers
JP2003217902A (en) PTC resistor
JP7348959B2 (en) Composite materials that sense force or pressure
KR101434565B1 (en) Thick membrane type PTC heating element with Conductive paste composition

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990204