JPH05151828A - Pressure-sensitive conductive material - Google Patents
Pressure-sensitive conductive materialInfo
- Publication number
- JPH05151828A JPH05151828A JP3316274A JP31627491A JPH05151828A JP H05151828 A JPH05151828 A JP H05151828A JP 3316274 A JP3316274 A JP 3316274A JP 31627491 A JP31627491 A JP 31627491A JP H05151828 A JPH05151828 A JP H05151828A
- Authority
- JP
- Japan
- Prior art keywords
- film
- pressure
- conductive material
- sensitive
- conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000004020 conductor Substances 0.000 title claims abstract description 49
- 239000002120 nanofilm Substances 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 9
- 239000010408 film Substances 0.000 abstract description 34
- 230000015572 biosynthetic process Effects 0.000 abstract description 5
- 230000035945 sensitivity Effects 0.000 abstract description 4
- 239000010409 thin film Substances 0.000 abstract description 3
- 239000000463 material Substances 0.000 description 20
- 235000021355 Stearic acid Nutrition 0.000 description 5
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 5
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 5
- 239000008117 stearic acid Substances 0.000 description 5
- 125000006850 spacer group Chemical group 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229920006267 polyester film Polymers 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- KEMQGTRYUADPNZ-UHFFFAOYSA-N heptadecanoic acid Chemical compound CCCCCCCCCCCCCCCCC(O)=O KEMQGTRYUADPNZ-UHFFFAOYSA-N 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- QGKMIGUHVLGJBR-UHFFFAOYSA-M (4z)-1-(3-methylbutyl)-4-[[1-(3-methylbutyl)quinolin-1-ium-4-yl]methylidene]quinoline;iodide Chemical compound [I-].C12=CC=CC=C2N(CCC(C)C)C=CC1=CC1=CC=[N+](CCC(C)C)C2=CC=CC=C12 QGKMIGUHVLGJBR-UHFFFAOYSA-M 0.000 description 1
- VAEUUMDTRHNRBU-UHFFFAOYSA-N 2-pyren-1-yldecanoic acid Chemical compound C1=C2C(C(C(O)=O)CCCCCCCC)=CC=C(C=C3)C2=C2C3=CC=CC2=C1 VAEUUMDTRHNRBU-UHFFFAOYSA-N 0.000 description 1
- UJPYWBJOGRLKRU-UHFFFAOYSA-N CCCCC(CCCC)(C1=C2C=CC3=CC=CC4=C3C2=C(C=C4)C=C1)C(=O)O Chemical compound CCCCC(CCCC)(C1=C2C=CC3=CC=CC4=C3C2=C(C=C4)C=C1)C(=O)O UJPYWBJOGRLKRU-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical class CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- DMLAVOWQYNRWNQ-UHFFFAOYSA-N azobenzene Chemical class C1=CC=CC=C1N=NC1=CC=CC=C1 DMLAVOWQYNRWNQ-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000246 fibrin derivative Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- YAQXGBBDJYBXKL-UHFFFAOYSA-N iron(2+);1,10-phenanthroline;dicyanide Chemical compound [Fe+2].N#[C-].N#[C-].C1=CN=C2C3=NC=CC=C3C=CC2=C1.C1=CN=C2C3=NC=CC=C3C=CC2=C1 YAQXGBBDJYBXKL-UHFFFAOYSA-N 0.000 description 1
- 150000004668 long chain fatty acids Chemical class 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Adjustable Resistors (AREA)
- Push-Button Switches (AREA)
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は感圧導電材料に関する。FIELD OF THE INVENTION This invention relates to pressure sensitive conductive materials.
【0002】[0002]
【従来の技術】感圧導電材料はキーボードスイッチ、自
動ドアのスイッチ、各種圧力接点スイッチ、その他のセ
ンサーとして広範囲に利用されている。2. Description of the Related Art Pressure-sensitive conductive materials are widely used as keyboard switches, automatic door switches, various pressure contact switches, and other sensors.
【0003】導体または半導体材料(以下合わせて導電
性材料と称する)を感圧導電性のものとする工夫とし
て、フィルム状の導電性材料の表面に突起を設けたり
(実開昭61−114727)、絶縁性線状スペーサー
を設ける(特開昭58−68147)方法がある。これ
らの使用態様を突起を設けた場合について説明すると、
導電性材料のフィルムの少なくとも片面に絶縁性の突起
を形成し、該フィルムの両側に電極を設けて非押圧時に
おいては突起状物が電極と導電性材料とを絶縁して導通
しないが、押圧時はその圧力の大きさに応じて電極と導
電材料との接触面積が増加し、電気抵抗が小さくなるよ
うに設計される。As a device for making a conductor or a semiconductor material (hereinafter collectively referred to as a conductive material) a pressure-sensitive conductive material, a projection is provided on the surface of a film-shaped conductive material (Shokai 61-114727). There is a method of providing an insulating linear spacer (Japanese Patent Laid-Open No. 58-68147). Explaining these usage modes when a protrusion is provided,
Insulating protrusions are formed on at least one side of a film of conductive material, electrodes are provided on both sides of the film, and when not pressed, the protrusions insulate the electrodes from the conductive material and do not conduct, At this time, the contact area between the electrode and the conductive material is increased according to the magnitude of the pressure, and the electrical resistance is designed to be small.
【0004】このようなフィルム状の導電性材料の表面
に突起を設けるかあるいはスペーサーを設けて感圧導電
性を付与する工夫は突起自身あるいはスペーサー自身が
0.1から3.0mmの厚さを有している。一方、感圧
センサーの用途である電子機器、加重−電圧変換器等々
においては、感圧導電材料として薄膜タイプのものが要
求されているが、上記の感圧導電性を付与する工夫は薄
膜化に充分に対応できるものでは無い。The protrusion itself or the spacer itself has a thickness of 0.1 to 3.0 mm in order to provide pressure-sensitive conductivity by providing a protrusion or a spacer on the surface of such a film-shaped conductive material. Have On the other hand, in electronic devices, weight-voltage converters, etc., which are applications of pressure-sensitive sensors, thin-film type materials are required as pressure-sensitive conductive materials. It is not something that can fully cope with.
【0005】[0005]
【発明が解決しようとする課題】かくして本発明は薄膜
化に対応できる感圧導電材料の提供を目的としている。The object of the present invention is thus to provide a pressure-sensitive conductive material which can be made thinner.
【0006】[0006]
【課題を解決するための手段】即ち、本発明によればフ
ィルム状の導電材料の表面に有機分子膜を有する、好ま
しくは該有機分子膜がブロジェット法により形成された
ものであるフィルム状感圧導電材料が提供される。That is, according to the present invention, a film-like feeling having an organic molecular film on the surface of a film-like conductive material, preferably the organic molecular film formed by a blow jet method A piezoelectric material is provided.
【0007】フィルム状の導電材料の表面に有機分子膜
を形成することにより導電材料が感圧導電性を有するよ
うになる事実は予想外の発見であり、驚くべきことであ
った。The fact that the conductive material has pressure-sensitive conductivity by forming an organic molecular film on the surface of the film-shaped conductive material was an unexpected discovery and was surprising.
【0008】有機分子膜の形成により感圧導電性の性質
を帯びる理由に関しては定かではないが、有機分子膜が
導電材料の表面を絶縁層として存在することにより非押
圧時においては電極と導電材料は導通しないが、押圧時
においては分子膜が圧力の大きさに応じて圧縮され電極
と導電材料とが導通し、再び解放されると圧縮された膜
が回復し非導通状態になるという圧力の変化に対応して
膜が可逆的に変化するためと推定している。The reason why the formation of the organic molecular film imparts the pressure-sensitive conductive property is not clear. However, since the organic molecular film has the surface of the conductive material as an insulating layer, the electrode and the conductive material are not pressed. Does not conduct, but when pressed, the molecular film is compressed according to the magnitude of the pressure and the electrode and the conductive material conduct, and when released again, the compressed film recovers and becomes non-conductive. It is presumed that the membrane changes reversibly in response to the change.
【0009】このような、有機分子膜の厚さは20〜5
0Å程度のものであり、従来技術の突起状物あるいはス
ペーサーを設ける工夫と比較して感圧導電性を与えるた
めの手段のための空間が実質的に存在しないことと同じ
であり、感圧導電材料の薄膜化の方向のニーズに合致し
ている。The thickness of such an organic molecular film is 20 to 5
It is about 0 Å, which is the same as the absence of a space for a means for giving pressure-sensitive conductivity as compared with the conventional technique of providing a protrusion or a spacer. It meets the needs of thinning materials.
【0010】更に、有機分子膜を形成するフィルム状導
電材料として感圧導電性のものを用いた場合、その感圧
導電性の感度が鋭くなるという驚くべき事実も発見し
た。Further, it was discovered that when a pressure-sensitive conductive material is used as a film-shaped conductive material for forming an organic molecular film, the pressure-sensitive conductivity becomes sharp.
【0011】以下本発明の構成につき詳述するが、本発
明の目的及び利点がより明確になるであろう。The structure of the present invention will be described in detail below, but the objects and advantages of the present invention will become clearer.
【0012】本発明の導電材料は特に限定されるもので
は無いが、通常体積固有抵抗値で10-6〜108 Ω・c
m、好ましくは、10-5〜102 Ω・cmのものが推奨
される。The conductive material of the present invention is not particularly limited, but usually has a volume resistivity value of 10 −6 to 10 8 Ω · c.
m, preferably 10 −5 to 10 2 Ω · cm is recommended.
【0013】具体的にはポリエチレン、ポリプロピレ
ン、ポリ塩化ビニル、ポリアミド樹脂、ポリエステル樹
脂、ポリカーボネート、ポリフェニレンエーテルなどの
熱可塑性樹脂、あるいはフェノール樹脂、ユリア樹脂、
メラミン樹脂、不飽和ポリエステル樹脂、エポキシ樹
脂、ケイ素樹脂、ポリウレタン樹脂などの熱硬化性樹
脂、ニトロセルロース、エチルセルロース等の繊維素誘
導体、塩化ゴム、シリコーンゴム等のゴム誘導体、さら
には、上記の各樹脂の各種変性体などに、カーボンブラ
ック、グラファイト、銀、ニッケル、炭化チタンおよび
表面を導電性材料でコートしたマイカや繊維などの導電
性を有する充填剤を混合したものなどが挙げられる。Specifically, thermoplastic resins such as polyethylene, polypropylene, polyvinyl chloride, polyamide resin, polyester resin, polycarbonate and polyphenylene ether, or phenol resin, urea resin,
Thermosetting resins such as melamine resins, unsaturated polyester resins, epoxy resins, silicon resins and polyurethane resins, fibrin derivatives such as nitrocellulose and ethyl cellulose, rubber derivatives such as chlorinated rubber and silicone rubber, and the above resins In addition to various modified substances of (1), carbon black, graphite, silver, nickel, titanium carbide and a conductive filler such as mica or fiber whose surface is coated with a conductive material are mixed.
【0014】また、導電性材料としてそれ自体が感圧導
電性を有するものであっても良い。そのような材料とし
て本願出願人が特開平2−186604号で提案した有
機高分子材料と導電性材料および前記導電性材料の1/
100以下の電気伝導度を有する半導体材料および絶縁
材料からなる組成物を挙げることができる。Further, the conductive material itself may have pressure-sensitive conductivity. As such a material, an organic polymer material and a conductive material proposed by the applicant in Japanese Patent Application Laid-Open No. 2-186604, and 1 /
A composition made of a semiconductor material and an insulating material having an electric conductivity of 100 or less can be mentioned.
【0015】このような導電性材料はその素材に応じて
フィルム状に成形されるが、そのフィルムの厚さは感圧
導電性材料の用途に応じて適宜に設定され、通常10〜
60ミクロンの厚さである。Such a conductive material is formed into a film according to its material, and the thickness of the film is appropriately set according to the use of the pressure-sensitive conductive material, and is usually 10 to 10.
It is 60 microns thick.
【0016】本発明のフィルム状の導電性材料は、その
表面に有機分子膜を有する。有機分子膜は有機分子の単
分子膜であっても良いし、単分子膜が複数積層した累積
膜であっても良い。The film-shaped conductive material of the present invention has an organic molecular film on its surface. The organic molecular film may be a monomolecular film of organic molecules, or may be a cumulative film in which a plurality of monomolecular films are laminated.
【0017】有機分子膜を構成する有機分子としては、
ミリスチン酸、ペンタデカン酸、パルミチン酸、ヘプタ
デカン酸、ステアリン酸で例示されるC10〜C20の長鎖
脂肪酸およびそのエステル類、ピレニルデカン酸、ブチ
ルピレニルヘキサン酸などの縮合多環芳香族を含む脂肪
酸及びそのエステル類、その他シアニン染料、アゾベン
ゼン誘導体、フタロシアニン誘導体などを挙げることが
できる。The organic molecules forming the organic molecular film include
Myristic acid, pentadecanoic acid, palmitic acid, heptadecanoic acid, stearic acid, exemplified by C 10 to C 20 long-chain fatty acids and their esters, pyrenyldecanoic acid, butylpyrenylhexanoic acid, and other condensed polycyclic aromatic fatty acids. And esters thereof, other cyanine dyes, azobenzene derivatives, phthalocyanine derivatives and the like.
【0018】このような有機分子を適宜選択することに
より又、有機分子の積層数を変化することにより本発明
の感圧導電性材料の感圧特性を適宜に変化させることが
可能である。一般的には、有機分子の炭素数が増加する
につれて一層当たりの分子鎖長が長くなるため、荷重を
印加しない際の絶縁性が向上する。又、積層数が増加す
るにつれて感圧導電性が向上する。しかし、積層数が多
すぎると、分子鎖を形成することが困難である上、単な
る絶縁体層となってしまい、感圧導電性を失ってしま
う。従って、有機分子の炭素数ならびにその有機分子鎖
の積層数は、要求される感圧導電性に応じて適宜選択さ
れる。By appropriately selecting such an organic molecule or by changing the number of stacked organic molecules, the pressure-sensitive property of the pressure-sensitive conductive material of the present invention can be appropriately changed. Generally, the molecular chain length per layer becomes longer as the carbon number of the organic molecule increases, so that the insulating property when no load is applied is improved. Also, the pressure-sensitive conductivity is improved as the number of laminated layers is increased. However, if the number of laminated layers is too large, it is difficult to form a molecular chain, and a mere insulator layer is formed, resulting in loss of pressure-sensitive conductivity. Therefore, the number of carbon atoms in the organic molecule and the number of stacked organic molecular chains are appropriately selected according to the required pressure-sensitive conductivity.
【0019】導電性材料のフィルムに有機分子膜を形成
するには、それ自体公知の所謂ブロジェット法により行
なうことができる。即ち、上記の有機化合物の単分子膜
を水面上に展開し、一定の表面圧を加えて最密状態の凝
縮膜を作り、導電性材料フィルムを膜面に対して上下す
ることによって凝縮膜を移しとり該フィルムに分子膜を
形成することができる。The formation of an organic molecular film on a film of a conductive material can be carried out by a so-called blow jet method known per se. That is, a monomolecular film of the above-mentioned organic compound is spread on the water surface, a constant surface pressure is applied to form a condensed film in the most dense state, and the conductive material film is moved up and down with respect to the film surface to form the condensed film. A molecular film can be formed on the transfer film.
【0020】このようにして得られる有機分子膜がその
表面に形成されたフィルム状の導電材料は感圧導電性を
示す。又、フィルム状の導電材料がそれ自体感圧導電性
の場合、感圧特性がより鋭くなる。The film-like conductive material having the organic molecular film thus obtained formed on its surface exhibits pressure-sensitive conductivity. Further, when the film-shaped conductive material itself is pressure-sensitive conductive, the pressure-sensitive property becomes sharper.
【0021】本発明の感圧導電材料は従来の用途、例え
ばキーボードスイッチ、自動ドアのスイッチ、各種圧力
接点スイッチのセンサなどに用いられる他、特に薄膜化
が要請されているタッチパネル等の入出力装置などに好
んで用いられる。The pressure-sensitive conductive material of the present invention is used for conventional applications such as keyboard switches, switches for automatic doors, and sensors for various pressure contact switches, and also input / output devices such as touch panels for which thinning is particularly required. It is preferably used for such purposes.
【0022】[0022]
【実施例】以下実施例を以って、具体的に本発明を説明
する。EXAMPLES The present invention will be specifically described with reference to the following examples.
【0023】(実施例1)日本アチソン社製導電性ペー
ストエレクトロダク423SS(40Ω/□ 25μ
m)をポリエステルフィルム上、バーコーターを用いて
印刷し、加熱乾燥後、膜厚40μmの導電性層を当該フ
ィルム上に形成した。このフィルムにラングミュアー・
ブロジェット法で、ステアリン酸の分子膜を2層及び4
層を形成した。このようにして作製した本発明の感圧材
を平らな櫛目電極上に載置し、直径10mmの平坦な先
端部を有する棒で加圧および除圧を繰り返し、特性を観
察した。得られた感圧材の加圧力と電気抵抗との関係
は、加圧が始まると直ちにかつ滑らかに電気抵抗が低下
して導通状態となり、加圧が解除されると直ちにかつ滑
らかに抵抗値にもどる優れた特性を有するものであっ
た。また、本発明の感圧材において、抵抗値の対数を縦
軸に、加圧力の対数を横軸にしてその関係をグラフにし
た際の直線の傾きを“勾配”といい(図1参照)、通常
の感圧材においては、この勾配の絶対値が大きいほど良
好な感圧性を有するものとなる。(Embodiment 1) Conductive paste ELECTRODUC 423SS (40Ω / □ 25μ, manufactured by Nippon Acheson Co., Ltd.)
m) was printed on a polyester film by using a bar coater, dried by heating, and then a conductive layer having a thickness of 40 μm was formed on the film. Langmuir on this film
Blodgett method, using two layers of stearic acid molecular film and four
Layers were formed. The pressure-sensitive material of the present invention thus produced was placed on a flat comb electrode, and pressure and depressurization were repeated with a rod having a flat tip having a diameter of 10 mm to observe the characteristics. The relationship between the applied pressure and the electric resistance of the obtained pressure-sensitive material is that the electric resistance immediately and smoothly decreases when the pressure starts and becomes a conductive state, and when the pressure is released, the resistance value immediately and smoothly changes. It had excellent properties for returning. In the pressure-sensitive material of the present invention, the slope of the straight line when the relationship is plotted in a graph with the logarithm of the resistance value as the vertical axis and the logarithm of the pressing force as the horizontal axis is referred to as "gradient" (see FIG. 1). In a normal pressure sensitive material, the larger the absolute value of this gradient, the better the pressure sensitivity.
【0024】(実施例2)特開平2−186604号の
実施例1に記載の感圧材を厚さ125μmのポリエステ
ルフィルム上に、バーコーターを用いて印刷し、加熱乾
燥後、膜厚40μmの感圧導電層を当該フィルム上に形
成した。このフィルムにラングミュアー・ブロジェット
法で、ステアリン酸の分子膜を2層および4層形成し
た。このようにして作製した本発明の感圧材を平らな櫛
目電極上に載置し、直径10mmの平坦な先端部を有す
る棒で加圧および除圧を繰り返し、特性を観察した。得
られた感圧材の加圧力と電気抵抗との関係は、加圧が始
まると直ちにかつ滑らかに電気抵抗が低下して導通状態
となり、加圧が解除されると直ちにかつ滑らかに元の抵
抗値にもどる優れた特性を有するものであった。Example 2 The pressure-sensitive material described in Example 1 of JP-A-2-186604 was printed on a 125 μm-thick polyester film by using a bar coater, and after heating and drying, a film thickness of 40 μm was obtained. A pressure sensitive conductive layer was formed on the film. Two and four molecular films of stearic acid were formed on this film by the Langmuir-Blodgett method. The pressure-sensitive material of the present invention thus produced was placed on a flat comb-shaped electrode, and pressurization and depressurization were repeated with a rod having a flat tip having a diameter of 10 mm to observe the characteristics. The relationship between the applied pressure and the electric resistance of the obtained pressure-sensitive material is that the electric resistance immediately and smoothly decreases immediately after the pressurization starts and becomes a conductive state, and when the pressurization is released, the original resistance immediately and smoothly. It had excellent properties returning to the values.
【0025】(実施例3)(株)アサヒ化学研究所製の
抵抗性材料PTFペーストTU−1K−5(1KΩ/□
25μm)を厚さ125μmのポリエステルフィルム
上に、バーコーターを用いて印刷し、加熱乾燥後、膜厚
40μmの電気抵抗性層を当該フィルム上に形成した。
このフィルムにラングミュアー・ブロジェット法で、ス
テアリン酸の分子膜を2層および4層形成した。このよ
うにして作製した本発明の感圧材を平らな櫛目電極上に
載置し、直径10mmの平坦な先端部を有する棒で加圧
および除圧を繰り返し、特性を観察した。得られた感圧
材の加圧力と電気抵抗との関係は、加圧が始まると直ち
にかつ滑らかに電気抵抗が低下して導通状態となり、加
圧が解除されると直ちにかつ滑らかに元の抵抗値にもど
る優れた特性を有するものであった。Example 3 Resistive material PTF paste TU-1K-5 (1 KΩ / □ manufactured by Asahi Chemical Laboratory Co., Ltd.)
25 μm) was printed on a 125 μm-thick polyester film using a bar coater, and after heating and drying, an electrically resistive layer having a film thickness of 40 μm was formed on the film.
Two and four molecular films of stearic acid were formed on this film by the Langmuir-Blodgett method. The pressure-sensitive material of the present invention thus produced was placed on a flat comb electrode, and pressure and depressurization were repeated with a rod having a flat tip having a diameter of 10 mm to observe the characteristics. The relationship between the applied pressure and the electrical resistance of the obtained pressure-sensitive material is that the electrical resistance immediately and smoothly decreases when the pressure starts and becomes conductive, and when the pressure is released, the original resistance immediately and smoothly. It had excellent properties returning to the values.
【0026】(比較例1〜3)実施例1、実施例2、実
施例3で用いた導電材、感圧材、電気抵抗材にラングミ
ュアー・ブロジェット法でのステアリン酸分子膜を形成
せずに、実施例記載と同様の方法にて、感圧特性を観察
した。以上の実施例および比較例の導電材料の感圧性を
表1に示した。(Comparative Examples 1 to 3) A stearic acid molecular film was formed by the Langmuir-Blodgett method on the conductive material, the pressure sensitive material and the electric resistance material used in Examples 1, 2 and 3. Instead, the pressure-sensitive characteristics were observed by the same method as described in the examples. Table 1 shows the pressure sensitivity of the conductive materials of the above Examples and Comparative Examples.
【0027】[0027]
【表1】 [Table 1]
【0028】[0028]
【発明の効果】本発明の感圧導電材料はフィルム状の導
電材料の表面に単に有機分子膜を設けて構成されている
ので、感圧導電材料の薄膜化が要請されている各種感圧
センサー、力−電圧変換装置、タッチパネル等の入出力
装置等に用いることが可能である。又、有機分子膜を形
成する前の感圧導電材料自体が感圧導電性を有している
場合、そのフィルム表面に有機分子膜を形成することに
より感圧導電性の感度が鋭くなり、各種用途に使用する
ことができる。Since the pressure-sensitive conductive material of the present invention is constituted by simply providing an organic molecular film on the surface of a film-shaped conductive material, various pressure-sensitive sensors for which thinning of the pressure-sensitive conductive material is required. , A force-voltage converter, an input / output device such as a touch panel, and the like. Also, when the pressure-sensitive conductive material itself before forming the organic molecular film has pressure-sensitive conductivity, forming the organic molecular film on the surface of the film sharpens the sensitivity of the pressure-sensitive conductivity. It can be used for various purposes.
【図1】 本発明の感圧材料の圧力と抵抗値の関係を示
すグラフである。FIG. 1 is a graph showing the relationship between pressure and resistance of a pressure-sensitive material of the present invention.
Claims (2)
有する感圧導電材料。1. A pressure-sensitive conductive material having an organic molecular film on the surface of a film-shaped conductive material.
れた膜である請求項1に記載の感圧導電材料。2. The pressure-sensitive conductive material according to claim 1, wherein the organic molecular film is a film formed by a jet method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3316274A JPH05151828A (en) | 1991-11-29 | 1991-11-29 | Pressure-sensitive conductive material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3316274A JPH05151828A (en) | 1991-11-29 | 1991-11-29 | Pressure-sensitive conductive material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05151828A true JPH05151828A (en) | 1993-06-18 |
Family
ID=18075281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3316274A Withdrawn JPH05151828A (en) | 1991-11-29 | 1991-11-29 | Pressure-sensitive conductive material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05151828A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6344791B1 (en) | 1998-07-24 | 2002-02-05 | Brad A. Armstrong | Variable sensor with tactile feedback |
US6404584B2 (en) | 1997-10-01 | 2002-06-11 | Brad A. Armstrong | Analog controls housed with electronic displays for voice recorders |
US6415707B1 (en) | 1997-10-01 | 2002-07-09 | Brad A. Armstrong | Analog controls housed with electronic displays for coffee makers |
US6469691B1 (en) | 1999-05-11 | 2002-10-22 | Brad A. Armstrong | Analog controls housed with electronic displays for hand-held web browsers |
US6532000B2 (en) | 1997-10-01 | 2003-03-11 | Brad A. Armstrong | Analog controls housed with electronic displays for global positioning systems |
US6563415B2 (en) | 1996-07-05 | 2003-05-13 | Brad A. Armstrong | Analog sensor(s) with snap-through tactile feedback |
KR100372624B1 (en) * | 1995-04-18 | 2003-05-16 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | Touch sensing devices and methods of making such |
US6906700B1 (en) | 1992-03-05 | 2005-06-14 | Anascape | 3D controller with vibration |
US7345670B2 (en) | 1992-03-05 | 2008-03-18 | Anascape | Image controller |
JP2017016811A (en) * | 2015-06-30 | 2017-01-19 | 住友理工株式会社 | Pressure-sensitive conductive elastomer composition and pressure-sensitive conductive elastomer crosslinked product |
-
1991
- 1991-11-29 JP JP3316274A patent/JPH05151828A/en not_active Withdrawn
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7345670B2 (en) | 1992-03-05 | 2008-03-18 | Anascape | Image controller |
US6906700B1 (en) | 1992-03-05 | 2005-06-14 | Anascape | 3D controller with vibration |
KR100372624B1 (en) * | 1995-04-18 | 2003-05-16 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | Touch sensing devices and methods of making such |
US6563415B2 (en) | 1996-07-05 | 2003-05-13 | Brad A. Armstrong | Analog sensor(s) with snap-through tactile feedback |
US6470078B1 (en) | 1997-10-01 | 2002-10-22 | Brad A. Armstrong | Analog controls housed with electronic displays for telephones |
US6496449B1 (en) | 1997-10-01 | 2002-12-17 | Brad A. Armstrong | Analog controls housed with electronic displays for clocks |
US6518953B1 (en) | 1997-10-01 | 2003-02-11 | Brad A. Armstrong | Analog controls housed with electronic displays for remote controllers having feedback display screens |
US6529185B1 (en) | 1997-10-01 | 2003-03-04 | Brad A. Armstrong | Analog controls housed with electronic displays for electronic books |
US6532000B2 (en) | 1997-10-01 | 2003-03-11 | Brad A. Armstrong | Analog controls housed with electronic displays for global positioning systems |
US6538638B1 (en) | 1997-10-01 | 2003-03-25 | Brad A. Armstrong | Analog controls housed with electronic displays for pagers |
US6415707B1 (en) | 1997-10-01 | 2002-07-09 | Brad A. Armstrong | Analog controls housed with electronic displays for coffee makers |
US6404584B2 (en) | 1997-10-01 | 2002-06-11 | Brad A. Armstrong | Analog controls housed with electronic displays for voice recorders |
US6344791B1 (en) | 1998-07-24 | 2002-02-05 | Brad A. Armstrong | Variable sensor with tactile feedback |
US6504527B1 (en) | 1999-05-11 | 2003-01-07 | Brad A. Armstrong | Analog controls housed with electronic displays for computer monitors |
US6559831B1 (en) | 1999-05-11 | 2003-05-06 | Brad A. Armstrong | Analog controls housed with electronic displays for personal digital assistants |
US6469691B1 (en) | 1999-05-11 | 2002-10-22 | Brad A. Armstrong | Analog controls housed with electronic displays for hand-held web browsers |
JP2017016811A (en) * | 2015-06-30 | 2017-01-19 | 住友理工株式会社 | Pressure-sensitive conductive elastomer composition and pressure-sensitive conductive elastomer crosslinked product |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Geng et al. | Effect of acid treatment on carbon nanotube-based flexible transparent conducting films | |
JP3894571B2 (en) | Flexible electrode carrying article | |
Shehzad et al. | Effects of carbon nanotubes aspect ratio on the qualitative and quantitative aspects of frequency response of electrical conductivity and dielectric permittivity in the carbon nanotube/polymer composites | |
US5393597A (en) | Overvoltage protection element | |
Hu et al. | Patternable transparent carbon nanotube films for electrochromic devices | |
KR100456045B1 (en) | Pressure Sensitive Ink, Pressure Sensitive Ink Device, and Methods of Use | |
JP5374984B2 (en) | Dielectric actuator | |
Galantini et al. | Functionalized carbon nanotubes as a filler for dielectric elastomer composites with improved actuation performance | |
US5209967A (en) | Pressure sensitive membrane and method therefor | |
JPH01282802A (en) | Pressure-sensitive resistance element | |
US8449974B2 (en) | Electrically responsive composite material, a method of manufacture and a transducer produced using said material | |
CN108349194A (en) | Multilayer materials including adhesive and one or more nanofiber sheets | |
JPH05151828A (en) | Pressure-sensitive conductive material | |
Quinsaat et al. | Conductive silicone elastomers electrodes processable by screen printing | |
CN100358056C (en) | Conductive resin film, collector and production methods therefore | |
KR101650827B1 (en) | Conductive complex composite having piezoresistivity and piezoresistive device using the same | |
JP2002501949A (en) | Polymer composition | |
US20090135146A1 (en) | Touch screen with resistive electrode | |
Hajian et al. | Cellulose nanopaper with monolithically integrated conductive micropatterns | |
WO2004023845A1 (en) | Seat-like heating units using carbon nanotubes | |
Dhakal et al. | Electrically conductive nanocomposites based on poly (lactic acid)/flexible copolyester blends with multiwalled carbon nanotubes | |
Xu et al. | Preparation and properties of flexible conductive polydimethylsiloxane composites containing hybrid fillers | |
JP2003217902A (en) | PTC resistor | |
JP7348959B2 (en) | Composite materials that sense force or pressure | |
KR101434565B1 (en) | Thick membrane type PTC heating element with Conductive paste composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990204 |