JPH05150123A - Optical equalizing circuit - Google Patents
Optical equalizing circuitInfo
- Publication number
- JPH05150123A JPH05150123A JP3339595A JP33959591A JPH05150123A JP H05150123 A JPH05150123 A JP H05150123A JP 3339595 A JP3339595 A JP 3339595A JP 33959591 A JP33959591 A JP 33959591A JP H05150123 A JPH05150123 A JP H05150123A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- delay
- output
- directional coupler
- optical signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Light Guides In General And Applications Therefor (AREA)
- Optical Integrated Circuits (AREA)
- Optical Communication System (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、例えば光波通信の超
高速長距離伝送回線に利用可能な光等化回路に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical equalizer circuit that can be used for, for example, an ultrahigh-speed long-distance transmission line for lightwave communication.
【0002】[0002]
【従来の技術】周知のように、光ファイバは知的情報化
社会の通信インフラストラクチャ構成に重要な役割を果
たすべく、技術の高度化が必要とされている。このた
め、光波通信技術は急速に進歩し、その伝送速度、多重
度は年ごとに向上している。したがって、以前に最先端
技術を駆使して構築した基幹通信路もすぐに通信容量が
不足しがちであり、最新技術による改修が必要となる。2. Description of the Related Art As is well known, in order to play an important role in constructing a communication infrastructure in an intelligent information society, an optical fiber is required to be sophisticated. Therefore, the lightwave communication technology has been rapidly advanced, and its transmission speed and multiplicity have been improved year by year. Therefore, the communication capacity of the backbone communication path, which was previously constructed by making full use of the latest technology, tends to be insufficient immediately, and it is necessary to repair it with the latest technology.
【0003】ところが、光端局装置のみの変更は費用的
にも負担が少ないが、光ファイバ線路の特性旧式化によ
りその線路を更新再敷設することは、費用的に負担が多
く、不可能に近い。However, although changing only the optical terminal equipment is light in cost, it is costly and impossible to re-install the optical fiber line due to obsolete characteristics of the optical fiber line. near.
【0004】具体的に、1.3μmに遅延分散最小波長
を持つ光ファイバ(以下、通常分散ファイバと称する)
を用いてGbps光回線を運用していた基幹回線を、さ
らに超高速長距離伝送回線に改修することを考えてみ
る。この場合、光伝送損失については、必要波長を1.
55μmに変更することで、必要な光受信電力を確保す
ることができる。また、光増幅器をさらに追加するとい
う対策も可能である。Specifically, an optical fiber having a minimum delay dispersion wavelength of 1.3 μm (hereinafter referred to as a normal dispersion fiber)
Let's consider how to refurbish the backbone line that was operating the Gbps optical line by using the above to a super high-speed long-distance transmission line. In this case, regarding the optical transmission loss, the required wavelength is 1.
By changing the thickness to 55 μm, the required optical reception power can be secured. Further, it is possible to take a measure to add an optical amplifier.
【0005】しかし、通常分散ファイバでは、1.55
μmでの遅延時間分散が17ps/nm程度ときわめて
大きく、現在有効と考えられている半導体レーザの直接
変調方式では、要求されている数ギガビット/秒の超高
速長距離伝送は困難である。ここで、外部光変調器を用
いて所要変調帯域幅を削減し、遅延分散の影響を軽減す
ることも考えられるが、コスト高になったり、上記の超
高速長距離伝送の要求には帯域制限問題に直面して対応
できない。However, with a normal dispersion fiber, 1.55
The delay time dispersion in μm is as large as about 17 ps / nm, and it is difficult to achieve the required ultrahigh-speed long-distance transmission of several gigabits / second with the direct modulation method of the semiconductor laser which is considered to be effective at present. Here, it is conceivable to reduce the required modulation bandwidth by using an external optical modulator and reduce the effect of delay dispersion, but this will increase the cost and the bandwidth limitation due to the above-mentioned requirement for ultra-high-speed long-distance transmission. Face problems and cannot respond.
【0006】また、1.55μm帯に分散の最小点を有
するファイバにおいても、光増幅器を用いて、電気信号
に変換再生して中継することなく太平洋を超高速伝送す
る場合には、帯域不足が問題となり、これを解決するた
めの複雑な制御が必要となってしまい、結果的に伝送コ
ストの増大を招いてしまう。Further, even in a fiber having a minimum dispersion point in the 1.55 μm band, when the optical amplifier is used to convert the signal into an electric signal and reproduce and transmit it in the Pacific Ocean at a very high speed without relaying, a band shortage occurs. This causes a problem, and complicated control is required to solve the problem, resulting in an increase in transmission cost.
【0007】[0007]
【発明が解決しようとする課題】以上述べたように従来
では、光波通信における伝送回線の超高速化、通信容量
の増大を図る上で、伝送コストの増大を最小限に抑える
有効な手段がなかった。As described above, conventionally, there is no effective means for minimizing the increase of the transmission cost in order to increase the transmission line speed and the communication capacity in the lightwave communication. It was
【0008】この発明は上記の問題を解決するためにな
されたもので、偏波依存性がなく、光ファイバ伝送系の
任意の箇所に挿入して遅延分散の影響を軽減することが
でき、これによって既存の光波通信回線をそのまま利用
して超高速化を実現可能となり、伝送コストの増大を最
小限に抑えることのできる光等化回路を提供することを
目的とする。The present invention has been made in order to solve the above-mentioned problems and has no polarization dependence and can be inserted at an arbitrary position in an optical fiber transmission system to reduce the influence of delay dispersion. Therefore, it is an object of the present invention to provide an optical equalization circuit that can realize an ultra-high speed by using an existing lightwave communication line as it is and can suppress an increase in transmission cost to a minimum.
【0009】[0009]
【課題を解決するための手段】上記目的を達成するため
にこの発明に係る光等化回路は、それぞれ偏波依存性な
く光信号を伝送する光導波路による第1、第2の系を備
え、前記第1、第2の系の光導波路を結合する光結合手
段と前記第1の系に介在される遅延光導波路とを複数直
列に接続し、かつ前記遅延光導波路は半波長乃至1/4
波長だけ遅延長が増減するよう構成したことを特徴とす
る。In order to achieve the above object, an optical equalizing circuit according to the present invention comprises first and second systems each including an optical waveguide for transmitting an optical signal without polarization dependency. A plurality of optical coupling means for coupling the optical waveguides of the first and second systems and a plurality of delay optical waveguides interposed in the first system are connected in series, and the delay optical waveguides have a half wavelength to a quarter wavelength.
The feature is that the delay length is increased or decreased by the wavelength.
【0010】[0010]
【作用】上記構成による光等化回路では、光信号の光中
心周波数に対して、例えば高周波成分と低周波成分に分
離してみると、伝送回線に用いられるファイバの周波数
対遅延分散特性に応じて各成分の遅延時間が増減してし
まい、使用帯域幅が制限されることに着目し、ファイバ
の任意の箇所に当該回路を挿入し、光信号を第1、第2
の系に分配して、第1の系側で遅延光導波路により成分
別に遅延を与えつつ第2の系側の光信号と結合すること
により、各成分の遅延時間を揃え、これによって光信号
の伝送帯域幅を拡大する。この際、偏波依存性のない光
導波路で構成しているので、光信号の偏波特性を考慮す
る必要がなく、極めて汎用性が高い。In the optical equalization circuit having the above structure, when the optical center frequency of the optical signal is separated into, for example, a high-frequency component and a low-frequency component, the frequency-delay dispersion characteristic of the fiber used in the transmission line is determined. Focusing on the fact that the delay time of each component increases and decreases and the usable bandwidth is limited, the circuit is inserted at an arbitrary position of the fiber to transmit the optical signal to the first and second optical signals.
Of the optical signal on the second system side while delaying each component by the delay optical waveguide on the first system side to make the delay time of each component uniform, thereby Increase transmission bandwidth. At this time, since the optical waveguide does not have polarization dependency, it is not necessary to consider the polarization characteristics of the optical signal, and the versatility is extremely high.
【0011】[0011]
【実施例】以下、図面を参照してこの発明の一実施例を
説明する。但し、ここでは前述した遅延分散最小波長
1.3μm(周波数f1)の通常分散ファイバによる回
線に、より損失の少ない1.55μm(周波数f2)帯
の光信号を伝送する場合を例にとって説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. However, here, an example will be described in which an optical signal in the 1.55 μm (frequency f2) band with less loss is transmitted to the line using the normal dispersion fiber having the minimum delay dispersion wavelength of 1.3 μm (frequency f1).
【0012】図1はこの発明に係る光等化回路の構成を
示すもので、この光等化回路は上記回線の任意の箇所に
挿入される。FIG. 1 shows the configuration of an optical equalizing circuit according to the present invention, which is inserted at an arbitrary position on the above line.
【0013】図1において、A,Bはそれぞれ偏波依存
性のない一対の系を示しており、全体は光導波路で実現
される。各系A,Bの入力部1及び出力部2にはそれぞ
れA,B系を光結合する3dB方向性結合器が設けられ
る。入力部1の結合器はA系側の入力端から光信号入力
端子INからの光信号を取り込んで、その光信号を中間
部3のA,B系入力端に分配供給する。出力部2の結合
器はA,B系の各入力端から中間部3のA,B系出力端
からの各光信号を取り込んで光結合し、この結合された
光信号をB系側の出力端から光信号出力端子OUTに導
出する。In FIG. 1, A and B respectively show a pair of systems having no polarization dependence, and the whole is realized by an optical waveguide. The input section 1 and the output section 2 of each system A and B are provided with a 3 dB directional coupler that optically couples the systems A and B, respectively. The coupler of the input unit 1 takes in the optical signal from the optical signal input terminal IN from the input end on the A system side, and distributes and supplies the optical signal to the A and B system input ends of the intermediate unit 3. The coupler of the output unit 2 takes in the respective optical signals from the A and B system output ends of the intermediate unit 3 from the respective A and B system input ends and optically couples them, and outputs the combined optical signal to the B system side output. It is led to the optical signal output terminal OUT from the end.
【0014】上記入出力部1,2の間に接続される中間
部3は、1個以上の単位光回路311〜31nを繰返し
直列接続して構成される。個々の単位光回路311〜3
1nは同一構成であり、それぞれ、A系側に介在される
第1、第2の遅延光導波路a,bと、A系側で第1、第
2の遅延光導波路a,bを直列接続し、B系側の両端が
前後段のB系に接続される3dB方向性結合器cとで構
成される。上記第1、第2の遅延光導波路a,bの長さ
はそれぞれ目的とする伝送帯域幅に応じて、一定長Lに
対して半波長乃至1/4波長(ここでは1/4波長とす
る)だけ増減される。The intermediate section 3 connected between the input / output sections 1 and 2 is constructed by repeatedly connecting one or more unit optical circuits 311 to 31n in series. Individual unit optical circuits 311 to 311
1n has the same configuration, and the first and second delay optical waveguides a and b interposed on the A system side and the first and second delay optical waveguides a and b on the A system side are connected in series, respectively. , And both ends on the B system side are connected to the B system at the front and rear stages and a 3 dB directional coupler c. The length of each of the first and second delay optical waveguides a and b is a half wavelength to a quarter wavelength (here, a quarter wavelength here) with respect to a fixed length L, depending on the target transmission bandwidth. ) Is increased or decreased.
【0015】上記構成において、以下、その動作を説明
する。The operation of the above configuration will be described below.
【0016】まず、上記光等化回路の出力部2から出力
される光信号の振幅(E1,E2)は次のマトリックス
表示で与えられる。First, the amplitudes (E1, E2) of the optical signal output from the output section 2 of the optical equalization circuit are given by the following matrix display.
【0017】[0017]
【数1】 (1)式を計算すると、次式のようになる。[Equation 1] When the formula (1) is calculated, the following formula is obtained.
【0018】[0018]
【数2】 ここに、Un(α)は第2種チェビシェフ多項式で、変
数αは次式で与えられる。[Equation 2] Here, U n (α) is the Chebyshev polynomial of the second kind, and the variable α is given by the following equation.
【0019】[0019]
【数3】 上記出力E2による群遅延時間Tgは次式で与えられ
る。[Equation 3] The group delay time Tg due to the output E2 is given by the following equation.
【0020】[0020]
【数4】 ここで、fは光周波数で、上記φ、Φは長さLに相当す
る遅延時間をTとすれば次式で与えられる。[Equation 4] Here, f is the optical frequency, and φ and Φ are given by the following equations, where T is the delay time corresponding to the length L.
【0021】[0021]
【数5】 具体的に説明すると、適用される通常分散ファイバの遅
延分散特性は、図2に示すように、波長1.3μm(周
波数f1)で最小であり、放物線状に変化する。このた
め、使用波長1.55μm(周波数f2)ではわずかな
波長変化、すなわち周波数変化で遅延分散量が大幅に変
化してしまうため、帯域不足となる。[Equation 5] More specifically, the delay dispersion characteristic of the applied normal dispersion fiber is minimum at a wavelength of 1.3 μm (frequency f1) and changes parabolic as shown in FIG. Therefore, when the wavelength used is 1.55 μm (frequency f2), the amount of delay dispersion changes significantly with a slight wavelength change, that is, a frequency change, resulting in a band shortage.
【0022】しかるに、図2から明らかなように、使用
周波数f2を中心にみると、それより高い周波数では遅
延分散量が小さくなり、低い周波数では大きくなる。し
たがって、高い周波数に対しては大きな遅延を与え、低
い周波数に対して小さな遅延を与えて遅延量を等しくす
れば、伝送帯域を拡大することができる。However, as is clear from FIG. 2, when the frequency f2 used is taken as the center, the delay dispersion amount becomes smaller at higher frequencies and becomes larger at lower frequencies. Therefore, if a large delay is given to a high frequency and a small delay is given to a low frequency to equalize the delay amounts, the transmission band can be expanded.
【0023】そこで、上記実施例では、まず入力部1で
光信号をA,B系に分配し、中間部3の各単位光回路3
11〜31nにおいて、A系側の遅延光導波路a,bで
周波数成分別に逆の遅延時間を与えつつ、方向性結合器
cでB系側の光信号と結合する。このような作用を多段
構成により繰り返し行うことは上記チェビシェフ多項式
を用いた表示式で示される。すなわち、低い周波数成分
は小さな遅延時間が、高い周波数成分は大きな遅延時間
が与えられ、これによってファイバの遅延分散を補償す
ることができる。Therefore, in the above embodiment, first, the optical signal is distributed to the A and B systems by the input section 1, and each unit optical circuit 3 of the intermediate section 3 is divided.
In 11 to 31n, the delay optical waveguides a and b on the A system side give opposite delay times for each frequency component, and are coupled with the optical signal on the B system side by the directional coupler c. Repetition of such an operation with a multi-stage configuration is represented by a display formula using the above Chebyshev polynomial. That is, the low frequency component is given a small delay time, and the high frequency component is given a large delay time, whereby the delay dispersion of the fiber can be compensated.
【0024】図3にその様子を示す。この例は、遅延分
散最小波長1.3μm、長さ100kmの通常分散ファ
イバにT1=T2=1/125[ns]、n=12の光
等化回路を接続した場合であり、図3(a)は通常分散
ファイバの周波数対伝送係数特性、同図(b)は光等化
回路の周波数対群遅延時間特性、同図(c)は通常分散
ファイバの周波数対群遅延時間特性aと上記光等化回路
を接続したときの周波数対群遅延時間特性bを示してい
る。但し、φ=2πfT−π/4、Φ=2πfT+π/
4とする。FIG. 3 shows the situation. This example is a case where an optical equalization circuit with T1 = T2 = 1/125 [ns] and n = 12 is connected to a normal dispersion fiber having a minimum delay dispersion wavelength of 1.3 μm and a length of 100 km. ) Is a frequency-to-transmission coefficient characteristic of a normal dispersion fiber, FIG. 7B is a frequency-to-group delay time characteristic of an optical equalization circuit, and FIG. The frequency vs. group delay time characteristic b when an equalizer circuit is connected is shown. However, φ = 2πfT−π / 4, Φ = 2πfT + π /
Set to 4.
【0025】図3から、中心周波数f(1.55μm)
に対しておよそ±10[GHz]の伝送帯域が得られ、
通過帯域の振幅特性はチェビシェフ的で、多段接続にも
十分帯域幅を確保することができ、直線的分散を補償で
きる。From FIG. 3, the center frequency f (1.55 μm)
A transmission band of about ± 10 [GHz] is obtained for
The amplitude characteristics of the pass band are Chebyshev-like, and a sufficient bandwidth can be secured even in multi-stage connection, and linear dispersion can be compensated.
【0026】したがって、光波通信回線の超高速化に際
して上記光等化回路を用いれば、各周波数成分の遅延時
間が揃えられ、使用波長における伝送帯域を拡大するこ
とができるので、光増幅器や光変調器を用いずとも、既
存の通常分散ファイバ回線をそのまま利用でき、伝送コ
ストを最小限にとどめることができる。この際、全体は
偏波依存性のない光導波路で構成されているので、光信
号の偏波特性を考慮する必要がなく、これによって汎用
性を高めることができる。Therefore, when the optical equalization circuit is used for ultrahigh-speed lightwave communication lines, the delay time of each frequency component can be made uniform, and the transmission band at the used wavelength can be expanded. The existing normal dispersion fiber line can be used as it is without using a device, and the transmission cost can be minimized. At this time, since the whole is composed of the optical waveguide having no polarization dependence, it is not necessary to consider the polarization characteristic of the optical signal, and thereby the versatility can be enhanced.
【0027】ところで、伝送回線に1.55μmに分散
の最小点を有する分散シフトファイバが用いられてお
り、これに1.55μm帯の信号光を伝送する場合に
は、図2のf1を1.55μmに相当する周波数に置き
換えてみると、そのファイバの零分散点近傍の放物線的
特性を補償する必要がある。By the way, a dispersion-shifted fiber having a minimum dispersion point at 1.55 μm is used in the transmission line, and when transmitting a signal light in the 1.55 μm band to this, the f1 of FIG. Substituting the frequency corresponding to 55 μm, it is necessary to compensate for the parabolic characteristic near the zero dispersion point of the fiber.
【0028】図4は上記補償を実現する光等化回路の構
成を示すものである。但し、図4において図1と同一部
分には同一符号を付して、その説明を省略する。FIG. 4 shows the configuration of an optical equalization circuit which realizes the above compensation. However, in FIG. 4, the same parts as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
【0029】図4の入力部1において、方向性結合器は
B系側の入力端が光信号入力端子INに接続される。ま
た、出力部2において、方向性結合器はA系側の出力端
が光信号出力端子OUTに接続される。In the input section 1 of FIG. 4, the input end of the directional coupler on the B system side is connected to the optical signal input terminal IN. In the output section 2, the output end of the directional coupler on the A system side is connected to the optical signal output terminal OUT.
【0030】中間部3において、単位光回路321〜3
2nは、それぞれ第1、第2の遅延光導波路d,fと第
1、第2の方向性結合器e,gとで構成される。In the intermediate section 3, the unit optical circuits 321 to 321 are provided.
2n is composed of first and second delay optical waveguides d and f and first and second directional couplers e and g, respectively.
【0031】第1の遅延光導波路dは、前段のA系から
の光信号を入力し、その波長に相当する一定長Lの長さ
を有する。第1の方向性結合器eは第1の遅延光導波路
dの出力と前段のB系からの光信号とを光結合してA,
B系に分配出力する。The first delay optical waveguide d receives the optical signal from the A system in the preceding stage and has a length of a constant length L corresponding to its wavelength. The first directional coupler e optically couples the output of the first delay optical waveguide d and the optical signal from the B system of the previous stage to A,
It is distributed and output to the B system.
【0032】第2の遅延光導波路fは第1の方向性結合
器eのA系から出力される光信号を入力し、その波長に
相当する一定長Lに1/2波長を加算(あるいは減算)
した長さを有する。第2の方向性結合器gは、第1の方
向性結合器eに比して3段分の結合特性を有し、第2の
遅延光導波路fの出力と前段のB系から光信号とを光結
合して各系に分配出力する。The second delay optical waveguide f receives the optical signal output from the A system of the first directional coupler e, and adds (or subtracts) 1/2 wavelength to the fixed length L corresponding to the wavelength. )
Has a length. The second directional coupler g has a coupling characteristic of three stages as compared with the first directional coupler e, and outputs the output of the second delay optical waveguide f and the optical signal from the B system of the previous stage. Are optically coupled and distributed and output to each system.
【0033】さらにこの中間部3は、終段光回路33を
有する。この終段光回路33は、A系側に前段のA系か
らの光信号を入力し、その波長に相当する一定長Lの長
さを有する第3の遅延光導波路hを設け、B系側をスル
ー状態にして構成される。Further, the intermediate section 3 has a final stage optical circuit 33. This final-stage optical circuit 33 inputs the optical signal from the A-system of the preceding stage to the A-system side, and provides a third delay optical waveguide h having a length of a constant length L corresponding to the wavelength, and the B-system side. Is configured as a through state.
【0034】上記構成において、以下、その動作を説明
する。The operation of the above configuration will be described below.
【0035】まず、上記光等化回路の出力部2から出力
される光信号の振幅(E1,E2)は次のマトリックス
表示で与えられる。First, the amplitudes (E1, E2) of the optical signal output from the output unit 2 of the optical equalization circuit are given by the following matrix display.
【0036】[0036]
【数6】 (6)式を計算すると、次式のようになる。[Equation 6] When the formula (6) is calculated, the following formula is obtained.
【0037】[0037]
【数7】 ここに、Un(α)は第2種チェビシェフ多項式で、変
数αは次式で与えられる。[Equation 7] Here, U n (α) is the Chebyshev polynomial of the second kind, and the variable α is given by the following equation.
【0038】[0038]
【数8】 上記出力E2による群遅延時間Tgは次式で与えられ
る。[Equation 8] The group delay time Tg due to the output E2 is given by the following equation.
【0039】[0039]
【数9】 ここで、fは光周波数で、上記φ、Φは長さLに相当す
る遅延時間をTとすれば次式で与えられる。[Equation 9] Here, f is the optical frequency, and φ and Φ are given by the following equations, where T is the delay time corresponding to the length L.
【0040】[0040]
【数10】 具体的に説明すると、適用される通常分散ファイバの遅
延分散特性は、図2の周波数を置き換えてみると、波長
1.55μm(周波数f1)で最小であり、放物線状に
変化する。このため、使用波長1.55μm付近ではわ
ずかな波長変化、すなわち周波数変化で遅延分散量が増
大してしまうため、帯域不足となる。しかるに、中心周
波数f1より高い周波数成分、低い周波数成分にそれぞ
れ遅延分散を補償する遅延を与えれば遅延量が等しくな
り、伝送帯域を拡大することができる。[Equation 10] More specifically, the delay dispersion characteristic of the applied normal dispersion fiber has the minimum at a wavelength of 1.55 μm (frequency f1) when the frequency of FIG. 2 is replaced, and changes in a parabolic shape. Therefore, in the vicinity of the used wavelength of 1.55 μm, the amount of delay dispersion increases due to a slight wavelength change, that is, a frequency change, resulting in insufficient bandwidth. However, if delays for compensating the delay dispersion are given to the frequency components higher than the center frequency f1 and the frequency components lower than the center frequency f1, the delay amounts become equal and the transmission band can be expanded.
【0041】そこで、上記実施例では、まず入力部1で
光信号をA,B系に分配し、中間部3の光回路321〜
32n、33において、A系側の遅延光導波路d,f,
hで周波数成分別に逆の遅延時間を与えつつ、方向性結
合器e,gでB系側の光信号と結合する。このような作
用を多段構成により繰り返し行うことは上記チェビシェ
フ多項式を用いた表示式で示される。すなわち、周波数
成分に応じた遅延時間が与えられ、これによってファイ
バの遅延分散を補償することができる。Therefore, in the above embodiment, first, the input section 1 distributes the optical signal to the A and B systems, and the optical circuits 321 to 321 of the intermediate section 3 are first distributed.
In 32n and 33, the delay optical waveguides d, f,
While the reverse delay time is given to each frequency component by h, the optical signals on the B system side are coupled by the directional couplers e and g. Repetition of such an operation with a multi-stage configuration is represented by a display formula using the above Chebyshev polynomial. That is, a delay time corresponding to the frequency component is given, and thereby the delay dispersion of the fiber can be compensated.
【0042】図5にその様子を示す。この例は、遅延分
散最小波長1.55μm、長さ100kmの分散シフト
ファイバにT1=T2=10[ps]、n=8の光等化
回路を接続した場合であり、図5(a)は分散シフトフ
ァイバの周波数対伝送係数特性、同図(b)は光等化回
路の周波数対群遅延時間特性、同図(c)は分散シフト
ファイバの周波数対群遅延時間特性cと上記光等化回路
を接続したときの周波数対群遅延時間特性dを示してい
る。但し、φ=2πfT−π/4、Φ=2πfT+π/
4とする。FIG. 5 shows the situation. This example is a case where an optical equalization circuit with T1 = T2 = 10 [ps] and n = 8 is connected to a dispersion shift fiber having a minimum delay dispersion wavelength of 1.55 μm and a length of 100 km, and FIG. The frequency vs. transmission coefficient characteristic of the dispersion shifted fiber, the figure (b) shows the frequency vs. group delay time characteristic of the optical equalization circuit, and the figure (c) shows the frequency vs. group delay time characteristic c of the dispersion shifted fiber and the above optical equalization. The frequency vs. group delay time characteristic d when a circuit is connected is shown. However, φ = 2πfT−π / 4, Φ = 2πfT + π /
Set to 4.
【0043】図5から、中心周波数f(1.55μm)
に対しておよそ±125[GHz]の伝送帯域が得ら
れ、零分散点近傍の放物線的特性を補償可能であること
は明らかである。また、先に述べた実施例と同様に、全
体は偏波依存性のない光導波路で構成されているので、
光信号の偏波特性を考慮する必要がなく、これによって
汎用性を高めることができる。From FIG. 5, the center frequency f (1.55 μm)
It is clear that a transmission band of about ± 125 [GHz] can be obtained with respect to and the parabolic characteristic near the zero dispersion point can be compensated. Further, as in the case of the above-mentioned embodiment, the whole is composed of the optical waveguide having no polarization dependence,
Since it is not necessary to consider the polarization characteristics of the optical signal, the versatility can be improved.
【0044】したがって、上記補償の結果、光増幅器を
用いて、電気信号に変換再生して中継することなく太平
洋を超高速伝送する場合でも、複雑な制御を必要とせず
に帯域不足を解消することができ、伝送コストの増大を
最小限に抑えることができる。Therefore, as a result of the above-mentioned compensation, it is possible to eliminate the band shortage without the need for complicated control even when the optical amplifier is used to perform ultra-high-speed transmission in the Pacific Ocean without converting and reproducing the electrical signal for relaying. Therefore, it is possible to minimize an increase in transmission cost.
【0045】尚、この発明の要旨を逸脱しない範囲で種
々変形しても、同様に実施可能であることはいうまでも
ない。Needless to say, various modifications can be made without departing from the scope of the present invention.
【0046】[0046]
【発明の効果】以上のようにこの発明によれば、偏波依
存性がなく、光ファイバ伝送系の任意の箇所に挿入して
遅延分散の影響を軽減することができ、これによって既
存の光波通信回線をそのまま利用して超高速化を実現可
能となり、伝送コストの増大を最小限に抑えることので
きる光等化回路を提供することができる。As described above, according to the present invention, there is no polarization dependence, and it is possible to reduce the influence of delay dispersion by inserting the optical fiber transmission system at an arbitrary position. An ultra-high speed can be realized by using the communication line as it is, and it is possible to provide an optical equalization circuit capable of minimizing an increase in transmission cost.
【図1】この発明に係る光等化回路の一実施例を示す構
成図。FIG. 1 is a configuration diagram showing an embodiment of an optical equalization circuit according to the present invention.
【図2】図1の実施例で適用される通常分散ファイバの
遅延特性を示す特性図。FIG. 2 is a characteristic diagram showing delay characteristics of a normal dispersion fiber applied in the embodiment of FIG.
【図3】図1の実施例の光等化回路を用いた場合に伝送
帯域が拡大される様子を示す特性図。FIG. 3 is a characteristic diagram showing how the transmission band is expanded when the optical equalization circuit of the embodiment of FIG. 1 is used.
【図4】この発明に係る他の実施例を示す構成図。FIG. 4 is a configuration diagram showing another embodiment according to the present invention.
【図5】図4の実施例の光等化回路を用いた場合に伝送
帯域が拡大される様子を示す特性図。5 is a characteristic diagram showing how the transmission band is expanded when the optical equalization circuit of the embodiment of FIG. 4 is used.
1…入力部、2…出力部、3…中間部、311〜31
n,321〜32n…単位光回路、33…終段光回路、
a,b,d,f,h…遅延光導波路、c,e,g…方向
性結合器。1 ... Input part, 2 ... Output part, 3 ... Intermediate part, 311-31
n, 321 to 32n ... Unit optical circuit, 33 ... Final-stage optical circuit,
a, b, d, f, h ... Delay optical waveguide, c, e, g ... Directional coupler.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H04B 10/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H04B 10/02
Claims (3)
る光導波路による第1、第2の系を備え、 前記第1、第2の系の光導波路を結合する光結合手段と
前記第1の系に介在される遅延光導波路とを複数直列に
接続し、かつ前記遅延光導波路は半波長乃至1/4波長
だけ遅延長が増減するよう構成したことを特徴とする光
等化回路。1. An optical coupling means for coupling the optical waveguides of the first and second systems, comprising first and second systems each comprising an optical waveguide for transmitting an optical signal independently of polarization, and the first system. 2. An optical equalizer circuit, wherein a plurality of delay optical waveguides interposed in the system are connected in series, and the delay optical waveguides are configured so that the delay length is increased or decreased by a half wavelength to a quarter wavelength.
光信号を前記第1、第2の系に分配する第1の方向性結
合器を入力部とし、 前記第2の系側の他方端を光信号出力端として前記第
1、第2の系の光信号を結合出力する第2の方向性結合
器を出力部とし、かつ 前記光信号の波長に相当する一定長に1/4波長分を加
算した長さを有する第1の遅延光導波路と前記一定長に
1/4波長分を減算した長さを有する第2の遅延光導波
路とこれら第1、第2の遅延光導波路を接続する第3の
方向性結合器とを具備する光回路を構成し、この光回路
を前記入力部及び出力部間に繰返し直列接続するよう構
成したことを特徴とする請求項1記載の光等化回路。2. The optical coupling means is a directional coupler, and one end of the first system side is used as an optical signal input end, and the input optical signal is distributed to the first and second systems. Is used as an input section, and the other end of the second system side is used as an optical signal output terminal, and a second directional coupler that outputs combined optical signals of the first and second systems is output as an output section. And a first delay optical waveguide having a length obtained by adding a quarter wavelength to a constant length corresponding to the wavelength of the optical signal, and a first delay optical waveguide having a length obtained by subtracting a quarter wavelength from the constant length. An optical circuit including two delay optical waveguides and a third directional coupler connecting the first and second delay optical waveguides is configured, and the optical circuit is repeatedly connected in series between the input section and the output section. The optical equalization circuit according to claim 1, wherein the optical equalization circuit is configured to be connected.
光信号を前記第1、第2の系に分配する第1の方向性結
合器を入力部とし、 前記第1の系側の他方端を光信号出力端として前記第
1、第2の系の光信号を結合出力する第2の方向性結合
器を出力部とし、かつ 前段の第1の系からの光信号を入力しその波長に相当す
る一定長の長さを有する第1の遅延光導波路と、この第
1の遅延光導波路の出力と前段の第2の系からの光信号
とを光結合して各系に分配出力する第3の方向性結合器
と、この第3の方向性結合器の第1の系からの光信号を
入力し前記一定長に1/2波長を増減した長さを有する
第2の遅延光導波路と、前記第3の方向性結合器に比し
て3段分の特性を有し前記第2の遅延光導波路の出力と
前段の第2の系から光信号とを光結合して各系に分配出
力する第4の方向性結合器とを具備する光回路を構成
し、この光回路の複数を前記入力部及び出力部間で繰返
し直列接続し、さらに前記光回路の終段の第1の系側出
力端と前記出力部間に前記一定長の長さを有する第3の
遅延光導波路を接続するよう構成したことを特徴とする
請求項1記載の光等化回路。3. The optical coupling means is a directional coupler, and the one end of the second system side is used as an optical signal input end, and the input optical signal is distributed to the first and second systems. Is used as an input section, and the other end of the first system side is used as an optical signal output end, and a second directional coupler that outputs the optical signals of the first and second systems is output as an output section. And a first delay optical waveguide having a fixed length corresponding to the wavelength of the optical signal from the first stage optical system, the output of the first delay optical waveguide and the second optical system of the previous stage. Of the third directional coupler for optically coupling and outputting the optical signal from the system of No. 3 to each system, and the optical signal from the first system of the third directional coupler is input and the fixed length is set. A second delay optical waveguide having a length obtained by increasing / decreasing 1/2 wavelength, and having the characteristics of three stages as compared with the third directional coupler. An optical circuit including a fourth directional coupler that optically couples the output of the delay optical waveguide and the optical signal from the second system in the preceding stage and distributes and outputs to each system is formed. The input section and the output section are repeatedly connected in series, and the third delay optical waveguide having the fixed length is connected between the final system first output side of the optical circuit and the output section. The optical equalizer circuit according to claim 1, wherein the optical equalizer circuit is configured to:
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3339595A JPH05150123A (en) | 1991-11-30 | 1991-11-30 | Optical equalizing circuit |
US07/944,175 US5259048A (en) | 1991-09-30 | 1992-09-11 | Optical equalizer |
CA002078316A CA2078316C (en) | 1991-09-30 | 1992-09-15 | Optical equalizer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3339595A JPH05150123A (en) | 1991-11-30 | 1991-11-30 | Optical equalizing circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05150123A true JPH05150123A (en) | 1993-06-18 |
Family
ID=18328969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3339595A Pending JPH05150123A (en) | 1991-09-30 | 1991-11-30 | Optical equalizing circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05150123A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5572611A (en) * | 1993-06-21 | 1996-11-05 | Nippon Telegraph And Telephone Corporation | Optical signal processor, method of its control, method of its designing, and method of its production |
CN113568098A (en) * | 2021-07-05 | 2021-10-29 | 烽火通信科技股份有限公司 | A kind of optical splitter, optical splitter design method and modification method |
-
1991
- 1991-11-30 JP JP3339595A patent/JPH05150123A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5572611A (en) * | 1993-06-21 | 1996-11-05 | Nippon Telegraph And Telephone Corporation | Optical signal processor, method of its control, method of its designing, and method of its production |
CN113568098A (en) * | 2021-07-05 | 2021-10-29 | 烽火通信科技股份有限公司 | A kind of optical splitter, optical splitter design method and modification method |
CN113568098B (en) * | 2021-07-05 | 2023-09-12 | 烽火通信科技股份有限公司 | Design method of beam splitter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6292603B1 (en) | Dispersion compensation device | |
US7263296B2 (en) | Optical transmission system using in-line amplifiers | |
JP3522438B2 (en) | Dispersion compensation in optical fiber communication | |
JP3522044B2 (en) | Optical transmission system | |
US6823141B2 (en) | Optical transmission system and dispersion compensator | |
JPH0799478A (en) | Apparatus and method for distributed compensation of fiber optic transmission system | |
JPH09318824A (en) | Symmetrical optical fiber cable with managed dispersion characteristic and optical transmission system using the same | |
US6188823B1 (en) | Method and apparatus for providing dispersion and dispersion slope compensation in an optical communication system | |
US6941045B2 (en) | Tunable dispersion compensator | |
US6801721B1 (en) | Polarization mode dispersion compensator for optical fiber communication systems | |
US7034991B2 (en) | Optical amplification and transmission system | |
US6160942A (en) | Optical fiber communication system using optical phase conjugation | |
US20020005970A1 (en) | Dispersion compensator and method of compensating for dispersion | |
US6311002B1 (en) | Method and apparatus for reducing nonlinear penalties by proper arrangement of the dispersion map in an optical communication system | |
US5259048A (en) | Optical equalizer | |
JP2000031904A (en) | Compensation of optical dispersion | |
JPH05150123A (en) | Optical equalizing circuit | |
US20040047633A1 (en) | System and method for high bit-rate optical time division multiplexing (OTDM) | |
US6529305B1 (en) | Optical transmission apparatuses, methods, and systems | |
JP3157254B2 (en) | Manufacturing method of equalizer for high frequency communication system | |
US7324721B2 (en) | Optical communication line with dispersion intrachannel nonlinearities management | |
US6580857B1 (en) | Apparatus for reshaping optical pulses | |
JP2004147086A (en) | Optical transmission system, optical multiplexer and optical demultiplexer | |
JP3503720B2 (en) | Soliton transmission line | |
JPH0588118A (en) | Optical equalizing circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040906 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040910 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041105 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20041209 |