JPH05150104A - Integral type condensing element for solid-state image pickup element - Google Patents
Integral type condensing element for solid-state image pickup elementInfo
- Publication number
- JPH05150104A JPH05150104A JP3316634A JP31663491A JPH05150104A JP H05150104 A JPH05150104 A JP H05150104A JP 3316634 A JP3316634 A JP 3316634A JP 31663491 A JP31663491 A JP 31663491A JP H05150104 A JPH05150104 A JP H05150104A
- Authority
- JP
- Japan
- Prior art keywords
- solid
- image pickup
- photoelectric conversion
- state image
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Optical Elements Other Than Lenses (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、輪帯状の光電変換部を
有する画素で構成される固体撮像素子の感度向上のため
の光学素子に関し、特に、固体撮像素子の不感領域への
入射光を光電変換部へ集光させることにより感度を向上
させるために、固体撮像素子上の透明層の表面に形成さ
れた集光素子に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical element for improving the sensitivity of a solid-state image pickup device composed of pixels having a ring-shaped photoelectric conversion portion, and more particularly, to an incident light to a dead region of the solid-state image pickup device. The present invention relates to a light-collecting device formed on the surface of a transparent layer on a solid-state image pickup device in order to improve sensitivity by collecting light on a photoelectric conversion unit.
【0002】[0002]
【従来の技術】現在、固体撮像素子開発の大きな焦点と
なっているのは、画素の微細化による素子の小型化、及
び、素子の高感度化である。しかし、このような画素の
微細化は、撮像素子全体の受光面積の減少を伴う結果と
なり、必然的に光感度の低下という問題が生じることに
なる。2. Description of the Related Art At present, the major focus of solid-state image pickup device development is miniaturization of pixels by miniaturization of pixels and high sensitivity of the devices. However, such miniaturization of pixels results in a reduction in the light-receiving area of the entire image sensor, which inevitably causes a problem of a decrease in photosensitivity.
【0003】そこで、このような問題を解決して高感度
化を達成すると共に、他の素子特性を劣化させない有効
な手段の1つとして、固体撮像素子上に透明なレンズア
レーを配置して、不感領域である信号読み出し回路上に
到達する入射光成分を光電変換部に集光させるようにし
た一体型の凸型あるいは凹型のマイクロレンズアレーが
提案されている(特開昭53−74395号)。Therefore, as one of effective means for solving such a problem and achieving high sensitivity and not deteriorating other device characteristics, a transparent lens array is arranged on a solid-state image pickup device, There has been proposed an integrated convex or concave microlens array in which an incident light component arriving on a signal reading circuit, which is a dead region, is condensed on a photoelectric conversion unit (Japanese Patent Laid-Open No. 53-74395). ..
【0004】[0004]
【発明が解決しようとする課題】各画素の光電変換部の
形状が矩形である一般的な電荷結合素子(CCD)の場
合は、集光素子として比較的単純な凸型あるいは凹型の
マイクロレンズアレーを用いることで充分である。しか
しながら、光電変換領域が輪帯状をしている固体撮像素
子の場合、凸型のレンズを画素の真上に設置した場合に
は、内径内部が不感領域であるので、その内径内部に集
光された光は全く感度向上には寄与しないし、凹型のレ
ンズを各画素の間に設けて光量を集めようとする場合
も、同様に、不感領域である内径内部の真上から入射す
る光を利用することができない。In the case of a general charge-coupled device (CCD) in which the photoelectric conversion part of each pixel has a rectangular shape, a relatively simple convex or concave microlens array is used as a light-collecting device. Is sufficient. However, in the case of a solid-state image sensor in which the photoelectric conversion region has an annular shape, when the convex lens is installed directly above the pixel, the inside of the inner diameter is a dead region, so the light is condensed inside the inner diameter. The light does not contribute to the sensitivity improvement at all, and when trying to collect the amount of light by providing a concave lens between each pixel, the light incident from directly above the inner diameter, which is the dead area, is also used. Can not do it.
【0005】本発明はこのような状況に鑑みてなされた
ものであり、その目的は、上述した従来の集光素子の構
造上の欠点をなくし、不感領域に到達していた光を効率
良く光電変換部に集光することで、固体撮像素子の感度
を向上させることを可能にした固体撮像素子用一体型集
光素子を提供することにある。The present invention has been made in view of such a situation, and an object thereof is to eliminate the above-mentioned structural defects of the conventional light-collecting element and to efficiently convert the light reaching the insensitive region. An object of the present invention is to provide an integrated light-collecting device for a solid-state image sensor, which can improve the sensitivity of the solid-state image sensor by condensing light on the conversion unit.
【0006】[0006]
【課題を解決するための手段】上記課題を解決するため
に、本発明の固体撮像素子用一体型集光素子は、各画素
の光電変換部の形状がほぼ輪帯状の固体撮像素子に一体
に設けて用いる集光素子において、該撮像素子の表面に
形成された透明層に、各画素の光電的に不感である輪帯
状光電変換部の内径内部の真上、及び、隣接する画素で
囲まれた光電的に不感な領域の中央部の真上に円錐プリ
ズムを設けたことを特徴とするものである。In order to solve the above-mentioned problems, an integrated light-collecting device for a solid-state image pickup device of the present invention has a photoelectric conversion part of each pixel integrated into a substantially annular-shaped solid-state image pickup device. In the light-collecting element to be provided and provided, the transparent layer formed on the surface of the image pickup element is surrounded by an adjacent pixel immediately above the inner diameter of the annular photoelectric conversion section which is photoelectrically insensitive. In addition, a conical prism is provided right above the center of the photoelectrically insensitive area.
【0007】[0007]
【作用】本発明においては、固体撮像素子の表面に形成
された透明層に、各画素の光電的に不感である輪帯状光
電変換部の内径内部の真上、及び、隣接する画素で囲ま
れた光電的に不感な領域の中央部の真上に円錐プリズム
を設けたので、各不感領域に入射する光束を、断面にお
いて一定の幅で一定の角度に放射される円錐波に波面変
換し、輪帯状光電変換部に入射させることが可能とな
る。このようにして、輪帯状光電変換部を有する固体撮
像素子の不感領域である信号読み出し回路上等に到達し
た光を光電変換部に導き、感度向上を達成することがで
きる。According to the present invention, the transparent layer formed on the surface of the solid-state image pickup device is surrounded by the adjacent pixel immediately above the inner diameter of the ring-shaped photoelectric conversion portion which is photoelectrically insensitive to each pixel. Since the conical prism is provided right above the center of the photoelectrically insensitive area, the light flux incident on each insensitive area is converted into a conical wave radiated at a constant width and a constant angle in the cross section, It is possible to make the light incident on the annular photoelectric conversion unit. In this way, it is possible to guide the light that has reached the signal readout circuit, which is a dead region of the solid-state image pickup device having the ring-shaped photoelectric conversion unit, to the photoelectric conversion unit, and to improve the sensitivity.
【0008】[0008]
【実施例】以下、本発明の固体撮像素子用一体型集光素
子の実施例について、添付図面を参照にして説明する。
まず、図4に光電変換部分が輪帯状の画素で構成される
1例の固体撮像素子の1つの画素の斜視断面図を示す。
この固体撮像素子は、一般のフォトトランジスタと異な
り、図示のようにゲートがほぼ輪帯状をしている。すな
わち、受光領域である多結晶シリコンゲート電極を透過
した入射光は、Si中に正孔−電子対を発生させる。正
孔はゲート電極のSi−SiO2 の界面に蓄積され、ゲ
ート電位の変化により矢印で示したドレイン電流を変調
し、増幅された信号電流としている。このように、受光
領域がほぼ輪帯状をしていると、前記したように、凸型
のレンズを画素の真上に設置したとしても、受光輪帯の
内径内部が不感領域であるので、その内径内部に集光さ
れた光は全く感度向上には寄与せず、また、凹型のレン
ズを各画素の間に設けて光量を集めようとしても、同様
に、不感領域である内径内部の真上から入射する光を利
用することはできない。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the integrated light-collecting device for a solid-state image pickup device of the present invention will be described below with reference to the accompanying drawings.
First, FIG. 4 shows a perspective cross-sectional view of one pixel of a solid-state image sensor of one example in which the photoelectric conversion portion is composed of annular pixels.
Unlike a general phototransistor, this solid-state imaging device has a gate having a substantially annular shape as shown in the figure. That is, the incident light transmitted through the polycrystalline silicon gate electrode, which is the light receiving region, generates a hole-electron pair in Si. The holes are accumulated at the interface of Si—SiO 2 of the gate electrode, and the drain current indicated by the arrow is modulated by the change of the gate potential to be an amplified signal current. In this way, if the light-receiving region has a substantially annular shape, as described above, even if a convex lens is installed right above the pixel, the inside of the inner diameter of the light-receiving ring is a dead region. The light collected inside the inner diameter does not contribute to sensitivity improvement at all, and even if a concave lens is provided between each pixel to collect the amount of light, similarly, the light is directly above the inner area, which is a dead area. It is not possible to use the light that comes in from.
【0009】そこで、本発明においては、光電的に不感
領域である輪帯画素の内径内部の真上と、同じく不感領
域である隣接する画素で囲まれた部分中心の真上とに、
円形の開口面を有しこの開口面を底面とする円錐の錐面
を入射面とするような凹形状に設けられた2種類の円錐
プリズム(アキシコン)アレーを配置することにより、
不感領域に向かう入射光を輪帯状受光領域に集光させて
固体撮像素子の感度を向上させようとするものである。In view of the above, in the present invention, a position immediately above the inner diameter of the ring-shaped pixel, which is a photoelectrically insensitive region, and a position directly above the center of a portion surrounded by adjacent pixels, which is also a dead region, are provided.
By arranging two kinds of conical prism (axicon) arrays provided in a concave shape having a circular opening surface and having a conical conical surface having the opening surface as a bottom surface as an entrance surface,
It is intended to improve the sensitivity of the solid-state image pickup device by condensing the incident light heading for the dead region on the ring-shaped light receiving region.
【0010】図1は本発明による一体型集光素子を作り
付けた固体撮像素子の1実施例の部分平面図であり、ま
た、図2に図1におけるA−A’線に沿った部分断面図
を示す。図1の平面図において、1は各画素の輪帯状の
光電変換領域であり、2は輪帯状光電変換領域1の内径
内部の中心の真上に頂角が位置するように設けられた直
径2a1 、頂角2θ1 の第1の円錐プリズム(アキシコ
ン)であり、3は隣接する4個の画素に囲まれた不感領
域の中心の真上に頂角が位置するように設けられた直径
2a2 、頂角2θ2 の第2の円錐プリズム(アキシコ
ン)である。図2の断面図に示すように、固体撮像素子
上に形成された透明中間層5の上に同じく透明の円錐プ
リズム作成層6が形成されており、この層6に第1の円
錐プリズム2と第2の円錐プリズム3の2種類の円錐プ
リズムからなるアレーが設けられている。FIG. 1 is a partial plan view of an embodiment of a solid-state image pickup device having an integrated light-collecting device according to the present invention, and FIG. 2 is a partial sectional view taken along the line AA 'in FIG. Indicates. In the plan view of FIG. 1, 1 is a ring-shaped photoelectric conversion region of each pixel, and 2 is a diameter 2a provided so that the apex angle is located just above the center inside the inner diameter of the ring-shaped photoelectric conversion region 1. 1 is a first conical prism (axicon) having an apex angle 2θ 1 , and 3 is a diameter 2a provided so that the apex angle is located right above the center of a dead region surrounded by four adjacent pixels. 2 is a second conical prism (axicon) having an apex angle 2θ 2 . As shown in the cross-sectional view of FIG. 2, a transparent conical prism forming layer 6 which is also transparent is formed on a transparent intermediate layer 5 formed on the solid-state imaging device. An array of two types of conical prisms, the second conical prism 3, is provided.
【0011】図2の断面図から明らかなように、不感領
域であるところの輪帯形状光電変換部1の内径内部の真
上に設けられた第1の円錐プリズム2に入射した平行光
は、その円錐プリズム2の錐面で屈折し、断面において
一定の幅で一定の角度に放射される円錐波に波面変換さ
れ、輪帯形状光電変換部1に入射する。As is apparent from the cross-sectional view of FIG. 2, the parallel light incident on the first conical prism 2 provided right above the inner diameter of the ring-shaped photoelectric conversion portion 1 in the dead region is The light is refracted by the conical surface of the conical prism 2, converted into a conical wave radiated at a constant width and at a constant angle in the cross section, and enters the ring-shaped photoelectric conversion unit 1.
【0012】また、隣接する4個の画素に囲まれた不感
領域の真上に設けられた第2の円錐プリズム3に入射し
た平行光は、この円錐プリズム3の錐面で屈折し、一定
の幅で一定の角度に放射される円錐波に波面変換され、
隣接する4個の画素の光電変換部1各々にその円錐波の
一部が入射する。図3にその様子を示すが、第2の円錐
プリズム3によって生成された円錐波は、撮像面では領
域40を照射する。この照射領域40は相互に隣接する
4個の光電変換部1と領域41で重なるので、この斜線
部41に隣接する4個の画素に囲まれた不感領域に到達
した光が分配されて集光されることになる。Further, the parallel light incident on the second conical prism 3 provided right above the insensitive area surrounded by the four adjacent pixels is refracted by the conical surface of the conical prism 3 and becomes constant. The wavefront is converted into a cone wave that is radiated at a certain angle in the width,
Part of the conical wave is incident on each of the photoelectric conversion units 1 of the four adjacent pixels. As shown in FIG. 3, the conical wave generated by the second conical prism 3 illuminates the area 40 on the imaging surface. Since this irradiation area 40 overlaps with the four photoelectric conversion units 1 adjacent to each other in the area 41, the light reaching the dead area surrounded by the four pixels adjacent to the shaded area 41 is distributed and condensed. Will be done.
【0013】また、輪帯形状光電変換部1の真上には何
ら円錐プリズムが設けられていないので、光電変換部1
に向かう光は直接そこへ達する。Further, since no conical prism is provided directly above the ring-shaped photoelectric conversion unit 1, the photoelectric conversion unit 1 is not provided.
The light heading for reaches directly there.
【0014】以上のような構成であるので、輪帯形状光
電変換部1には、光電変換部1へ向かう直接光、光電変
換領域1内径内部の不感領域へ向かい第1の円錐プリズ
ム2によって円錐波に波面変換された光、及び、隣接す
る4個の画素に囲まれた不感領域へ向かい第2の円錐プ
リズム3によって円錐波に波面変換された光の一部が重
なって入射するので、固体撮像素子の不感領域へ到達す
る光も受光領域へ入射することになり、固体撮像素子の
感度が向上することになる。Due to the above-mentioned structure, in the ring-shaped photoelectric conversion portion 1, the direct light traveling toward the photoelectric conversion portion 1 is directed toward the dead area inside the inner diameter of the photoelectric conversion area 1 by the first conical prism 2. Since the light having the wavefront converted into a wave and a part of the light having the wavefront converted into the conical wave by the second conical prism 3 are incident on the dead region surrounded by the four adjacent pixels, the solid light is solid. The light reaching the insensitive area of the image pickup element is also incident on the light receiving area, and the sensitivity of the solid-state image pickup element is improved.
【0015】さて、このような円錐プリズム2、3を作
製するには、例えば、スタンパーによるパターン転写法
が適しており、円錐プリズム作成層6の材料としては、
有機系材料と無機材料があげられる。それぞれの場合に
ついて、以下に作製法の1例を示す。In order to manufacture such conical prisms 2 and 3, for example, a pattern transfer method using a stamper is suitable, and the material of the conical prism forming layer 6 is
Examples include organic materials and inorganic materials. In each case, one example of the manufacturing method is shown below.
【0016】有機系材料の場合は、固体撮像素子の表面
に石英ガラス等で透明中間層5を必要な厚さだけ作製し
た後、その上に紫外線硬化樹脂を塗布し、円錐プリズム
2、3のパターンを刻み込んだガラススタンパーをこの
紫外線硬化樹脂層に接触させ、スタンパー側から紫外線
を照射して樹脂を硬化させた後、ガラススタンパーを除
去することにより、表面に所望の円錐プリズム2、3の
パターンを作製することができる。In the case of an organic material, the transparent intermediate layer 5 is formed on the surface of the solid-state image pickup device with quartz glass or the like to a required thickness, and then an ultraviolet curable resin is applied on the transparent intermediate layer 5 to form the conical prisms 2 and 3. A glass stamper engraved with a pattern is brought into contact with this ultraviolet curable resin layer, and the resin is cured by irradiating ultraviolet rays from the stamper side, and then the glass stamper is removed to form the desired conical prism 2, 3 pattern on the surface. Can be produced.
【0017】無機材料の場合は、所謂ゾル−ゲル法を利
用する。ゾル−ゲル法は、金属アルコキシド溶液を常温
あるいはそれに近い温度で加水分解し、重縮合反応によ
ってゾル(液体を分散媒とするコロイド)を作り、さら
に反応を促進させてゲル(コロイド溶液がジェリー状に
固化したもの)とし、それをある程度の高温まで加熱し
てガラス化させることで、ガラスを作製する手法であ
る。この場合、表面に予め必要な厚さの石英ガラス等の
透明中間層5を設けた固体撮像素子の上に、乾燥加熱時
の収縮が充分小さくかつ処理後に必要な膜厚が得られる
ように調整した金属アルコキシド溶液(ゾル)を塗布
し、パターンを刻み込んだをスタンパーを接触させ、そ
の状態で溶液をゲル化させる。その後、スタンパーを除
去し、ゲルを乾燥し、数100度で加熱処理する。以上
の工程によって、表面に所望の円錐プリズム2、3のパ
ターンが作製できる。In the case of an inorganic material, the so-called sol-gel method is used. In the sol-gel method, a metal alkoxide solution is hydrolyzed at room temperature or a temperature close to it to form a sol (a colloid using a liquid as a dispersion medium) by a polycondensation reaction, and the reaction is further promoted to form a gel (the colloid solution is a jelly-like solution). It is a method of producing glass by heating it to a certain high temperature and vitrifying it. In this case, on the solid-state image sensor having a transparent intermediate layer 5 such as quartz glass having a required thickness provided on the surface, adjustment is performed so that shrinkage during drying and heating is sufficiently small and a required film thickness is obtained after the treatment. The metal alkoxide solution (sol) is applied, and the stamper having the pattern is brought into contact with the solution, and the solution is gelated in that state. After that, the stamper is removed, the gel is dried, and heat treatment is performed at several hundred degrees. Through the above steps, desired patterns of the conical prisms 2 and 3 can be formed on the surface.
【0018】また、ここで必要なスタンパーの作製法と
しては、例えば次に示す方法が考えられる。第1の方法
は、電子線描画法により電子線量を変化させながら描画
することで、基板上の電子線レジストに所望の円錐状の
パターン群を作製し、これをニッケル電鋳法を用いてパ
ターン転写して、スタンパーの原盤とするものである。
このような原盤を1枚作製すれば、これをもとにして紫
外線硬化樹脂と電鋳工程により多数の複製を作製でき
る。この原盤と複製から、上記したゾル−ゲル法を用い
てガラススタンパーを作製する。なお、ゾル−ゲル法で
素子を作製する場合には、スタンパーが透明である必要
はないので、ニッケル電鋳工程で作製した複製をそのま
まスタンパーとして用いてもよい。As a method of manufacturing the stamper required here, for example, the following method can be considered. The first method is to create a desired conical pattern group on an electron beam resist on a substrate by drawing while changing the electron dose by an electron beam drawing method, and pattern this using a nickel electroforming method. It is to be transferred and used as a stamper master.
If one such master is produced, a large number of replicas can be produced by the ultraviolet curing resin and the electroforming process based on this. A glass stamper is produced from the master and the duplicate by using the sol-gel method described above. When the element is manufactured by the sol-gel method, the stamper does not need to be transparent, and thus the duplicate manufactured in the nickel electroforming step may be used as it is as the stamper.
【0019】第2の方法は、超精密切削加工法でスタン
パー原盤を作製するものである。等倍の原盤を直接作製
する方法と、数十倍のパターンを刻み込んだ金型をもと
に、ゾル−ゲル法でのゲルの乾燥加熱時の収縮を積極的
に利用して、パターン転写、加熱収縮を所望のパターン
サイズになるまで繰り返し、このようにして作製したガ
ラス製の複製をスタンパー原盤とする方法とがある。後
者の場合、収縮率は金属アルコキシド溶液に含まれる水
とアルコールの組成比を調整することで可変であり、型
となるパターンの60から50%程度まで収縮できる。
なお、この方法の場合は、基板状の薄膜として作製する
のは、収縮率が大きいため不可能であるので、ブロック
として作製する。これ以降のスタンパーの作製法につい
ては、第1の方法と同様にする。The second method is to manufacture a stamper master by an ultraprecision cutting method. Based on the method of directly producing a master of equal size and a mold in which a pattern of several tens of times is engraved, the pattern transfer by positively utilizing the shrinkage during drying and heating of the gel in the sol-gel method, There is a method in which heat shrinkage is repeated until a desired pattern size is obtained, and the glass replica thus produced is used as a stamper master. In the latter case, the shrinkage rate can be varied by adjusting the composition ratio of water and alcohol contained in the metal alkoxide solution, and the shrinkage rate can be about 60 to 50% of the pattern to be the mold.
In addition, in the case of this method, since it is impossible to manufacture it as a substrate-shaped thin film due to a large shrinkage ratio, it is manufactured as a block. The subsequent manufacturing method of the stamper is the same as the first method.
【0020】以上、本発明の固体撮像素子用一体型集光
素子の1実施例について説明してきたが、本発明はこの
実施例に限定されず種々の変形が可能である。例えば、
凹形状の円錐プリズムの代わりに、凸形状の円錐プリズ
ムを用いても、断面において一定の幅で一定の角度に放
射される円錐波に波面変換することができるし、また、
凹形状の円錐パターンを透明層表面に形成し、その中に
屈折率が高い透明体又は小さい透明体を充填することに
よっても、円錐プリズムを構成することができる。Although one embodiment of the integrated light-collecting device for a solid-state image pickup device of the present invention has been described above, the present invention is not limited to this embodiment and various modifications can be made. For example,
Even if a convex conical prism is used instead of the concave conical prism, the wavefront can be converted into a conical wave radiated at a constant width and a constant angle in the cross section.
The conical prism can also be formed by forming a concave conical pattern on the surface of the transparent layer and filling it with a transparent body having a high refractive index or a transparent body having a small refractive index.
【0021】[0021]
【発明の効果】以上の説明から明らかなように、本発明
の固体撮像素子用一体型集光素子によると、固体撮像素
子の表面に形成された透明層に、各画素の光電的に不感
である輪帯状光電変換部の内径内部の真上、及び、隣接
する画素で囲まれた光電的に不感な領域の中央部の真上
に円錐プリズムを設けたので、各不感領域に入射する光
束を、断面において一定の幅で一定の角度に放射される
円錐波に波面変換し、輪帯状光電変換部に入射させるこ
とが可能となる。このようにして、輪帯状光電変換部を
有する固体撮像素子の不感領域である信号読み出し回路
上等に到達した光を光電変換部に導き、感度向上を達成
することができる。As is apparent from the above description, according to the integrated light-collecting device for a solid-state image pickup device of the present invention, the transparent layer formed on the surface of the solid-state image pickup device is photoelectrically insensitive to each pixel. Since a conical prism is provided right above the inner diameter of a ring-shaped photoelectric conversion unit and right above the center of the photoelectrically insensitive area surrounded by adjacent pixels, the light flux incident on each insensitive area can be It becomes possible to convert the wavefront into a conical wave radiated at a constant width and a constant angle in the cross section and make it enter the annular photoelectric conversion unit. In this way, it is possible to guide the light that has reached the signal readout circuit, which is a dead region of the solid-state image pickup device having the ring-shaped photoelectric conversion unit, to the photoelectric conversion unit, and to improve the sensitivity.
【0022】したがって、本発明に基づくと、光利用率
は従来の集光素子を用いないものに比して著しく向上す
る。これによって、固体撮像素子において画素の微細化
による素子の小型化と高感度化を同時に達成することが
できる。Therefore, according to the present invention, the light utilization factor is remarkably improved as compared with the conventional one which does not use the light condensing element. As a result, in the solid-state image pickup device, it is possible to simultaneously achieve miniaturization of the device due to miniaturization of pixels and high sensitivity.
【図1】本発明による一体型集光素子を作り付けた固体
撮像素子の1実施例の部分平面図である。FIG. 1 is a partial plan view of an embodiment of a solid-state image pickup device having an integrated light-collecting device according to the present invention.
【図2】図1におけるA−A’線に沿った部分断面図で
ある。FIG. 2 is a partial cross-sectional view taken along the line AA ′ in FIG.
【図3】隣接する画素間の真上に設けた円錐プリズムか
らの円錐波が輪帯状光電変換部に入射する様子を示す図
である。FIG. 3 is a diagram showing how a conical wave from a conical prism provided immediately above between adjacent pixels is incident on a ring-shaped photoelectric conversion unit.
【図4】光電変換部分が輪帯状の画素で構成される固体
撮像素子の1つの画素の斜視断面図である。FIG. 4 is a perspective cross-sectional view of one pixel of a solid-state image sensor in which a photoelectric conversion portion is composed of pixels in a ring shape.
1…輪帯状光電変換領域 2…第1の円錐プリズム 3…第2の円錐プリズム 5…透明中間層 6…円錐プリズム作成層 40…第2の円錐プリズムによる照射領域 41…第2の円錐プリズムによる照射領域と光電変換部
の重なる領域DESCRIPTION OF SYMBOLS 1 ... Ring-shaped photoelectric conversion area 2 ... 1st conical prism 3 ... 2nd conical prism 5 ... Transparent intermediate layer 6 ... Conical prism preparation layer 40 ... Irradiation area | region by 2nd conical prism 41 ... 2nd conical prism Area where irradiation area and photoelectric conversion part overlap
Claims (1)
の固体撮像素子に一体に設けて用いる集光素子におい
て、該撮像素子の表面に形成された透明層に、各画素の
光電的に不感である輪帯状光電変換部の内径内部の真
上、及び、隣接する画素で囲まれた光電的に不感な領域
の中央部の真上に円錐プリズムを設けたことを特徴とす
る固体撮像素子用一体型集光素子。1. A condensing element used integrally with a solid-state image pickup device having a photoelectric conversion portion of each pixel in a substantially annular shape, wherein a photoelectric layer of each pixel is provided on a transparent layer formed on the surface of the image pickup device. The solid-state imaging device is characterized in that a conical prism is provided just above the inner diameter of the ring-shaped photoelectric conversion unit, which is insensitive to, and just above the center of the photoelectrically insensitive region surrounded by adjacent pixels. Integrated light-collecting device for devices.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3316634A JPH05150104A (en) | 1991-11-29 | 1991-11-29 | Integral type condensing element for solid-state image pickup element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3316634A JPH05150104A (en) | 1991-11-29 | 1991-11-29 | Integral type condensing element for solid-state image pickup element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05150104A true JPH05150104A (en) | 1993-06-18 |
Family
ID=18079227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3316634A Withdrawn JPH05150104A (en) | 1991-11-29 | 1991-11-29 | Integral type condensing element for solid-state image pickup element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05150104A (en) |
-
1991
- 1991-11-29 JP JP3316634A patent/JPH05150104A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ishihara et al. | A high photosensitive IL-CCD image sensor with monolithic resin lens array | |
JP3079969B2 (en) | Complete contact image sensor and method of manufacturing the same | |
US4667092A (en) | Solid-state image device with resin lens and resin contact layer | |
US7476562B2 (en) | Gapless microlens array and method of fabrication | |
US6495813B1 (en) | Multi-microlens design for semiconductor imaging devices to increase light collection efficiency in the color filter process | |
JPH04226073A (en) | Solid-state image sensor and its manufacture | |
JP6035744B2 (en) | Solid-state image sensor | |
US20090206430A1 (en) | Solid-state imaging device and method for manufacturing the same | |
US6232590B1 (en) | Solid state image sensor and method for fabricating the same | |
JPH1093060A (en) | Structure and manufacturing method of solid-state imaging device | |
JP6631004B2 (en) | Color solid-state imaging device and method of manufacturing the same | |
EP1142030B1 (en) | Reflecting structures for photosensitive devices | |
JPH0412568A (en) | Manufacture of solid-state image pickup device | |
JPH07161953A (en) | Microlens | |
JP2000307090A (en) | Solid-state image sensing device microlens array, solid- state image sensing device provided with it, and method of manufacturing them | |
JP3747682B2 (en) | Solid-state imaging device and manufacturing method thereof | |
JPH0540216A (en) | Microlens and production thereof | |
JPH069229B2 (en) | Method of manufacturing solid-state imaging device | |
JP6311771B2 (en) | Solid-state image sensor | |
JPH05150104A (en) | Integral type condensing element for solid-state image pickup element | |
JP2000304906A (en) | Microlens array for solid-state image pickup element and solid-state image pickup element using the same | |
JPS61203663A (en) | Manufacture of solid-state image pick-up device | |
JPS59122193A (en) | Solid-state image pickup device | |
JPH04233759A (en) | Solid-state image sensing device and manufacture thereof | |
Erhardt et al. | Silicon cylindrical lens arrays for improved photoresponse in focal plane arrays |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990204 |