[go: up one dir, main page]

JPH05145119A - Light emitting diode - Google Patents

Light emitting diode

Info

Publication number
JPH05145119A
JPH05145119A JP30907191A JP30907191A JPH05145119A JP H05145119 A JPH05145119 A JP H05145119A JP 30907191 A JP30907191 A JP 30907191A JP 30907191 A JP30907191 A JP 30907191A JP H05145119 A JPH05145119 A JP H05145119A
Authority
JP
Japan
Prior art keywords
branch
electrode
branches
chip
order
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30907191A
Other languages
Japanese (ja)
Other versions
JP2834922B2 (en
Inventor
Masanori Watanabe
昌規 渡辺
Akihiro Matsumoto
晃広 松本
Hiroshi Nakatsu
弘志 中津
Tadashi Takeoka
忠士 竹岡
Osamu Yamamoto
修 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP30907191A priority Critical patent/JP2834922B2/en
Priority to US07/980,666 priority patent/US5309001A/en
Priority to EP97102514A priority patent/EP0778625B1/en
Priority to EP92310770A priority patent/EP0544512B1/en
Priority to DE69232411T priority patent/DE69232411T2/en
Priority to DE69226848T priority patent/DE69226848T2/en
Publication of JPH05145119A publication Critical patent/JPH05145119A/en
Application granted granted Critical
Publication of JP2834922B2 publication Critical patent/JP2834922B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To make it possible to enhance outer quantum efficiency through a relative reduction in void light emitting under an electrode, and what is more, emit short wavelength light with higher efficiency. CONSTITUTION:An electrode 16, which is installed on the surface 30 of a light emitting diode (semiconductor chip), is provided with a substantially semi- circular-shaped pad portion 18. It is further provided with primary branches 19a to 19d extending linearly from the pad portion 18 and secondary branches 20a, 20b, and 20c extending linearly from each of the primary branches 19a to 19d, and third branches extending linearly from each of the secondary branches 20a, 20b and 20c, at the least.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、表示用などに用いら
れる発光ダイオードに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting diode used for display or the like.

【0002】[0002]

【従来の技術】近年、黄色ないし緑色の光を発する発光
ダイオード(LED)として、GaAsPまたはGaP系材
料の他に、AlGaInP系材料を用いたものが開発され
つつある。
2. Description of the Related Art Recently, as a light emitting diode (LED) which emits yellow or green light, a material using AlGaInP based material in addition to GaAsP or GaP based material is being developed.

【0003】従来のAlGaInP系LEDは次のように
して作成されている。まず、図6に示すように、n型Ga
As基板90の表面100にn型AlGaInPクラッド層
91、アンドープAlGaInP発光層92、p型AlGaI
nPクラッド層93、p型AlGaAs電流拡散層94、p型
GaAsコンタクト層95、p側電極96を全面に積層す
る。次に、図7に示すように、この電極96およびp型
GaAs層95を一部除去してパターン化する。すなわ
ち、電極96をワイヤボンドを行うための円形状のパッ
ド部98と、このパッド部98から四方に直線状に延び
る分枝99a,99b,99c,99dとで構成する。このよ
うに分枝を複数設けることにより、電流をチップ内にで
きるだけ均一に拡散するようにしている。この後、基板
90の裏面にn側電極97を形成する。発光層92より
発した光は、基板90と電極96とに吸収されるため、
チップ表面100のうち電極96を除去した領域100
aと側面101とからチップ外へ出射する。
A conventional AlGaInP-based LED is manufactured as follows. First, as shown in FIG. 6, n-type Ga
On the surface 100 of the As substrate 90, an n-type AlGaInP clad layer 91, an undoped AlGaInP light emitting layer 92, a p-type AlGaI.
An nP clad layer 93, a p-type AlGaAs current diffusion layer 94, a p-type GaAs contact layer 95, and a p-side electrode 96 are laminated on the entire surface. Next, as shown in FIG. 7, the electrode 96 and the p-type GaAs layer 95 are partially removed and patterned. That is, the electrode 96 is composed of a circular pad portion 98 for wire bonding and branches 99a, 99b, 99c and 99d linearly extending from the pad portion 98 in all directions. By providing a plurality of branches in this way, the current is diffused in the chip as uniformly as possible. Then, the n-side electrode 97 is formed on the back surface of the substrate 90. Light emitted from the light emitting layer 92 is absorbed by the substrate 90 and the electrode 96,
Area 100 of the chip surface 100 from which the electrode 96 has been removed
The light is emitted from the a and the side surface 101 to the outside of the chip.

【0004】なお、このLEDは、発光層92をこの層
92よりもバンドギャップが大きい2つのクラッド層9
1,93で挟んだダブルヘテロ構造となっている。ここ
で、クラッド層91,93によって発光層92に有効に
電子およびホールを閉じ込めるためには、クラッド層9
1,93の組成(AlyGa1-y)0.5In0.5PにおいてAl混
晶比yを0.7〜1と大きくする必要がある。ところが、
このようにAl混晶比yを大きくすると、層中へのp型あ
るいはn型のドーピングが難しくなり、クラッド層91,
93の比抵抗を低くすることが困難となる。そこで、こ
のLEDでは、電流拡散層94を設けて電極96の直下
に電流が集中することを防ぎ、これにより電極96で覆
われていない領域100aでの発光量を多くしている。
In this LED, the light emitting layer 92 has two clad layers 9 having a band gap larger than that of the layer 92.
It has a double hetero structure sandwiched by 1,93. Here, in order to effectively confine electrons and holes in the light emitting layer 92 by the cladding layers 91 and 93, the cladding layer 9
The composition of 1,93 (AlyGa 1- y) 0. 5 In 0. Certain Al ratio y is necessary to increase the 0.7 to 1 in 5 P. However,
When the Al mixed crystal ratio y is increased in this way, it becomes difficult to p-type or n-type doping into the layer, and the cladding layer 91,
It becomes difficult to reduce the specific resistance of 93. Therefore, in this LED, the current diffusion layer 94 is provided to prevent the current from concentrating immediately below the electrode 96, thereby increasing the amount of light emission in the region 100a not covered by the electrode 96.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記電
流拡散層94の働きは十分ではなく、その結果、電極9
6直下での無効な発光が電極96で覆われていない領域
100aでの発光に比べて多くなっている。このため、
上記従来のLEDは、外部量子効率が悪いという問題が
ある。
However, the function of the current spreading layer 94 is not sufficient, and as a result, the electrode 9
The amount of ineffective light emission immediately below 6 is larger than that in the region 100a not covered with the electrode 96. For this reason,
The conventional LED described above has a problem that external quantum efficiency is low.

【0006】また、発光波長が590nm(黄色)〜550
nm(緑色)であるから、AlGaAs電流拡散層94で光吸
収が生じるという問題がある。AlxGa1-xAsは、たと
え最も広いバンドギャップとなる混晶比x=1に設定し
たとしても、吸収端は574nmであり、これより短波長
の光を透過しないからである。なお、AlAs(x=1に相
当する)は空気中で腐食され易く、表面層として用いる
には適当でない。
The emission wavelength is 590 nm (yellow) to 550 nm.
Since it is nm (green), there is a problem that light absorption occurs in the AlGaAs current diffusion layer 94. This is because Al x Ga 1- x As has an absorption edge of 574 nm and does not transmit light having a wavelength shorter than this even if the mixed crystal ratio x = 1 that provides the widest band gap is set. AlAs (corresponding to x = 1) is easily corroded in air and is not suitable for use as a surface layer.

【0007】そこで、この発明の目的は、電極直下の無
効発光を相対的に減少させて外部量子効率を改善できる
上、電流拡散層を省略して短波長の光を効率良く出射で
きる発光ダイオードを提供することにある。
Therefore, an object of the present invention is to provide a light emitting diode which can relatively reduce the ineffective light emission right under the electrode to improve the external quantum efficiency, and at the same time, can omit the current diffusion layer and efficiently emit light of a short wavelength. To provide.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、この発明は、半導体チップの表面に電極を有し、上
記チップ表面のうち電極で覆われていない領域からチッ
プ外へ光を出射する発光ダイオードにおいて、上記電極
は、略円形状をなすパッド部と、上記パッド部から線状
に延びる第1次の分枝と、上記第1次の分枝から分岐し
て線状に延びる第2次の分枝と、さらに上記第2次の分
枝から分岐して線状に延びる第3次の分枝を少なくとも
有することを特徴としている。
In order to achieve the above object, the present invention has an electrode on the surface of a semiconductor chip, and emits light to the outside of the chip from a region of the chip surface not covered by the electrode. In the light emitting diode, the electrode has a substantially circular pad portion, a primary branch linearly extending from the pad portion, and a linear branch linearly branching from the primary branch. It is characterized in that it has at least a secondary branch and a tertiary branch linearly branched from the secondary branch.

【0009】また、上記各次の分枝の線幅は、次数が増
えるにつれて細くなっているのが望ましい。
Further, it is desirable that the line widths of the branches of the respective orders become thinner as the order increases.

【0010】また、上記各次の分枝の長さは、次数が増
えるにつれて一定の比率で短くなっているのが望まし
い。
Further, it is desirable that the length of each branch is shortened at a constant rate as the order increases.

【0011】また、上記各次の分枝の間の角度は0°ま
たは90°になっているのが望ましい。
Further, it is desirable that the angle between the branches of each order is 0 ° or 90 °.

【0012】[0012]

【作用】電流拡散抵抗が大きい点を補うためには、発光
層のどの部分からもあまり遠くない距離に電極があれば
よい。ところが単純に電極の面積を増やすとチップ外へ
光が出射しにくくなる。その点を回避するために電極幅
を狭くすると、今度は電極での配線抵抗が増大する。こ
のように矛盾する条件を極力調和させたのが本発明であ
る。
In order to compensate for the large current diffusion resistance, it is sufficient that the electrode is located at a distance not far from any part of the light emitting layer. However, if the area of the electrode is simply increased, it becomes difficult to emit light to the outside of the chip. If the electrode width is narrowed in order to avoid this point, then the wiring resistance at the electrode increases. The present invention is to harmonize such contradictory conditions as much as possible.

【0013】この発明によれば、チップ表面に設けられ
た電極が、パッド部から延びる第1次の分枝と、この第
1次の分枝から延びる第2次の分枝と、さらにこの第2
次の分枝から延びる第3次の分枝とを有しているので
(さらに高次の分枝を有していても良い)、チップ表面は
上記各次の分枝によって樹枝状に覆われた状態となる。
この結果、チップの隅々にまで電流が拡散され、電流拡
散抵抗が実質的に減少する。したがって、電極直下での
無効な発光よりも電極で覆われていない領域での発光が
相対的に多くなる。したがって、チップ外へ光が出射し
やすくなり、外部量子効率が改善される。また、上記電
極の形状によってチップ内に電流を十分拡散できること
から、例えば黄色より短波長のAlGaInP系LEDに
おいてAlGaAs電流拡散層を設ける必要がなくなる。
したがって、短波長の光であっても吸収のない好適な特
性となる。なお、この電極形状は、AlGaInP系LE
Dだけでなく、一般のAlGaAs系、GaP系、ZnSe
系、GaN系、SiC系LEDなどに適用される。これに
より、各種LEDの特性向上が図られる。
According to the present invention, the electrode provided on the surface of the chip has the primary branch extending from the pad portion, the secondary branch extending from the primary branch, and further the secondary branch. Two
Because it has a third branch that extends from the next branch
(It may have higher-order branches), and the chip surface is in a dendritic state covered by the branches of each order.
As a result, the current is spread to every corner of the chip, and the current spreading resistance is substantially reduced. Therefore, the light emission in the region not covered with the electrode is relatively larger than the ineffective light emission right under the electrode. Therefore, the light is easily emitted to the outside of the chip, and the external quantum efficiency is improved. Further, since the current can be sufficiently diffused in the chip by the shape of the electrode, it is not necessary to provide an AlGaAs current diffusion layer in an AlGaInP LED having a wavelength shorter than yellow.
Therefore, even if the light having a short wavelength is absorbed, it has a preferable characteristic. The shape of this electrode is AlGaInP system LE.
Not only D, but also general AlGaAs series, GaP series, ZnSe
It is applied to LED, GaN, and SiC LEDs. As a result, the characteristics of various LEDs can be improved.

【0014】また、上記各次の分枝の線幅は、次数が増
えるにつれて細くなっている場合、チップ表面のうち電
極直下の面積があまり増加することなく、電流拡散抵抗
が効果的に減少する。したがって、さらに外部量子効率
が改善される。しかも、低次の分枝の線幅は比較的広く
なっているので、配線抵抗はほとんど増大することがな
い。また、上記各次の分枝の線幅を次数が増えるにつれ
て一定の比率で細くなるようにした場合、電極のパター
ン設計が容易になる。
When the line widths of the branches of each order become narrower as the order increases, the area of the chip surface directly below the electrodes does not increase so much, and the current spreading resistance is effectively reduced. .. Therefore, the external quantum efficiency is further improved. Moreover, since the line width of the low-order branch is relatively wide, the wiring resistance hardly increases. Further, when the line width of each branch described above is made thinner at a constant rate as the order increases, the pattern design of the electrode becomes easier.

【0015】また、上記各次の分枝の長さは、次数が増
えるにつれて一定の比率で短くなっている場合、各次の
分枝でもってチップ表面が効率良く覆われる。すなわ
ち、高次の分枝同士がほとんど重なることなく、チップ
表面の略全域が樹枝状に覆われる。しかも、上記各次の
分枝の長さは次数が増えるにつれて一定の比率で短くな
っているので、電極のパターン設計が容易になる。
If the length of each branch is shortened at a constant rate as the order increases, the chip surface is efficiently covered with each branch. That is, almost all of the surface of the chip is covered in a dendritic manner, with the higher-order branches hardly overlapping each other. Moreover, since the length of each branch is shortened at a constant rate as the order increases, the pattern design of the electrode becomes easy.

【0016】また、上記各次の分枝の間の角度は0°ま
たは90°になっている場合、同様に、各次の分枝でも
ってチップ表面が効率良く覆われる。すなわち、高次の
分枝同士が重なることなく、チップ表面の略全域が樹枝
状に覆われる。しかも、電極のパターン設計が容易にな
る。
When the angle between the branches of each order is 0 ° or 90 °, similarly, the branch surface of each order effectively covers the chip surface. That is, substantially the entire surface of the chip is covered in a dendritic manner without the higher-order branches overlapping each other. Moreover, the pattern design of the electrode becomes easy.

【0017】[0017]

【実施例】以下、この発明の発光ダイオードを実施例に
より詳細に説明する。
The light emitting diode of the present invention will be described in detail below with reference to examples.

【0018】図1,図2は第1実施例のAlGaInP系L
EDのチップ表面,チップ断面をそれぞれ示している。
図1に示すように、チップ表面30には電極16が設け
られている。電極16は、ワイドボンドのための所定寸
法の円形状のパッド部18を中央に備えている。このパ
ッド部18から対角方向に直線状に第1次の分枝19a,
19b,19c,19dが延びている。第1次の分枝19a,
19b,19c,19dは、互いに同一線幅、同一長さとな
っている。各第1次の分枝19a,19b,19c,19dの
先端からそれぞれ三方向に第2次の分枝20a,20b,2
0cが分岐して延びている。第1次の分枝と第2次の分
枝とがなす角度は0°または90°となっている。な
お、設計上は、各第1次の分枝19a,19b,19c,19
dと重なる図示しない第2次の分枝がある。第2次の分
枝20a,20b,20cは、互いに同一線幅、同一長さと
なっており、第1次の分枝に対して線幅、長さがいずれ
も1/2となっている。また、各第2次の分枝20a,2
0b,20cの先端からそれぞれ三方向に直線状に第3次
の分枝21a,21b,21cが分岐して延びている。第2
次の分枝と第3次の分枝とがなす角度は0°または90
°となっている。また、第3次の分枝21a,21b,21
cは、互いに同一線幅となっており、第2次の分枝に対
して線幅、長さがいずれも1/2となっている。なお、
各第1次の分枝19a,19b,19cの中ほどからも第3
次の分枝が分岐しているが、これは各第1次の分枝19
a,19b,19cに重なって上記図示しない第2次の分枝
の先端があるためである。さらに、各第3次の分枝21
a,21b,21cの先端からそれぞれ三方向に直線状に第
4次の分枝22a,22b,22cが分岐して延びている。
第3次の分枝と第4次の分枝とがなす角度は0°または
90°となっている。また、第4次の分枝22a,22b,
22cは、互いに同一線幅、同一長さとなっており、第
3次の分枝21a,21b,21cに対して線幅、長さがい
ずれも1/2となっている。
1 and 2 show the AlGaInP system L of the first embodiment.
The chip surface and the chip cross section of the ED are shown respectively.
As shown in FIG. 1, electrodes 16 are provided on the chip surface 30. The electrode 16 is provided with a circular pad portion 18 having a predetermined size for wide bonding in the center. From the pad portion 18, the first-order branch 19a is formed linearly in a diagonal direction.
19b, 19c and 19d extend. The first branch 19a,
19b, 19c and 19d have the same line width and the same length. The secondary branches 20a, 20b, 2 in three directions from the tips of the primary branches 19a, 19b, 19c, 19d, respectively.
0c is branched and extends. The angle formed by the primary branch and the secondary branch is 0 ° or 90 °. By design, each of the first-order branches 19a, 19b, 19c, 19
There is a secondary branch (not shown) that overlaps d. The secondary branches 20a, 20b, 20c have the same line width and the same length as each other, and both the line width and the length are ½ of those of the primary branch. Also, each secondary branch 20a, 2
Third-order branches 21a, 21b, and 21c linearly extend in three directions from the ends of 0b and 20c, respectively. Second
The angle between the next branch and the third branch is 0 ° or 90
It has become °. In addition, the third branch 21a, 21b, 21
c has the same line width as each other, and both the line width and the length of the secondary branch are ½. In addition,
The third from the middle of each first-order branch 19a, 19b, 19c
The next branch is branched, but this is the branch of each primary 19
This is because there is the tip of the secondary branch (not shown) that overlaps a, 19b, and 19c. Furthermore, each third branch 21
Fourth-order branches 22a, 22b, 22c are branched and extended linearly in three directions from the tips of a, 21b, 21c, respectively.
The angle formed by the third-order branch and the fourth-order branch is 0 ° or 90 °. Also, the fourth-order branches 22a, 22b,
The line widths 22c have the same line width and the same length, and the line widths and lengths of the third branch lines 21a, 21b, 21c are both 1/2.

【0019】このように、この電極16はどの分岐にお
いても枝別れ数が等しく、低次の分枝と高次の分枝との
関係は'X'形状の4つの先端に長さが1/2の'X'を組
み合わせた規則的で相似な自己相似形状、すなわちフラ
クタル形状となっている。したがって、パターン設計を
容易に行うことができる。また、高次の分枝同士が重な
ることなくチップ表面30の略全域を樹枝状に覆うこと
ができる。さらに、低次の分枝の配線幅を比較的広くし
ているので配線抵抗を低く抑えることができる。低次の
分枝ほど電流多く流れるからである。ただし、配線幅が
細くても配線抵抗が充分小さいならば、配線幅を広げる
必要はない。
As described above, the number of branches of this electrode 16 is the same in every branch, and the relationship between the lower-order branch and the higher-order branch is 1 / length at the four tips of the'X 'shape. It is a regular and similar self-similar shape that is a combination of 2'X's, that is, a fractal shape. Therefore, the pattern can be designed easily. Further, substantially the entire surface 30 of the chip can be covered in a dendritic manner without the high-order branches overlapping each other. Further, since the wiring width of the low-order branch is relatively wide, the wiring resistance can be suppressed low. This is because a lower branch has a larger current flow. However, if the wiring resistance is sufficiently small even if the wiring width is thin, it is not necessary to increase the wiring width.

【0020】図2に示すように、上記電極16は、Al
GaInP系チップの表面30に設けられている。このチ
ップは、次のようにして作製する。まず、n型GaAs基
板10の裏面にMOCVD法(有機金属化学気相成長法)
により、n型AlGaInPクラッド層11、アンドープ発
光層12、p型AlGaInPクラッド層13、p型AlGa
Asコンタクト層14、p型GaAsコンタクト層15、電
極16を順に全面に形成する。次に、フォトリソグラフ
ィーによって、電極16が図1に示した形状となるよう
に、コンタクト層14、15と共に一部除去してパター
ン化する。この後、基板10の裏面側にも電極17を形
成する。なおp型AlGaAsコンタクト層14は、従来と
異なり電極16直下にしかなく、電流拡散層としては働
かない。
As shown in FIG. 2, the electrode 16 is made of Al
It is provided on the surface 30 of the GaInP-based chip. This chip is manufactured as follows. First, MOCVD (metalorganic chemical vapor deposition) on the back surface of the n-type GaAs substrate 10.
Thus, the n-type AlGaInP clad layer 11, the undoped light emitting layer 12, the p-type AlGaInP clad layer 13, and the p-type AlGa
An As contact layer 14, a p-type GaAs contact layer 15, and an electrode 16 are sequentially formed on the entire surface. Next, by photolithography, the electrode 16 and the contact layers 14 and 15 are partially removed and patterned so that the electrode 16 has the shape shown in FIG. After that, the electrode 17 is also formed on the back surface side of the substrate 10. Unlike the prior art, the p-type AlGaAs contact layer 14 is only under the electrode 16 and does not function as a current diffusion layer.

【0021】上述のように、このAlGaInP系LED
は、チップ表面30を電極16によって樹枝状に覆って
いるので、電流拡散層を設けなくても、チップの隅々に
まで電流を拡散でき、実質的に電流拡散抵抗を減少させ
ることができる。したがって、電極16直下での無効な
発光よりも電極16で覆われていない領域30aでの発
光を相対的に増大させることができる。したがって、チ
ップ外へ光を出射しやすくなり、外部量子効率を改善す
ることができる。また、電流拡散層を設けていないの
で、短波長の光であっても吸収が生じないようにでき
る。実際に特性測定を行ったところ、発光波長は570
nm(黄緑色)で、外部量子効率は、1.5%であった。
As described above, this AlGaInP-based LED
Since the chip surface 30 is covered with the electrodes 16 in a dendritic manner, the current can be diffused to every corner of the chip without providing a current diffusion layer, and the current diffusion resistance can be substantially reduced. Therefore, the light emission in the region 30a not covered by the electrode 16 can be relatively increased as compared with the ineffective light emission right under the electrode 16. Therefore, it becomes easier to emit light to the outside of the chip, and the external quantum efficiency can be improved. In addition, since the current diffusion layer is not provided, it is possible to prevent absorption of light of short wavelength. When the characteristics were actually measured, the emission wavelength was 570
The external quantum efficiency was 1.5% in nm (yellowish green).

【0022】なお、パッド部18の位置はチップ表面3
0の中央に限定されるものではなく、周辺部にあっても
よい。
The position of the pad portion 18 is determined by the chip surface 3
It is not limited to the center of 0, but may be in the peripheral portion.

【0023】また、電極16のパターン形状は、エッチ
ングによらず、いわゆるマスク蒸着(電極14と同じ形
状の開口部を有するメタルマスクを用いて蒸着する)に
より形成しても良い。
Further, the pattern shape of the electrode 16 may be formed by so-called mask vapor deposition (vapor deposition using a metal mask having an opening having the same shape as the electrode 14) instead of etching.

【0024】また、LEDの材料はAlGaInPに限定
されるものでなく、AlGaAs、GaAsP、GaP、Al
GaN、GaInAsPなどのIII−V族化合物半導体、
ZnCdSSe、ZnCdSeTeなどのII−VI族化合物
半導体、CuAlSSe、CuGaSSeなどのカルコパイラ
イト系半導体であってもよい。
The material of the LED is not limited to AlGaInP, but AlGaAs, GaAsP, GaP, Al
III-V group compound semiconductors such as GaN and GaInAsP,
It may be a II-VI group compound semiconductor such as ZnCdSSe or ZnCdSeTe, or a chalcopyrite semiconductor such as CuAlSSe or CuGaSSe.

【0025】また、基板材料はGaAsに限定されるもの
ではなく、GaP、InP、サファイアなどでも良く、発
光波長に対して不透明であっても透明であってもよい。
基板の導電型はn型でもp型でもよい。
The substrate material is not limited to GaAs, but may be GaP, InP, sapphire, or the like, and may be opaque or transparent with respect to the emission wavelength.
The conductivity type of the substrate may be n-type or p-type.

【0026】また、この実施例ではチップ表面30側に
分岐を有する電極16を設けたが、発光波長に対し透明
な基板を用いる場合は、基板裏面側の電極17にも分枝
を設ける。これにより、光出射効率をさらに向上させる
ことができる。
Further, in this embodiment, the electrode 16 having a branch is provided on the side of the chip surface 30, but when a substrate transparent to the emission wavelength is used, the electrode 17 on the back side of the substrate is also provided with a branch. Thereby, the light emission efficiency can be further improved.

【0027】また、発光層12界面の接合はダブルヘテ
ロ接合に限定されるものでなく、シングルヘテロ接合、
ホモ接合であってもよい。
The junction at the interface of the light emitting layer 12 is not limited to the double hetero junction, but a single hetero junction,
It may be homozygous.

【0028】また、各半導体層11,…,15をMOCV
D法(有機金属化学気相成長法)で形成したが、MBE法
(分子線エピタキシ法)、VPE法(気相成長法)、LPE
法(液相成長法)などで形成してもよい。pn接合は、結晶
成長時に作り込むほか、結晶成長後にドーパントを拡散
して形成してもよい。
Further, each of the semiconductor layers 11, ...
It was formed by D method (metalorganic chemical vapor deposition method), but MBE method
(Molecular beam epitaxy method), VPE method (vapor phase growth method), LPE
It may be formed by a method (liquid phase growth method) or the like. The pn junction may be formed during crystal growth or may be formed by diffusing a dopant after crystal growth.

【0029】図3,図4は第2実施例のAlGaAs系LE
Dのチップ表面,チップ断面をそれぞれ示している。図
3に示すように、チップ表面60に設けられた電極45
は、略円形状のパッド部48と、このパッド部48から
直線状に延びる第1次の分枝49a,49b、第2次の分
枝50a,50b、第3次の分枝51a,51b、第4次の分
枝52a,52b、第5次の分枝53a,53b、第6次の分
枝54a,54bを有している。上記各次の分枝は、'H'
形状の4つの先端に長さが1/2の'H'を組み合わせる
ことを繰り返したフラクタル形状となっている。この例
では、各次の分枝を正方形のチップの四辺に平行な線で
形成しているので、パターン設計を容易に行うことがで
きる。
FIGS. 3 and 4 show the AlGaAs LE of the second embodiment.
The chip surface and the chip cross section of D are respectively shown. As shown in FIG. 3, the electrode 45 provided on the chip surface 60
Is a substantially circular pad portion 48, primary branches 49a and 49b linearly extending from the pad portion 48, secondary branches 50a and 50b, and tertiary branches 51a and 51b. The fourth branch 52a, 52b, the fifth branch 53a, 53b, and the sixth branch 54a, 54b are included. Each branch above is'H '
The shape is a fractal shape in which four tips of the shape are repeatedly combined with'H 'having a length of ½. In this example, each branch is formed by a line parallel to the four sides of a square chip, so that pattern design can be performed easily.

【0030】図4に示すように、上記電極45は、Al
GaAs系チップの表面60に設けられている。このチッ
プを作製する場合、まず、n型GaAs基板40上にn型A
lGaAs層41、p型AlGaAs発光層42、p型AlGaA
s層43、p型GaAsコンタクト層44を形成し、続い
て、基板の表面に電極45、裏面に電極46を全面に形
成する。そして、コンタクト層44と電極45を図3に
示す形状となるように一部エッチングしてパターン化す
る。
As shown in FIG. 4, the electrode 45 is made of Al
It is provided on the surface 60 of the GaAs-based chip. When manufacturing this chip, first, the n-type A is formed on the n-type GaAs substrate 40.
lGaAs layer 41, p-type AlGaAs light-emitting layer 42, p-type AlGaA
An s layer 43 and a p-type GaAs contact layer 44 are formed, and subsequently, an electrode 45 is formed on the entire surface of the substrate and an electrode 46 is formed on the entire surface of the substrate. Then, the contact layer 44 and the electrode 45 are partially etched and patterned to have the shape shown in FIG.

【0031】このAlGaAs系LEDは、チップ表面6
0を電極45によって樹枝状に覆っているので、第1実
施例と同様に、外部量子効率を改善することができる。
また、電流拡散層を設けていないので、短波長の光であ
っても吸収が生じないようにできる。
This AlGaAs LED has a chip surface 6
Since 0 is covered with the electrode 45 in a dendritic manner, the external quantum efficiency can be improved as in the first embodiment.
In addition, since the current diffusion layer is not provided, it is possible to prevent absorption of light of short wavelength.

【0032】第5図は、第3実施例のAlGaInP系L
EDのチップ表面を示している。チップ表面70に設け
られた電極75は、略円形状のパッド部78と、第1次
の分枝79a,79bと、第2次の分枝80a,80b,80
c,80d,80eと、各第2次の分枝80a,…,80eから
分岐した第3次の分岐81a,81b,81c,81d,81e,
81f,81g,81h,81iと、各第3次の分枝81a,…,
81iから分岐した第4次の分岐82a,82b,82c,8
2dを有している。すなわち、パッド部78を通るチッ
プ側面71に平行な直線AB上に第1次の分枝79a,7
9bを設け、この第1次の分枝79a,79bに垂直に第2
次の分枝80a,…,80eを5本設けている。さらに各第
2次の分枝80a,…,80eに垂直に第3次の分枝81a,
…,81iを9本設けている。なお、この第3次の分枝
は、パッド部78あるいは第1次の分枝79a,79bに
重なる部分では実際には形成していない。さらに、第3
次の分枝81a,…,81iに垂直に第4次の分枝82a,
…,82dを設けている。上記各次の分枝は特に電流が多
く流れるパッド部78側の部分を太くしている。この例
は、枝別れの数が分岐の次数によって異なるため狭義の
フラクタルではないが、設計思想はフラクタル的であ
る。
FIG. 5 shows the AlGaInP system L of the third embodiment.
The chip surface of ED is shown. The electrode 75 provided on the chip surface 70 includes a pad portion 78 having a substantially circular shape, primary branches 79a and 79b, and secondary branches 80a, 80b and 80.
c, 80d, 80e and third-order branches 81a, 81b, 81c, 81d, 81e, which are branched from the respective second-order branches 80a, ..., 80e.
81f, 81g, 81h, 81i, and third-order branches 81a, ...
Fourth branch 82a, 82b, 82c, 8 branched from 81i
Has 2d. That is, the first-order branches 79a, 7a are formed on the straight line AB passing through the pad portion 78 and parallel to the chip side surface 71.
9b is provided, and the first branch 79a, 79b is perpendicular to the second branch 79a.
Five branches 80a, ..., 80e are provided. Further, the third branch 81a, perpendicular to each second branch 80a, ..., 80e,
..., eight 81i are provided. The third branch is not actually formed in the pad portion 78 or the portion overlapping the first branch 79a, 79b. Furthermore, the third
The fourth branch 82a, perpendicular to the next branch 81a, ..., 81i
..., 82d is provided. The branches on each side have a thicker portion on the side of the pad portion 78 through which a large amount of current flows. Although this example is not a fractal in a narrow sense because the number of branches is different depending on the degree of branching, the design concept is fractal.

【0033】このAlGaInP系LEDのチップの内部
構造は第1実施例と同じであり、説明を省略する。この
AlGaInP系LEDは、チップ表面70を電極75に
よって樹枝状に覆っているので、第1,第2実施例と同
様に外部量子効率を改善することができる。また、電流
拡散層を設けていないので短波長の光であっても吸収が
生じないようにできる。
The internal structure of the AlGaInP LED chip is the same as that of the first embodiment, and the description thereof is omitted. In this AlGaInP-based LED, the chip surface 70 is covered with the electrodes 75 in a dendritic manner, so that the external quantum efficiency can be improved as in the first and second embodiments. Further, since the current diffusion layer is not provided, it is possible to prevent absorption of light of short wavelength.

【0034】[0034]

【発明の効果】以上より明らかなように、この発明の発
光ダイオードは、チップ表面に設けられた電極が、略円
形状をなすパッド部と、上記パッド部から線状に延びる
第1次の分枝と、上記第1次の分枝から分岐して線状に
延びる第2次の分枝と、さらに上記第2次の分枝から分
岐して線状に延びる第3次の分枝を少なくとも有してい
るので、チップ表面を各次の分枝によって樹枝状に覆う
ことができ、電流拡散抵抗を実質的に減少させることが
できる。したがって、電極直下での無効な発光よりも電
極で覆われていない領域での発光を相対的に大きくで
き、外部量子効率を改善することができる。しかも、電
流拡散層を省略でき、この結果、短波長の光であっても
効率良く出射することができる。
As is apparent from the above, in the light emitting diode of the present invention, the electrode provided on the surface of the chip has a pad portion having a substantially circular shape, and a linear portion extending linearly from the pad portion. At least a branch, a secondary branch that is branched from the first branch and extends linearly, and a third branch that is branched from the second branch and linearly extends. Since it has, the surface of the chip can be covered with each branch in a dendritic manner, and the current spreading resistance can be substantially reduced. Therefore, the light emission in the region not covered with the electrode can be made relatively larger than the ineffective light emission right under the electrode, and the external quantum efficiency can be improved. Moreover, the current diffusion layer can be omitted, and as a result, even light with a short wavelength can be efficiently emitted.

【0035】また、上記各次の分枝の線幅は、次数が増
えるにつれて一定の比率で細くなっている場合、チップ
表面のうち電極直下の面積をあまり増加させることな
く、電流拡散抵抗を効果的に減少でき、したがって、さ
らに外部量子効率を改善できる。しかも、配線抵抗の増
大を抑えることができる上、電極のパターンを容易に設
計することができる。
When the line width of each branch is thinned at a constant rate as the order increases, the current spreading resistance is effectively reduced without increasing the area directly below the electrodes on the chip surface. The external quantum efficiency can be further improved. Moreover, an increase in wiring resistance can be suppressed, and the electrode pattern can be easily designed.

【0036】また、上記各次の分枝の長さは、次数が増
えるにつれて一定の比率で短くなっている場合、高次の
分枝同士が重なるのを避けることができ、チップ表面の
略全域を樹枝状に覆うことができる。しかも、電極のパ
ターンを容易に設計することができる。
If the lengths of the branches of each order are shortened at a constant rate as the order increases, it is possible to prevent the branches of higher orders from overlapping with each other, and substantially the entire surface of the chip. Can be covered in a dendritic manner. Moreover, the electrode pattern can be easily designed.

【0037】また、上記各次の分枝の間の角度は0°ま
たは90°になっている場合、同様に、高次の分枝同士
が重なるのを避けることができ、チップ表面の略全域を
樹枝状に覆うことができる。しかも、電極のパターンを
容易に設計することができる。
Further, when the angle between the branches of each order is 0 ° or 90 °, it is possible to avoid that the branches of higher orders overlap each other, and substantially the entire surface of the chip is covered. Can be covered in a dendritic manner. Moreover, the electrode pattern can be easily designed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の第1実施例のAlGaInP系LE
Dの表面電極パターンを示す図である。
FIG. 1 is an AlGaInP system LE according to a first embodiment of the present invention.
It is a figure which shows the surface electrode pattern of D.

【図2】 上記LEDのチップ断面を示す図である。FIG. 2 is a view showing a chip cross section of the LED.

【図3】 この発明の第2実施例のAlGaAs系LED
の表面電極パターンを示す図である。
FIG. 3 is an AlGaAs LED according to a second embodiment of the present invention.
It is a figure which shows the surface electrode pattern of.

【図4】 上記LEDのチップ断面を示す図である。FIG. 4 is a view showing a chip cross section of the LED.

【図5】 この発明の第3実施例のAlGaInP系LE
Dの表面電極パターンを示す図である。
FIG. 5: AlGaInP system LE of the third embodiment of the present invention
It is a figure which shows the surface electrode pattern of D.

【図6】 従来のAlGaIn系LEDのチップ断面を示
す図である。
FIG. 6 is a view showing a chip cross section of a conventional AlGaIn LED.

【図7】 上記従来のAlGaInP系LEDの表面電極
パターンを示す図である。
FIG. 7 is a diagram showing a surface electrode pattern of the conventional AlGaInP-based LED.

【符号の説明】[Explanation of symbols]

10,40 n型GaAs基板 11 n型AlGaInPクラッド層 12 アンドーブ発光層 13 p型AlGaInPクラッド層 14 p型AlGaAsコンタクト層 15 p型GaAsコンタクト層 16,17,45,46,75 電極 18,48,78 パッド部 19a,…,19b,49a,49b,79a,79b 第
1次の分枝 20a,20b,20c,50a,50b,80a,…,80e 第
2次の分枝 21a,21b,21c,51a,51b,81a,…,81i 第
3次の分枝 22a,22b,22c,52a,52b,82a,…,82d 第
4次の分枝 30,60,70 チップ表面 31,61,71 チップ側面 41 n型AlGaAs層 42 p型AlGaAs発光層 43 p型AlGaAs層 44 p型GaAsコンタクト層 53a,53b 第5次の分枝 54a,54b 第6次の分枝
10, 40 n-type GaAs substrate 11 n-type AlGaInP clad layer 12 Andove light emitting layer 13 p-type AlGaInP clad layer 14 p-type AlGaAs contact layer 15 p-type GaAs contact layer 16, 17, 45, 46, 75 electrode 18, 48, 78 Pad portion 19a, ..., 19b, 49a, 49b, 79a, 79b First branch 20a, 20b, 20c, 50a, 50b, 80a, ..., 80e Second branch 21a, 21b, 21c, 51a, 51b, 81a, ..., 81i Third branch 22a, 22b, 22c, 52a, 52b, 82a, ..., 82d Fourth branch 30, 60, 70 Chip surface 31, 61, 71 Chip side surface 41 n Type AlGaAs layer 42 p type AlGaAs light emitting layer 43 p type AlGaAs layer 44 p type GaAs contact layer 53a, 53b 5th branch 54a, 54b 6th branch

フロントページの続き (72)発明者 竹岡 忠士 大阪府大阪市阿倍野区長池町22番22号 シ ヤープ株式会社内 (72)発明者 山本 修 大阪府大阪市阿倍野区長池町22番22号 シ ヤープ株式会社内Front page continued (72) Inventor Tadashi Takeoka 22-22 Nagaike-cho, Nagano-cho, Abeno-ku, Osaka-shi, Osaka Prefecture (72) Instructor Osamu Yamamoto 22-22, Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Prefecture

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体チップの表面に電極を有し、上記
チップ表面のうち電極で覆われていない領域からチップ
外へ光を出射する発光ダイオードにおいて、上記電極
は、略円形状をなすパッド部と、上記パッド部から線状
に延びる第1次の分枝と、上記第1次の分枝から分岐し
て線状に延びる第2次の分枝と、さらに上記第2次の分
枝から分岐して線状に延びる第3次の分枝を少なくとも
有することを特徴とする発光ダイオード。
1. A light emitting diode having an electrode on the surface of a semiconductor chip and emitting light to the outside of the chip from a region of the chip surface which is not covered with the electrode, wherein the electrode has a substantially circular pad portion. A linear branch extending linearly from the pad portion, a secondary branch linearly branching from the primary branch, and a secondary branch further extending from the primary branch. A light-emitting diode having at least a third-order branch that branches and extends linearly.
【請求項2】 上記各次の分枝の線幅は、次数が増える
につれて細くなっていることを特徴とする請求項1に記
載の発光ダイオード。
2. The light emitting diode according to claim 1, wherein the line width of the branches of each order becomes narrower as the order increases.
【請求項3】 上記各次の分枝の長さは、次数が増える
につれて一定の比率で短くなっていることを特徴とする
請求項1または請求項2に記載の発光ダイオード。
3. The light emitting diode according to claim 1, wherein the length of each branch is shortened at a constant rate as the order increases.
【請求項4】 上記各次の分枝の間の角度は0°または
90°になっていることを特徴とする請求項1乃至請求
項3のいずれかに記載の発光ダイオード。
4. The light emitting diode according to claim 1, wherein an angle between the branches of each order is 0 ° or 90 °.
JP30907191A 1991-11-25 1991-11-25 Light emitting diode Expired - Fee Related JP2834922B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP30907191A JP2834922B2 (en) 1991-11-25 1991-11-25 Light emitting diode
US07/980,666 US5309001A (en) 1991-11-25 1992-11-24 Light-emitting diode having a surface electrode of a tree-like form
EP97102514A EP0778625B1 (en) 1991-11-25 1992-11-25 Light-emitting diode having a surface electrode of a tree like form
EP92310770A EP0544512B1 (en) 1991-11-25 1992-11-25 Light-emitting diode having a surface electrode of a tree-like form
DE69232411T DE69232411T2 (en) 1991-11-25 1992-11-25 Light emitting diode with tree-like surface electrode
DE69226848T DE69226848T2 (en) 1991-11-25 1992-11-25 Light emitting diode with branched surface electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30907191A JP2834922B2 (en) 1991-11-25 1991-11-25 Light emitting diode

Publications (2)

Publication Number Publication Date
JPH05145119A true JPH05145119A (en) 1993-06-11
JP2834922B2 JP2834922B2 (en) 1998-12-14

Family

ID=17988535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30907191A Expired - Fee Related JP2834922B2 (en) 1991-11-25 1991-11-25 Light emitting diode

Country Status (1)

Country Link
JP (1) JP2834922B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002084001A (en) * 2000-06-21 2002-03-22 Showa Denko Kk Group iii nitride semiconductor light emitting diode, light emitting diode lamp, light source, electrode for group iii nitride semiconductor light emitting diode and its manufacturing method
JP2004152800A (en) * 2002-10-28 2004-05-27 Matsushita Electric Works Ltd Semiconductor light emitting device
JP2007324411A (en) * 2006-06-01 2007-12-13 Toshiba Corp Semiconductor light-emitting device and manufacturing method therefor and illumination apparatus using the same
JP2008192961A (en) * 2007-02-07 2008-08-21 Rohm Co Ltd Semiconductor device
US7635875B2 (en) 2001-07-24 2009-12-22 Nichia Corporation Semiconductor light emitting device
US7683386B2 (en) 2003-08-19 2010-03-23 Nichia Corporation Semiconductor light emitting device with protrusions to improve external efficiency and crystal growth
JP2010153870A (en) * 2008-12-24 2010-07-08 Lg Innotek Co Ltd Semiconductor light emitting element
JP2011114240A (en) * 2009-11-27 2011-06-09 Nichia Corp Semiconductor light emitting element
JP2012227311A (en) * 2011-04-19 2012-11-15 Nichia Chem Ind Ltd Semiconductor light-emitting element
JP2013535759A (en) * 2010-07-05 2013-09-12 ケンブリッジ ディスプレイ テクノロジー リミテッド Lighting element
TWI447952B (en) * 2011-08-22 2014-08-01 Lextar Electronics Corp Method for manufacturing light emitting diode device and light emitting semiconductor structure
US8803181B2 (en) 2007-10-11 2014-08-12 Rohm Co., Ltd. Semiconductor light emitting device and fabrication method of the semiconductor light emitting device
US8816382B2 (en) 2011-12-21 2014-08-26 Stanley Electric Co., Ltd. Semiconductor light-emitting element
JP2014220536A (en) * 2014-08-27 2014-11-20 ローム株式会社 Semiconductor light-emitting element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889956U (en) * 1981-12-11 1983-06-17 三洋電機株式会社 light emitting diode element
JPS631354U (en) * 1986-06-19 1988-01-07

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889956U (en) * 1981-12-11 1983-06-17 三洋電機株式会社 light emitting diode element
JPS631354U (en) * 1986-06-19 1988-01-07

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002084001A (en) * 2000-06-21 2002-03-22 Showa Denko Kk Group iii nitride semiconductor light emitting diode, light emitting diode lamp, light source, electrode for group iii nitride semiconductor light emitting diode and its manufacturing method
US7745245B2 (en) 2001-07-24 2010-06-29 Nichia Corporation Semiconductor light emitting device
US7804101B2 (en) 2001-07-24 2010-09-28 Nichia Corporation Semiconductor light-emitting device
US9368681B2 (en) 2001-07-24 2016-06-14 Nichia Corporation Semiconductor light emitting device
US7635875B2 (en) 2001-07-24 2009-12-22 Nichia Corporation Semiconductor light emitting device
US9865773B2 (en) 2001-07-24 2018-01-09 Nichia Corporation Semiconductor light emitting device
US8344403B2 (en) 2001-07-24 2013-01-01 Nichia Corporation Semiconductor light emitting device
US10396242B2 (en) 2001-07-24 2019-08-27 Nichia Corporation Semiconductor light emitting device
US8796721B2 (en) 2001-07-24 2014-08-05 Nichia Corporation Semiconductor light emitting device
US10593833B2 (en) 2001-07-24 2020-03-17 Nichia Corporation Semiconductor light emitting device
US8344402B2 (en) 2001-07-24 2013-01-01 Nichia Corporation Semiconductor light emitting device
US8148744B2 (en) 2001-07-24 2012-04-03 Nichia Corporation Semiconductor light emitting device
US8227280B2 (en) 2001-07-24 2012-07-24 Nichia Corporation Semiconductor light emitting device
US8299486B2 (en) 2001-07-24 2012-10-30 Nichia Corporation Semiconductor light emitting device
JP2004152800A (en) * 2002-10-28 2004-05-27 Matsushita Electric Works Ltd Semiconductor light emitting device
US7683386B2 (en) 2003-08-19 2010-03-23 Nichia Corporation Semiconductor light emitting device with protrusions to improve external efficiency and crystal growth
US8119534B2 (en) 2003-08-19 2012-02-21 Nichia Corporation Semiconductor light emitting device with protrusions to improve external efficiency and crystal growth
JP2007324411A (en) * 2006-06-01 2007-12-13 Toshiba Corp Semiconductor light-emitting device and manufacturing method therefor and illumination apparatus using the same
JP2008192961A (en) * 2007-02-07 2008-08-21 Rohm Co Ltd Semiconductor device
US8803181B2 (en) 2007-10-11 2014-08-12 Rohm Co., Ltd. Semiconductor light emitting device and fabrication method of the semiconductor light emitting device
US9276174B2 (en) 2007-10-11 2016-03-01 Rohm Co., Ltd. Semiconductor light emitting device and fabrication method of the semiconductor light emitting device
JP2010153870A (en) * 2008-12-24 2010-07-08 Lg Innotek Co Ltd Semiconductor light emitting element
US8928015B2 (en) 2008-12-24 2015-01-06 Lg Innotek Co., Ltd. Semiconductor light emitting device
US8653545B2 (en) 2008-12-24 2014-02-18 Lg Innotek Co., Ltd. Semiconductor light emitting device
JP2011114240A (en) * 2009-11-27 2011-06-09 Nichia Corp Semiconductor light emitting element
JP2013535759A (en) * 2010-07-05 2013-09-12 ケンブリッジ ディスプレイ テクノロジー リミテッド Lighting element
JP2012227311A (en) * 2011-04-19 2012-11-15 Nichia Chem Ind Ltd Semiconductor light-emitting element
TWI447952B (en) * 2011-08-22 2014-08-01 Lextar Electronics Corp Method for manufacturing light emitting diode device and light emitting semiconductor structure
US8816382B2 (en) 2011-12-21 2014-08-26 Stanley Electric Co., Ltd. Semiconductor light-emitting element
JP2014220536A (en) * 2014-08-27 2014-11-20 ローム株式会社 Semiconductor light-emitting element

Also Published As

Publication number Publication date
JP2834922B2 (en) 1998-12-14

Similar Documents

Publication Publication Date Title
US5153889A (en) Semiconductor light emitting device
US9705043B2 (en) Light-emitting diode, light-emitting diode lamp, and illumination device
US6841409B2 (en) Group III-V compound semiconductor and group III-V compound semiconductor device using the same
JP2834922B2 (en) Light emitting diode
TWI302383B (en) Semiconductor light-emitting device
US10756960B2 (en) Light-emitting device
US6246078B1 (en) Semiconductor light emitting element
US7154127B2 (en) Semiconductor light emitting device
JP2786375B2 (en) Light emitting diode
JP2824371B2 (en) Light emitting diode
JPH07176788A (en) Light emitting diode
JP2837580B2 (en) Light emitting diode
JPH04229665A (en) Semiconductor light-emitting device
US6278139B1 (en) Semiconductor light-emitting diode
US6476421B2 (en) Semiconductor light-emitting device and method for manufacturing thereof
JP3625088B2 (en) Semiconductor light emitting device
US6008507A (en) Photoelectric semiconductor device having a GaAsP substrate
JP3240099B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP2005136443A (en) Light emitting diode
CN1334607A (en) High-brightness light-emitting diode and its manufacturing method
JP2002151733A (en) Light emitting diode and method of manufacturing the same
JPH0682862B2 (en) Light emitting diode
JP3606545B2 (en) Semiconductor light emitting device
JPH04259263A (en) Light-emitting semiconductor device
JPH08148716A (en) Semiconductor light-emitting element and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071002

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081002

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091002

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091002

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101002

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111002

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees