[go: up one dir, main page]

JPH05144686A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH05144686A
JPH05144686A JP32686691A JP32686691A JPH05144686A JP H05144686 A JPH05144686 A JP H05144686A JP 32686691 A JP32686691 A JP 32686691A JP 32686691 A JP32686691 A JP 32686691A JP H05144686 A JPH05144686 A JP H05144686A
Authority
JP
Japan
Prior art keywords
anode
anode bodies
layer
metal foil
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32686691A
Other languages
Japanese (ja)
Inventor
Tatsuro Kubonai
達郎 久保内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP32686691A priority Critical patent/JPH05144686A/en
Publication of JPH05144686A publication Critical patent/JPH05144686A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To improve tight seal properties of the inside of an anode body in a fine chip type solid electrolytic capacitor. CONSTITUTION:The title capacitor is manufactured in the following manner. A plurality of planar type anode bodies 1a and 1b are bonded to each other on the surfaces. A metal foil 20 is welded on the end surface of each of the anode bodies 1a and 1b. An oxide coating film layer, an electrolyte layer, and a conductive layer 4 are formed in order on inner surfaces of the anode bodies 1a and 1b which are opened via the metal foil 20. A plurality of the anode bodies 1a and 1b are again bonded via a planar type cathode body 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、固体電解コンデンサ
及びその製造方法に関し、特に有機導電性化合物を利用
したチップ形の固体電解コンデンサの改良にかかる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolytic capacitor and a method for manufacturing the same, and more particularly to improvement of a chip type solid electrolytic capacitor using an organic conductive compound.

【0002】[0002]

【従来の技術】近年の電子機器の小型化、プリント基板
への実装の効率化等の要請から電子部品のチップ化が進
められている。これに伴い、電解コンデンサのチップ
化、低背化の要請が高まっている。
2. Description of the Related Art In recent years, electronic components have been made into chips due to demands for miniaturization of electronic equipment and efficiency of mounting on a printed circuit board. Along with this, there are increasing demands for making electrolytic capacitors into chips and reducing their height.

【0003】また、近年テトラシアノキノジメタン(T
CNQ)、ポリピロール等の有機導電性化合物を固体電
解コンデンサに応用したものが提案されている。これら
の有機導電性化合物を使用した固体電解コンデンサは、
従来の二酸化マンガン等の金属酸化物半導体からなる固
体電解質と比較して電導度が高く、特にポリピロールは
電解質がポリマー化しているため耐熱性にも優れること
から、チップ化に最適と言われている。
In recent years, tetracyanoquinodimethane (T
Application of organic conductive compounds such as CNQ) and polypyrrole to solid electrolytic capacitors has been proposed. Solid electrolytic capacitors using these organic conductive compounds,
Compared with conventional solid electrolytes made of metal oxide semiconductors such as manganese dioxide, it has a higher conductivity, and polypyrrole is said to be ideal for chipping because it has excellent heat resistance because the electrolyte is polymerized. .

【0004】[0004]

【発明が解決しようとする課題】このポリピロールは、
ピロールの化学重合、電解重合あるいは気相重合等によ
って陽極体表面に生成されている。ところが、ポリピロ
ール自体の機械的強度は弱く、電極の引き出し構造によ
っては、接続工程中にリード線等が電解質層を破壊して
しまうことがあった。あるいは、接続工程の後にリード
線にかかる機械的なストレスが電解質層に影響を与え、
所望の特性を得ることが困難になることがあった。
This polypyrrole is
It is formed on the surface of the anode body by chemical polymerization, electrolytic polymerization or vapor phase polymerization of pyrrole. However, the mechanical strength of polypyrrole itself is weak, and the lead wire or the like sometimes breaks the electrolyte layer during the connecting step depending on the lead-out structure of the electrode. Alternatively, mechanical stress on the lead wire after the connection process affects the electrolyte layer,
It may be difficult to obtain desired characteristics.

【0005】一方、このポリピロールは、水分によりそ
の電気的特性が変動し易くなる傾向がある。そのため、
ポリピロールからなる電解質層は外気から密封する必要
がある。
On the other hand, the electrical characteristics of this polypyrrole tend to fluctuate due to moisture. for that reason,
The electrolyte layer made of polypyrrole needs to be sealed from the outside air.

【0006】このような課題は、コンデンサ本体の外表
面を、ディプ、インジェクション成形等の手段により、
合成樹脂層で被覆すれば解決できる。しかし、この外装
樹脂層により固体電解コンデンサの小型化、低背化が阻
害されることになり、セラミックコンデンサと同等の1
mmないし4mm程度の高さ寸法とすることは困難とな
る。また外装樹脂層と端子との接合面に微細な隙間が生
じることもあり、樹脂成形によっても必ずしも高い密封
精度、すなわち所望の耐湿性能を得ることはできなかっ
た。
[0006] Such a problem is that the outer surface of the capacitor body is formed by means such as dip or injection molding.
It can be solved by covering with a synthetic resin layer. However, this exterior resin layer hinders the downsizing and height reduction of solid electrolytic capacitors.
It is difficult to make the height dimension of about mm to 4 mm. In addition, since a minute gap may be formed on the joint surface between the exterior resin layer and the terminal, it is not always possible to obtain high sealing accuracy, that is, desired moisture resistance performance, even by resin molding.

【0007】そこで、陽極体の表面に酸化皮膜層、電解
質層及び導電層を順次生成し、この陽極体を平板状の陰
極体の両面に配置する構造が考えられる。この構造によ
れば、陽極体の表面に形成された電解質層は陽極体自体
によって覆われ、陽極体が内部の密封性を保持する外装
をなし、更にチップ型の電子部品としての機械的強度を
堅持することができる。
Therefore, a structure in which an oxide film layer, an electrolyte layer and a conductive layer are sequentially formed on the surface of the anode body and the anode body is arranged on both sides of a flat cathode body is considered. According to this structure, the electrolyte layer formed on the surface of the anode body is covered with the anode body itself, and the anode body forms an exterior for maintaining the internal hermeticity, and further, the mechanical strength as a chip-type electronic component is improved. You can stick.

【0008】しかしながら、この構造による固体電解コ
ンデンサでは、陽極体として、アルミニウム等からなる
基体に選択的に酸化皮膜層、電解質層等を形成し、これ
を個別に分離したものを用いることとなる。そして、こ
のような製造工程によって形成される陽極体は、分離工
程におけるストレスで酸化皮膜層等が破損してしまうこ
とがあり、電気的特性の劣化、特に漏れ電流の増大を招
く傾向があった。また複数の陽極体を接合しても、接合
位置が微細にずれて隙間が生じてしまい、内部の密封性
を保持することが困難になることがあった。
However, in the solid electrolytic capacitor having this structure, as the anode body, an oxide film layer, an electrolyte layer, etc. are selectively formed on a substrate made of aluminum or the like, and these are individually separated. In the anode body formed by such a manufacturing process, the oxide film layer or the like may be damaged due to the stress in the separation process, which tends to cause the deterioration of electrical characteristics, especially the increase of leakage current. . Further, even when a plurality of anode bodies are joined together, the joining positions are minutely displaced and a gap is generated, which sometimes makes it difficult to maintain the internal hermeticity.

【0009】更に、この微細なズレを修正するために接
合後に各陽極体の位置を調整した場合も、この調整によ
り内部の酸化皮膜層が破損されてしまうことがあるほ
か、前記のような陽極体のズレによる密封性の低下を補
完するため、接合した陽極体を超音波溶接した場合も、
超音波溶接等の振動によっても内部の電解質層及び酸化
皮膜層が破損されてしまう不都合があった。
Further, even if the position of each anode body is adjusted after joining in order to correct this minute deviation, the oxide film layer inside may be damaged by this adjustment, and the above-mentioned anode In order to compensate for the decrease in sealing performance due to body displacement, even when the joined anode body is ultrasonically welded,
There is also a problem that the internal electrolyte layer and oxide film layer are damaged even by vibration such as ultrasonic welding.

【0010】この発明の目的は、微細なチップ形の固体
電解コンデンサにおいて、陽極体内部の密封性を向上さ
せ、信頼性の高い薄形の固体電解コンデンサを得る製造
方法を提供することにある。
An object of the present invention is to provide a manufacturing method for obtaining a highly reliable thin solid electrolytic capacitor in a fine chip type solid electrolytic capacitor, in which the sealing property inside the anode body is improved.

【0011】[0011]

【課題を解決するための手段】この発明は、固体電解コ
ンデンサの製造方法において、複数の陽極体をその表面
において接合するとともに、各陽極体の端面に金属箔を
溶接したのち、金属箔を介して開いた陽極体の内表面に
酸化皮膜層、電解質層および導電層を順次生成し、平板
状の陰極体を介して再度複数の陽極体を接合することを
特徴としている。
According to the present invention, in a method for manufacturing a solid electrolytic capacitor, a plurality of anode bodies are joined on the surface thereof, and a metal foil is welded to the end face of each anode body, and then the metal foil is interposed. The present invention is characterized in that an oxide film layer, an electrolyte layer and a conductive layer are sequentially formed on the inner surface of the opened anode body, and a plurality of anode bodies are joined again through a flat cathode body.

【0012】[0012]

【作用】図面に示したように、陽極体1の表面は、平板
状の陰極体5及び別途用意された陽極体1bによって覆
われる。そのため陽極体1の内部は、陽極体1自体によ
って外気から遮断されることになる。また電解質層3
は、導電層4を介して、陰極体5の表面に接続してい
る。そのため、ワイヤーボンディング、半田付け等の手
段で導電層4にリード線を接続する場合と比較して、電
解質層3に与える機械的ストレスが軽減される。また、
リード線等の折り曲げによるストレスが一部に集中する
こともなく、電解質層3の破損を最小限に抑制できる。
As shown in the drawing, the surface of the anode body 1 is covered with the flat cathode body 5 and the separately prepared anode body 1b. Therefore, the inside of the anode body 1 is shielded from the outside air by the anode body 1 itself. In addition, the electrolyte layer 3
Are connected to the surface of the cathode body 5 via the conductive layer 4. Therefore, mechanical stress applied to the electrolyte layer 3 is reduced as compared with the case where the lead wire is connected to the conductive layer 4 by means such as wire bonding or soldering. Also,
The stress due to bending of the lead wire or the like is not concentrated on a part, and damage to the electrolyte layer 3 can be suppressed to a minimum.

【0013】そして、陽極体1(陽極体1a及び1b)
はその端面に溶接する金属箔20によって予め接合さ
れ、その後金属箔20を介して開いた状態で表面に酸化
皮膜層、電解質層3及び導電層4を順次生成し、陰極体
5を介して再度陽極体1a及び1bを接合する。そのた
め、電解質層3を生成した後の陽極体1a及び1bの接
合状態が安定し、接合位置を調整する必要がなくなる。
Anode body 1 (anode bodies 1a and 1b)
Is pre-joined by a metal foil 20 to be welded to its end face, and thereafter, an oxide film layer, an electrolyte layer 3 and a conductive layer 4 are sequentially formed on the surface in an open state through the metal foil 20, and again through the cathode body 5. The anode bodies 1a and 1b are joined. Therefore, the joining state of the anode bodies 1a and 1b after forming the electrolyte layer 3 is stable, and it is not necessary to adjust the joining position.

【0014】[0014]

【実施例】以下、この発明の実施例を図面にしたがい説
明する。図1及び図2は、この発明の実施例における製
造工程を示す斜視図、図3実施例による固体電解コンデ
ンサの概念構造を示す断面図である。また図4は、この
発明の別の実施例を示す斜視図である。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 are a perspective view showing a manufacturing process in an embodiment of the present invention and a sectional view showing a conceptual structure of a solid electrolytic capacitor according to the embodiment in FIG. FIG. 4 is a perspective view showing another embodiment of the present invention.

【0015】陽極体1は、アルミニウム等の弁作用金属
からなる板状の基体を所定の形状に分離して形成してお
り、図1(B)に示したように、所望の箇所に凹部8を
備えるとともに、陽極体1の一つの端面において開口部
が形成されている。また、この開口部には、陽極体1と
陰極端子6との短絡を防ぐレジスト層7を備えている。
The anode body 1 is formed by separating a plate-shaped base body made of a valve metal such as aluminum into a predetermined shape, and as shown in FIG. 1B, a recess 8 is formed at a desired position. And an opening is formed in one end surface of the anode body 1. Further, a resist layer 7 for preventing a short circuit between the anode body 1 and the cathode terminal 6 is provided in this opening.

【0016】この陽極体1a及び1bを、それぞれの凹
部8が対峙するように接合し、図1(A)に示したよう
に、金属箔20の表面に配置して超音波溶接する。金属
箔20は、陽極体1a及び1bとの溶接に適合したもの
であればよく、例えばこの実施例では、アルミニウム箔
等を用いている。
The anode bodies 1a and 1b are joined so that the recesses 8 face each other, and as shown in FIG. 1 (A), they are placed on the surface of the metal foil 20 and ultrasonically welded. The metal foil 20 may be any one that is suitable for welding with the anode bodies 1a and 1b. For example, in this embodiment, an aluminum foil or the like is used.

【0017】次いで、図1(B)に示したように、接合
した陽極体1a及び1bを開き、この状態で凹部8の内
表面に粗面化処理を施したのち化成処理を施して酸化皮
膜層を形成する。酸化皮膜層は、アルミニウムからなる
陽極体1a及び1bの表層が酸化した酸化アルミニウム
からなり、陽極体1a及び1bの誘電体となる。
Next, as shown in FIG. 1 (B), the joined anode bodies 1a and 1b are opened, and in this state, the inner surface of the recess 8 is roughened, and then chemical conversion treatment is performed to form an oxide film. Form the layers. The oxide film layer is made of aluminum oxide obtained by oxidizing the surface layers of the anode bodies 1a and 1b made of aluminum, and serves as the dielectric body of the anode bodies 1a and 1b.

【0018】この陽極体1a及び1bを金属箔20で連
結した状態で、凹部8に生成された酸化皮膜層上にポリ
ピロールからなる電解質層3を形成する。電解質層3で
あるポリピロール層は、陽極体1a及び1bを酸化剤を
含有するピロール溶液中に浸漬し、表面に化学重合によ
るピロール薄膜を形成したのちピロールを溶解した電解
重合用の電解液中に浸漬するとともに電圧を印加して生
成しており、生成されたポリピロールの厚さは数μmな
いし数十μmとなる。この重合工程では、必要に応じて
凹部8のみを外部に露出するよう、樹脂層等により選択
的にマスキングしてもよい。
With the anode bodies 1a and 1b connected by the metal foil 20, an electrolyte layer 3 made of polypyrrole is formed on the oxide film layer formed in the recess 8. The polypyrrole layer which is the electrolyte layer 3 is obtained by immersing the anode bodies 1a and 1b in a pyrrole solution containing an oxidant, forming a pyrrole thin film by chemical polymerization on the surface, and then dissolving the pyrrole in an electrolytic solution for electrolytic polymerization. It is formed by immersing and applying a voltage, and the thickness of the generated polypyrrole is several μm to several tens μm. In this polymerization step, masking may be selectively performed with a resin layer or the like so that only the concave portion 8 is exposed to the outside if necessary.

【0019】そして、この電解質層3の表面に導電層4
をスクリーン印刷する。その結果、陽極体1a及び1b
の表面、特に凹部8の表面は、図3にも示したように、
電解質層3及び導電層4が順次生成された積層構造とな
る。導電層4は、カーボンペースト及び銀ペーストおよ
び導電性の接着剤等からなる多層構造、もしくは導電性
の良好な金属粉を含有する導電性接着剤からなる単層構
造の何れでもよい。
The conductive layer 4 is formed on the surface of the electrolyte layer 3.
Screen print. As a result, the anode bodies 1a and 1b
As shown in FIG. 3, the surface of the concave portion 8, especially the surface of the concave portion 8,
It has a laminated structure in which the electrolyte layer 3 and the conductive layer 4 are sequentially formed. The conductive layer 4 may have either a multi-layered structure including a carbon paste, a silver paste, a conductive adhesive, or the like, or a single-layer structure including a conductive adhesive containing metal powder having good conductivity.

【0020】次いで、図1(B)に示したように、陽極
体1aもしくは1bに陰極体5を載置する。陰極体5
は、平板状のアルミニウムもしくはその合金からなり、
その端部には半田付け可能な金属層、例えば銅等からな
る陰極端子6を一体に形成している。そして、図2
(A)に示したように、複数の陽極体1a及び1bを、
金属箔20を介して再び接合する。この接合により、陰
極体5は、陽極体1a及び1bの導電層4と接すること
になる。なお陽極体1a及び1bを陰極体5を介して接
合する際には、陽極体1a及び1bと陰極体5との間隙
に導電性の接着剤を追加して塗布してもよい。
Next, as shown in FIG. 1B, the cathode body 5 is placed on the anode body 1a or 1b. Cathode body 5
Consists of flat aluminum or its alloy,
A cathode terminal 6 made of a solderable metal layer such as copper is integrally formed at the end portion. And FIG.
As shown in (A), a plurality of anode bodies 1a and 1b are
It joins again via the metal foil 20. By this bonding, the cathode body 5 comes into contact with the conductive layers 4 of the anode bodies 1a and 1b. When the anode bodies 1a and 1b are joined via the cathode body 5, a conductive adhesive may be additionally applied to the gap between the anode bodies 1a and 1b and the cathode body 5.

【0021】更に、陽極体1a及び1bの端面には、陽
極端子2を超音波溶接して図2(B)に示したような固
体電解コンデンサを得る。陽極端子2は、その断面形状
がL字形に形成され、この実施例においては、プリント
基板の配線パターンに臨む先端部分に半田付け可能な金
属、例えば銅等を配置し、その反対面にアルミニウムを
配置して接合したクラッド合金を用いている。
Further, the anode terminals 2 are ultrasonically welded to the end faces of the anode bodies 1a and 1b to obtain a solid electrolytic capacitor as shown in FIG. 2 (B). The anode terminal 2 is formed to have an L-shaped cross section. In this embodiment, a solderable metal such as copper is placed on the tip of the printed circuit board facing the wiring pattern, and aluminum is placed on the opposite surface. The clad alloy is arranged and joined.

【0022】以上のようにこの実施例による固体電解コ
ンデンサの製造方法では、予め複数の陽極体1a及び1
bを金属箔20により接合した状態で酸化皮膜層、電解
質層4等を形成するため、従来のように陽極体1a及び
1bの分離工程で酸化皮膜層が破損されることはない。
また、陽極体1a及び1bを予め接合した後に金属箔2
0を介して開き、電解質層3等を形成してから再び接合
するため、接合状態が良好になり、接合後の位置調整等
が必要なくなる。
As described above, in the method for manufacturing a solid electrolytic capacitor according to this embodiment, a plurality of anode bodies 1a and 1 are previously prepared.
Since the oxide film layer, the electrolyte layer 4 and the like are formed in the state where b is joined by the metal foil 20, the oxide film layer is not damaged in the step of separating the anode bodies 1a and 1b as in the conventional case.
In addition, after the anode bodies 1a and 1b are previously joined, the metal foil 2
Since it is opened via 0, the electrolyte layer 3 and the like are formed, and then joined again, the joined state becomes good, and the position adjustment after joining is not necessary.

【0023】なお、複数の陽極体1a及び1bを金属箔
20に溶接して接合する場合、図4に示したように、連
続した金属箔21に載置し、断続的にもしくは連続的に
溶接してもよい。この場合、金属箔21により連結され
た複数の組合せによる陽極体1a及び1bを連続体とし
て供給することができるようになるため、製造工程が簡
略になる。
When a plurality of anode bodies 1a and 1b are welded to the metal foil 20 to be joined, they are placed on a continuous metal foil 21 and welded intermittently or continuously, as shown in FIG. You may. In this case, the anode bodies 1a and 1b in a plurality of combinations connected by the metal foil 21 can be supplied as a continuous body, which simplifies the manufacturing process.

【0024】[0024]

【発明の効果】以上のようにこの発明は、固体電解コン
デンサの製造方法において、複数の平板状の陽極体をそ
の表面において接合するとともに、各陽極体の端面に金
属箔を溶接したのち、金属箔を介して開いた陽極体の内
表面に酸化皮膜層、電解質層および導電層を順次生成
し、平板状の陰極体を介して再度複数の陽極体を接合す
ることを特徴としているので、複数の陽極体を陰極体を
介して接合しても、その接合状態が良好となり、内部の
電解質層等を外気から密封することができる。
As described above, according to the present invention, in the method for manufacturing a solid electrolytic capacitor, a plurality of flat plate-shaped anode bodies are joined on the surface thereof, and a metal foil is welded to the end faces of the respective anode bodies, and then the metal foil Since an oxide film layer, an electrolyte layer and a conductive layer are sequentially formed on the inner surface of the anode body opened through the foil, and a plurality of anode bodies are joined again through the flat cathode body, a plurality of Even if the anode body is joined via the cathode body, the joined state becomes good, and the electrolyte layer and the like inside can be sealed from the outside air.

【0025】また、陽極体自体は、予め基体から分離し
たのち、酸化皮膜層等を形成しているため、分離工程で
の酸化皮膜層の破損等はなくなり、漏れ電流等の電気的
特性への影響がなくなる。
Further, since the anode body itself is separated from the substrate in advance and then the oxide film layer or the like is formed, the oxide film layer is not damaged in the separation step, and the electrical characteristics such as leakage current are improved. There is no impact.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例における製造工程を示す斜視
FIG. 1 is a perspective view showing a manufacturing process in an embodiment of the present invention.

【図2】この発明の実施例における製造工程を示す斜視
FIG. 2 is a perspective view showing a manufacturing process in an embodiment of the present invention.

【図3】実施例による固体電解コンデンサの概念構造を
示す断面図
FIG. 3 is a sectional view showing a conceptual structure of a solid electrolytic capacitor according to an embodiment.

【図4】この発明の別の実施例を示した斜視図FIG. 4 is a perspective view showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 陽極体 2 陽極端子 3 電解質層 4 導電層 5 陰極体 6 陰極端子 7 レジスト層 8 凹部 20 金属箔 21 金属箔 1 Anode body 2 Anode terminal 3 Electrolyte layer 4 Conductive layer 5 Cathode body 6 Cathode terminal 7 Resist layer 8 Recess 20 Metal foil 21 Metal foil

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数の平板状の陽極体をその表面におい
て接合するとともに、各陽極体の端面に金属箔を溶接し
たのち、金属箔を介して開いた陽極体の内表面に酸化皮
膜層、電解質層および導電層を順次生成し、平板状の陰
極体を介して再度複数の陽極体を接合する固体電解コン
デンサの製造方法。
1. A plurality of flat plate-shaped anode bodies are joined on the surface thereof, and a metal foil is welded to the end surface of each anode body, and then an oxide film layer is formed on the inner surface of the anode body opened through the metal foil, A method for manufacturing a solid electrolytic capacitor, in which an electrolyte layer and a conductive layer are sequentially formed, and a plurality of anode bodies are joined again via a flat cathode body.
JP32686691A 1991-11-15 1991-11-15 Manufacture of solid electrolytic capacitor Pending JPH05144686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32686691A JPH05144686A (en) 1991-11-15 1991-11-15 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32686691A JPH05144686A (en) 1991-11-15 1991-11-15 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH05144686A true JPH05144686A (en) 1993-06-11

Family

ID=18192606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32686691A Pending JPH05144686A (en) 1991-11-15 1991-11-15 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH05144686A (en)

Similar Documents

Publication Publication Date Title
JP3536722B2 (en) Chip type solid electrolytic capacitor and method of manufacturing the same
JP4142878B2 (en) Solid electrolytic capacitor and manufacturing method thereof
KR100220609B1 (en) Solid Electrolytic Capacitor and Manufacturing Method Thereof
JP3080923B2 (en) Method for manufacturing solid electrolytic capacitor
JP3142011B2 (en) Solid electrolytic capacitors
JPH0684716A (en) Manufacture of solid electrolytic capacitor
JPH05144687A (en) Manufacture of solid electrolytic capacitor
JPH05144686A (en) Manufacture of solid electrolytic capacitor
JP2002110461A (en) Solid-state electrolytic chip capacitor
JP3149419B2 (en) Method for manufacturing solid electrolytic capacitor
JPH04276613A (en) Fabrication of solid electrolytic capacitor
JPH0448616A (en) Solid electrolytic capacitor and its manufacture
JP2972304B2 (en) Solid electrolytic capacitors
JP2996314B2 (en) Solid electrolytic capacitors
JPH0582401A (en) Solid electrolytic capacitor
JP2526281Y2 (en) Solid electrolytic capacitors
JPH04284617A (en) Manufacture of solid electrolytic capacitor
JP3098244B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH05121279A (en) Solid electrolytic capacitor
JPH04710A (en) Solid electrolytic capacitor and manufacture thereof
JPH0653089A (en) Solid electrolytic capacitor and its manufacture
JPH0582400A (en) Solid electrolytic capacitor
JP2955312B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2902714B2 (en) Method for manufacturing solid electrolytic capacitor
JP2902715B2 (en) Method for manufacturing solid electrolytic capacitor