JPH05144594A - Discharge plasma generator - Google Patents
Discharge plasma generatorInfo
- Publication number
- JPH05144594A JPH05144594A JP3330057A JP33005791A JPH05144594A JP H05144594 A JPH05144594 A JP H05144594A JP 3330057 A JP3330057 A JP 3330057A JP 33005791 A JP33005791 A JP 33005791A JP H05144594 A JPH05144594 A JP H05144594A
- Authority
- JP
- Japan
- Prior art keywords
- discharge
- coil
- voltage
- discharge plasma
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000000977 initiatory effect Effects 0.000 claims description 2
- 230000001737 promoting effect Effects 0.000 claims 1
- 230000005684 electric field Effects 0.000 abstract description 15
- 230000006698 induction Effects 0.000 abstract description 9
- 230000002093 peripheral effect Effects 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 8
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000009413 insulation Methods 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
Landscapes
- Plasma Technology (AREA)
- Treating Waste Gases (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は誘導電場を利用した放電
プラズマ発生装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a discharge plasma generator using an induction electric field.
【0002】[0002]
【従来技術】図4は従来の放電プラズマ発生装置の概略
構成を示す図である。図において、43は放電配管であ
り、該放電配管43の外周にはコイル42が巻回した構
造である。放電配管43内に排ガスを流すと共に、前記
高周波コイルにマイクロ波電源41からマイクロ波電流
を通電することにより、放電配管43内に放電プラズマ
を発生させる。2. Description of the Related Art FIG. 4 is a diagram showing a schematic structure of a conventional discharge plasma generator. In the figure, 43 is a discharge pipe, and a coil 42 is wound around the outer periphery of the discharge pipe 43. Exhaust gas is caused to flow in the discharge pipe 43, and a microwave plasma is supplied from the microwave power source 41 to the high frequency coil to generate discharge plasma in the discharge pipe 43.
【0003】[0003]
【発明が解決しようとする課題】上記従来構成の放電プ
ラズマ発生装置においては、マイクロ波を用いたもので
あるが放電開始のためには、放電させたいガス(図では
排ガス44)の圧力がある程度低くないとプラズマ化し
にくいという欠点があった。The above-mentioned conventional discharge plasma generator uses microwaves, but the pressure of the gas to be discharged (exhaust gas 44 in the figure) is at a certain level in order to start discharge. If it is not low, there is a drawback that it is difficult to turn it into plasma.
【0004】本発明は上述の点に鑑みてなされたもの
で、マイクロ波を用いずに比較的高電圧の得やすい誘導
電場を用い、また放電電極の形状や間隔或るいは印加電
圧の周波数を変えることで放電性能を目的に応じて変え
ることができる放電プラズマ発生装置を提供することを
目的とする。The present invention has been made in view of the above points, and uses an induction electric field in which a relatively high voltage can be easily obtained without using microwaves, and the shape and interval of the discharge electrode or the frequency of the applied voltage can be changed. It is an object of the present invention to provide a discharge plasma generator capable of changing the discharge performance according to the purpose by changing it.
【0005】[0005]
【課題を解決するための手段】上記課題を解決するため
本発明は、外周部にリング状磁性体を2個以上配置し、
該リング状磁性体にコイルを巻回すると共に、該配管内
部に放電を助長する電極を配置し、配管内に大気圧若し
くはそれより低圧の排ガス若しくは特定ガスを存在さ
せ、コイルに交流電圧を印加して配管内に放電プラズマ
を発生させることを特徴とする。In order to solve the above-mentioned problems, the present invention has two or more ring-shaped magnetic bodies arranged on the outer peripheral portion,
A coil is wound around the ring-shaped magnetic body, an electrode that promotes discharge is arranged inside the pipe, and exhaust gas or a specific gas at atmospheric pressure or a pressure lower than that is present in the pipe, and an AC voltage is applied to the coil. Then, discharge plasma is generated in the pipe.
【0006】また、コイルに通電する交流電圧の周波数
を適当な値にすることにより、放電開始プラズマ発生を
制御することを特徴とする。Further, it is characterized in that the generation of discharge initiation plasma is controlled by setting the frequency of the alternating voltage applied to the coil to an appropriate value.
【0007】[0007]
【作用】放電プラズマ装置を上記のように構成すること
により、リング状磁性体に巻回されたコイルにパルス状
の交流電圧を印加すると該磁性体は磁化され、この印加
されるパルス波形の時間微分係数に比例した誘導電場が
配管の内部に前記磁化を打ち消す方向に発生する。この
時、パルス波形が鋭い立上がり、立ち下がりをもって磁
性体がそれに追従する性質を持つ材料であれば、配管内
に取り付けた電極間に大きな電位差を生じさせることが
可能である。この電極の形状や間隔を変えたり、交流電
圧の周波数を変えることで、放電性能を変えることが可
能でガス圧力の高いところでも放電が容易になる。By configuring the discharge plasma device as described above, when a pulsed AC voltage is applied to the coil wound around the ring-shaped magnetic body, the magnetic body is magnetized and the time of the applied pulse waveform is increased. An induction electric field proportional to the differential coefficient is generated inside the pipe in a direction to cancel the magnetization. At this time, if the material has a property that the magnetic body follows the pulse waveform with a sharp rise and fall, it is possible to generate a large potential difference between the electrodes mounted in the pipe. The discharge performance can be changed by changing the shape and interval of the electrodes or the frequency of the AC voltage, and the discharge can be facilitated even at a high gas pressure.
【0008】[0008]
【実施例】以下本発明の実施例を図面に基づいて説明す
る。図3は本発明の誘導電場発生装置の原理を説明する
ための図である。図において、34は放電電極付き放電
配管であり、該放電配管34の外周にはフェライト等か
らなるリング状の磁性体32が配置されている。該リン
グ状の磁性体32にはコイル33が巻回されており、該
コイル33には高周波電源31からパルス状の交流電圧
を印加すると、磁性体32が磁化される。Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 is a diagram for explaining the principle of the induction electric field generator of the present invention. In the figure, 34 is a discharge pipe with a discharge electrode, and a ring-shaped magnetic body 32 made of ferrite or the like is arranged on the outer periphery of the discharge pipe 34. A coil 33 is wound around the ring-shaped magnetic body 32, and when a pulsed AC voltage is applied to the coil 33 from the high frequency power supply 31, the magnetic body 32 is magnetized.
【0009】磁性体32が磁化されることにより、印加
されるパルス波形の時間微分係数に比例した誘導電場を
放電配管34の内部に磁化を打ち消す方向に発生する。
この時、パルス波形が鋭い立上がり、立ち下がりをもっ
て磁性体32がそれに追従する性質を持つ材料であれ
ば、放電配管34に取り付けた電極間に大きな電位差を
生じさせることが可能である。放電配管34の形状や電
極間の間隔を変えたり、交流高周波電源31からパルス
周波数を変えることで、放電性能を変えることが可能と
なる。従って、ガス圧力の高いところでも放電が容易に
なる。When the magnetic substance 32 is magnetized, an induction electric field proportional to the time differential coefficient of the applied pulse waveform is generated inside the discharge pipe 34 in the direction of canceling the magnetization.
At this time, a material having a property that the magnetic body 32 follows the pulse waveform with a sharp rise and fall makes it possible to generate a large potential difference between the electrodes attached to the discharge pipe 34. The discharge performance can be changed by changing the shape of the discharge pipe 34, the interval between the electrodes, or the pulse frequency from the AC high frequency power supply 31. Therefore, the discharge becomes easy even at a high gas pressure.
【0010】図1は本発明の誘導電場を利用した放電プ
ラズマ発生装置の概略構造を示す図である。図1におい
て、1,1は排ガスを通す配管であり、該配管1と配管
1の間には2個の放電配管2,3が絶縁用配管4,5,
6を介して挿入されている。放電配管2,3のそれぞれ
の外周部にはフェライト等からなるリング状の磁性体
7,8が配置され、該磁性体7,8のそれぞれにはコイ
ル8,9が巻回されている。コイル8とコイル9は直列
に接続され、高周波電源11からパルス状の電圧が{図
2の(a)参照}印加される。図中12はコイル9に印
加される電圧の位相を変換する位相シフターである。ま
た、放電配管2,3の内部には放電電極13,14が配
置されている。FIG. 1 is a diagram showing a schematic structure of a discharge plasma generator using an induction electric field according to the present invention. In FIG. 1, reference numerals 1 and 1 denote pipes for passing exhaust gas, and two discharge pipes 2 and 3 are provided between the pipes 1 and 1 for insulation.
It is inserted through 6. Ring-shaped magnetic bodies 7 and 8 made of ferrite or the like are arranged on the outer peripheral portions of the discharge pipes 2 and 3, and coils 8 and 9 are wound around the magnetic bodies 7 and 8, respectively. The coil 8 and the coil 9 are connected in series, and a pulsed voltage is applied from the high frequency power supply 11 {see (a) of FIG. 2}. In the figure, 12 is a phase shifter for converting the phase of the voltage applied to the coil 9. Further, discharge electrodes 13 and 14 are arranged inside the discharge pipes 2 and 3.
【0011】上記構成のプラズマ発性装置の動作を図2
の波形図を用いて説明する。高周波電源11から図2の
(a)に示すような矩形波の電圧を印加すると、磁性体
7の内部には図2の(b)に示すような印加電圧の時間
微分係数に比例した、即ち印加パルス電圧の立ち上げ立
ち下がり部で大きいピークを形成する内部電界E1が発
生する。また、位相シフター12が無い場合は、磁性体
8の内部には図2の(c)に示すような内部電界E2が
発生する。図2の(b)と(c)に示すように位相シフ
ター12が無いと、内部電界E1と内部電界E2のピー
クのずれが発生し不都合となる。そこで位相シフター1
2によりコイル9に印加される電圧の位相をずらし、図
2の(d)に示すように内部電界E1と内部電界E2の
ピークが一致するようにする。FIG. 2 shows the operation of the plasma generating apparatus having the above structure.
This will be described with reference to the waveform diagram of. When a rectangular wave voltage as shown in FIG. 2A is applied from the high frequency power source 11, inside the magnetic body 7 is proportional to the time differential coefficient of the applied voltage as shown in FIG. An internal electric field E1 that forms a large peak is generated at the rising and falling portions of the applied pulse voltage. If the phase shifter 12 is not provided, an internal electric field E2 as shown in FIG. 2C is generated inside the magnetic body 8. Without the phase shifter 12 as shown in FIGS. 2B and 2C, the peaks of the internal electric field E1 and the internal electric field E2 are deviated, which is inconvenient. So phase shifter 1
The phase of the voltage applied to the coil 9 is shifted by 2 so that the peaks of the internal electric field E1 and the internal electric field E2 coincide with each other, as shown in FIG.
【0012】放電配管2,3の内部には放電電極13,
14が配置されており、この放電電極の電極間に大きな
電位差が生じ放電プラズマが発生する。プラズマ発生装
置を図1のように構成することにより、絶縁配管4,
5,6と磁性体7,8は放電配管2,3と電気的に独立
していて、放電動作は放電配管2,3の内部の内部での
み発生するというメリットがある。Inside the discharge pipes 2 and 3, a discharge electrode 13,
14 is arranged, and a large potential difference is generated between the electrodes of the discharge electrodes, and discharge plasma is generated. By configuring the plasma generator as shown in FIG.
5 and 6 and magnetic bodies 7 and 8 are electrically independent of the discharge pipes 2 and 3, and there is an advantage that the discharge operation occurs only inside the discharge pipes 2 and 3.
【0013】図1に示す構成のプラズマ発生装置におい
て、配管1,1を通して、放電配管2,3内に排ガスを
流すことにより、排ガス中に放電プラズマが発生し、こ
れにより排ガス中のN2,O2,HO2が活性種OH,
O,HO2となる。この生成された活性種が排ガス中の
SO2と反応して硫酸となる。即ち、 SO2+2OH→H2SO4 SO2+O→SO3+H2O→H2SO4 このようにした生成された硫酸が添加されたNH3と反
応塩(副生物)をつくり、排ガスは処理される。即ち、 H2SO4+H2O+NH3→(NH4)2SO4(硫安) となる。In the plasma generator having the structure shown in FIG. 1, the discharge plasma is generated in the exhaust gas by flowing the exhaust gas into the discharge pipes 2 and 3 through the pipes 1 and 1, whereby N 2 in the exhaust gas, O 2 and HO 2 are active species OH,
O and HO 2 . The generated active species react with SO 2 in the exhaust gas to form sulfuric acid. That is, SO 2 + 2OH → H 2 SO 4 SO 2 + O → SO 3 + H 2 O → H 2 SO 4 NH 3 to which the sulfuric acid thus generated is added and a reaction salt (by-product), and the exhaust gas is treated. To be done. That is, H 2 SO 4 + H 2 O + NH 3 → (NH 4 ) 2 SO 4 (ammonium sulfate).
【0014】また、排ガス中の成分CO,HC,N2,
O2,H2OがOH,O,HO2,N2,H,HC,COと
なり、該活性種N2,HC,COが排ガス中のNOと反
応し、 NO+2H→1/2N2+H2O NO+2H+HC→1/2N2+CO2+H2O NO+2H+CO→1/2N2+CO2 となる。Further, the components CO, HC, N in the exhaust gas2,
O2, H2O is OH, O, HO2, N2, H, HC, CO
And the active species N2, HC and CO react with NO in exhaust gas
In response, NO + 2H → 1 / 2N2+ H2ONO + 2H + HC → 1 / 2N2+ CO2+ H2ONO + 2H + CO → 1 / 2N2+ CO2 Becomes
【0015】上記のようにプラズマ発生装置を排ガス中
のSOX,NOXを処理する排ガス処理装置としても利用
できる。As described above, the plasma generator can be used as an exhaust gas treatment device for treating SO X and NO X in exhaust gas.
【0016】[0016]
【発明の効果】以上説明したように本発明によれば、配
管内部の電極の形状間隔等の条件又はコイルに印加する
電圧電圧周波数を変えることにより、放電性能を変える
ことができるから、強い電界を発生させることが可能
で、ガス圧力を選ぶことがなく放電プラズマを発生させ
ることができるという優れた効果が得られる。As described above, according to the present invention, the discharge performance can be changed by changing the conditions such as the shape interval of the electrodes inside the pipe or the voltage-voltage frequency applied to the coil. And an excellent effect that discharge plasma can be generated without selecting the gas pressure.
【図1】本発明の誘導電場を利用した放電プラズマ発生
装置の概略構造を示す図である。FIG. 1 is a diagram showing a schematic structure of a discharge plasma generator using an induction electric field of the present invention.
【図2】図1の放電プラズマ発生装置の動作を説明する
ための波形図である。FIG. 2 is a waveform diagram for explaining the operation of the discharge plasma generation device of FIG.
【図3】本発明の誘導電場発生装置の原理を説明するた
めの図である。FIG. 3 is a diagram for explaining the principle of the induction electric field generator of the present invention.
【図4】従来の放電プラズマ発生装置の概略構成を示す
図である。FIG. 4 is a diagram showing a schematic configuration of a conventional discharge plasma generator.
1 配管 2,3 放電配管 4,5,6 絶縁用配管 7,8 磁性体 9,10 コイル 11 高周波電源 12 シフター 13,14 放電電極 1 Piping 2,3 Discharge Piping 4,5,6 Insulation Piping 7,8 Magnetic Material 9,10 Coil 11 High Frequency Power Supply 12 Shifter 13,14 Discharge Electrode
Claims (2)
上配置し、 該リング状磁性体にコイルを巻回すると共に、該配管内
部に放電を助長する電極を配置し、 前記配管内に大気圧若しくはそれより低圧の排ガス若し
くは特定ガスを存在させ、 前記コイルに交流電圧を印加して前記配管内に放電プラ
ズマを発生させることを特徴とする放電プラズマ発生装
置。1. Inside the pipe, two or more ring-shaped magnetic bodies are arranged on the outer periphery of the pipe, a coil is wound around the ring-shaped magnetic body, and an electrode for promoting discharge is arranged inside the pipe. A discharge plasma generating apparatus, characterized in that an exhaust gas or a specific gas having an atmospheric pressure or a lower pressure than that is present in the coil, and an AC voltage is applied to the coil to generate a discharge plasma in the pipe.
を適当な値にすることにより、放電開始プラズマ発生を
制御することを特徴とする放電プラズマ発生装置。2. A discharge plasma generating apparatus, wherein discharge initiation plasma generation is controlled by setting a frequency of an AC voltage applied to the coil to an appropriate value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3330057A JPH05144594A (en) | 1991-11-19 | 1991-11-19 | Discharge plasma generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3330057A JPH05144594A (en) | 1991-11-19 | 1991-11-19 | Discharge plasma generator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05144594A true JPH05144594A (en) | 1993-06-11 |
Family
ID=18228301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3330057A Pending JPH05144594A (en) | 1991-11-19 | 1991-11-19 | Discharge plasma generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05144594A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5998933A (en) * | 1998-04-06 | 1999-12-07 | Shun'ko; Evgeny V. | RF plasma inductor with closed ferrite core |
US6418874B1 (en) | 2000-05-25 | 2002-07-16 | Applied Materials, Inc. | Toroidal plasma source for plasma processing |
US6634313B2 (en) | 2001-02-13 | 2003-10-21 | Applied Materials, Inc. | High-frequency electrostatically shielded toroidal plasma and radical source |
US6755150B2 (en) | 2001-04-20 | 2004-06-29 | Applied Materials Inc. | Multi-core transformer plasma source |
WO2005000450A1 (en) * | 2003-06-27 | 2005-01-06 | Ngk Insulators, Ltd. | Apparatus and method of treating exhaust gas |
US7161112B2 (en) | 1997-06-26 | 2007-01-09 | Mks Instruments, Inc. | Toroidal low-field reactive gas source |
US7166816B1 (en) | 1997-06-26 | 2007-01-23 | Mks Instruments, Inc. | Inductively-coupled torodial plasma source |
KR101408298B1 (en) * | 2013-05-31 | 2014-07-11 | 운해이엔씨(주) | A removal apparatus of stench induce material and bio-aerosol |
US8872525B2 (en) | 2011-11-21 | 2014-10-28 | Lam Research Corporation | System, method and apparatus for detecting DC bias in a plasma processing chamber |
US8898889B2 (en) | 2011-11-22 | 2014-12-02 | Lam Research Corporation | Chuck assembly for plasma processing |
US9735020B2 (en) | 2010-02-26 | 2017-08-15 | Lam Research Corporation | System, method and apparatus for plasma etch having independent control of ion generation and dissociation of process gas |
US9911578B2 (en) | 2009-12-03 | 2018-03-06 | Lam Research Corporation | Small plasma chamber systems and methods |
US9967965B2 (en) | 2010-08-06 | 2018-05-08 | Lam Research Corporation | Distributed, concentric multi-zone plasma source systems, methods and apparatus |
US10283325B2 (en) | 2012-10-10 | 2019-05-07 | Lam Research Corporation | Distributed multi-zone plasma source systems, methods and apparatus |
US10586686B2 (en) | 2011-11-22 | 2020-03-10 | Law Research Corporation | Peripheral RF feed and symmetric RF return for symmetric RF delivery |
-
1991
- 1991-11-19 JP JP3330057A patent/JPH05144594A/en active Pending
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7541558B2 (en) | 1997-06-26 | 2009-06-02 | Mks Instruments, Inc. | Inductively-coupled toroidal plasma source |
US7161112B2 (en) | 1997-06-26 | 2007-01-09 | Mks Instruments, Inc. | Toroidal low-field reactive gas source |
US7166816B1 (en) | 1997-06-26 | 2007-01-23 | Mks Instruments, Inc. | Inductively-coupled torodial plasma source |
US5998933A (en) * | 1998-04-06 | 1999-12-07 | Shun'ko; Evgeny V. | RF plasma inductor with closed ferrite core |
US6418874B1 (en) | 2000-05-25 | 2002-07-16 | Applied Materials, Inc. | Toroidal plasma source for plasma processing |
US6712020B2 (en) | 2000-05-25 | 2004-03-30 | Applied Materials Inc. | Toroidal plasma source for plasma processing |
US6634313B2 (en) | 2001-02-13 | 2003-10-21 | Applied Materials, Inc. | High-frequency electrostatically shielded toroidal plasma and radical source |
US6755150B2 (en) | 2001-04-20 | 2004-06-29 | Applied Materials Inc. | Multi-core transformer plasma source |
US7363876B2 (en) | 2001-04-20 | 2008-04-29 | Applied Materials, Inc. | Multi-core transformer plasma source |
US7700051B2 (en) | 2003-06-27 | 2010-04-20 | Ngk Insulators, Ltd. | Apparatus and method of treating exhaust gas |
WO2005000450A1 (en) * | 2003-06-27 | 2005-01-06 | Ngk Insulators, Ltd. | Apparatus and method of treating exhaust gas |
US9911578B2 (en) | 2009-12-03 | 2018-03-06 | Lam Research Corporation | Small plasma chamber systems and methods |
US9735020B2 (en) | 2010-02-26 | 2017-08-15 | Lam Research Corporation | System, method and apparatus for plasma etch having independent control of ion generation and dissociation of process gas |
US9967965B2 (en) | 2010-08-06 | 2018-05-08 | Lam Research Corporation | Distributed, concentric multi-zone plasma source systems, methods and apparatus |
US8872525B2 (en) | 2011-11-21 | 2014-10-28 | Lam Research Corporation | System, method and apparatus for detecting DC bias in a plasma processing chamber |
US8898889B2 (en) | 2011-11-22 | 2014-12-02 | Lam Research Corporation | Chuck assembly for plasma processing |
US10586686B2 (en) | 2011-11-22 | 2020-03-10 | Law Research Corporation | Peripheral RF feed and symmetric RF return for symmetric RF delivery |
US11127571B2 (en) | 2011-11-22 | 2021-09-21 | Lam Research Corporation | Peripheral RF feed and symmetric RF return for symmetric RF delivery |
US10283325B2 (en) | 2012-10-10 | 2019-05-07 | Lam Research Corporation | Distributed multi-zone plasma source systems, methods and apparatus |
KR101408298B1 (en) * | 2013-05-31 | 2014-07-11 | 운해이엔씨(주) | A removal apparatus of stench induce material and bio-aerosol |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05144594A (en) | Discharge plasma generator | |
CN108511311B (en) | Power supply device capable of controlling output current and power supply method using same | |
JP4089949B2 (en) | Scale removal method and scale removal apparatus | |
EP1951626A2 (en) | Pulse resonating device | |
US3012955A (en) | High temperature reactor | |
JP2003323997A (en) | Plasma stabilizing method and plasma device | |
KR20180001804A (en) | Plasma generator | |
WO2006066095A1 (en) | Method and apparatus for treating fluids | |
JPH0850996A (en) | Plasma treatment device | |
CN108511310A (en) | With passive device for electric installation and utilize its be used for plasma igniting method of supplying power to | |
JP2831470B2 (en) | Plasma generator | |
CN220116358U (en) | Pipeline scale preventing device | |
KR20030067961A (en) | Apparatus for remotely generating plasma | |
JPH02211219A (en) | Waste gas treatment apparatus | |
JP2005203444A (en) | Plasma processing equipment | |
RU93025187A (en) | METHOD OF OBTAINING ELECTRIC ENERGY AND MHD GENERATOR FOR ITS IMPLEMENTATION | |
RU2086270C1 (en) | Device for shf-therapy | |
KR0183885B1 (en) | Plasma generator | |
SU1485436A1 (en) | Method and aerial apparatus for plasma heating in field of ion cyclotron and alfven's frequencies | |
JPH09247945A (en) | AC high voltage power supply for generating discharge plasma | |
JP4365595B2 (en) | Ozone generation method and ozone generator | |
JPH01242402A (en) | Ozonizer | |
JP2004144012A (en) | Fuel processing device | |
JPH02246782A (en) | Generator | |
JPH07177749A (en) | Power supply unit |