JPH05142515A - Liquid crystal display device - Google Patents
Liquid crystal display deviceInfo
- Publication number
- JPH05142515A JPH05142515A JP3329508A JP32950891A JPH05142515A JP H05142515 A JPH05142515 A JP H05142515A JP 3329508 A JP3329508 A JP 3329508A JP 32950891 A JP32950891 A JP 32950891A JP H05142515 A JPH05142515 A JP H05142515A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- substrate
- display device
- crystal display
- crystal molecules
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims abstract description 115
- 239000000758 substrate Substances 0.000 claims abstract description 47
- 239000013078 crystal Substances 0.000 claims description 12
- 229920000642 polymer Polymers 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 4
- 239000004020 conductor Substances 0.000 claims description 4
- 238000005530 etching Methods 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 3
- 239000010408 film Substances 0.000 claims description 3
- 229910010272 inorganic material Inorganic materials 0.000 claims description 2
- 238000000059 patterning Methods 0.000 claims description 2
- 239000010409 thin film Substances 0.000 claims description 2
- 150000002484 inorganic compounds Chemical class 0.000 claims 1
- 150000002894 organic compounds Chemical class 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 16
- 238000000149 argon plasma sintering Methods 0.000 description 12
- 239000011159 matrix material Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000004642 Polyimide Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 239000003566 sealing material Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 239000004988 Nematic liquid crystal Substances 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 239000004815 dispersion polymer Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000013007 heat curing Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- -1 polyethylene terephthalate Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000307 polymer substrate Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
【0001】[0001]
【技術分野】本発明は、液晶表示装置に関する。TECHNICAL FIELD The present invention relates to a liquid crystal display device.
【0002】[0002]
【従来技術】液晶を用いた表示方法として現在最も一般
的なのは、TNモードやSTNモードであるが、これら
のモードでは偏光子を2枚配置する必要があるためと、
電気光学特性における急峻度を充分に小さくできないと
いうことのために、画面が非常に暗いという欠点があっ
た。また、液晶駆動素子としてTFT(Thin Fi
lm Transistor)やMIM(Metal−
Insulator−Metal)を各画素に対応させ
て設ける手法においても、やはり偏光子を2枚配置する
必要があるために画面が暗いという欠点を改善すること
は不可能であった。一方、近年、ポリマーのマトリック
ス中に液晶を分散させたポリマー分散型液晶表示装置の
提案がなされているが、これらは、液晶層の厚さの影響
を受けにくい、大面積化が可能、偏光板を必要としない
等の特徴を持つことから注目されている。また、電子通
信学会技法EID89−103には、紫外線重合性化合
物が形成する3次元網目構造中に液晶を分散させたポリ
マーネットワーク型液晶を表示素子の液晶層として用い
ることにより、低電圧駆動、優れた急峻性等の利点が得
られることが示してある。しかし、これらの方法では液
晶と高分子の複合体を形成する際に用いられる溶剤や未
反応のプレポリマー、および紫外線によって液晶やプレ
ポリマーが分解して生じた不純物などが、液晶層にとり
こまれるために、特に信頼性の点で危惧される。しか
も、上下電極間に液晶以外にポリマーの層が何層も形成
されることになって、液晶層に実際に印加される電圧は
低下してしまい、駆動電圧はどうしても高くなってしま
う傾向があった。2. Description of the Related Art Currently, the most popular display method using liquid crystal is a TN mode or an STN mode. However, it is necessary to dispose two polarizers in these modes.
Since the steepness in electro-optical characteristics cannot be made sufficiently small, there is a drawback that the screen is very dark. Further, as a liquid crystal driving element, a TFT (Thin Fi
lm Transistor) and MIM (Metal-
Even in the method of providing an Insulator-Metal) corresponding to each pixel, it is impossible to improve the disadvantage that the screen is dark because it is necessary to dispose two polarizers. On the other hand, in recent years, polymer dispersion type liquid crystal display devices in which liquid crystals are dispersed in a polymer matrix have been proposed, but these are not easily affected by the thickness of the liquid crystal layer and can have a large area. Has attracted attention because it has features such as not requiring. In addition, in the Institute of Electronics and Communication Engineers, EID89-103, a polymer network type liquid crystal in which a liquid crystal is dispersed in a three-dimensional network structure formed by an ultraviolet polymerizable compound is used as a liquid crystal layer of a display device, so that it is driven at a low voltage and excellent. It is shown that advantages such as steepness can be obtained. However, in these methods, the solvent and unreacted prepolymer used for forming the composite of liquid crystal and polymer, and impurities generated by decomposition of the liquid crystal or prepolymer by ultraviolet rays are incorporated into the liquid crystal layer. Because of this, we are particularly concerned about reliability. Moreover, many polymer layers other than the liquid crystal are formed between the upper and lower electrodes, so that the voltage actually applied to the liquid crystal layer is lowered and the drive voltage tends to be increased. It was
【0003】[0003]
【目的】本発明は、基板表面や液晶配向手段を設けるこ
とにより光散乱性を向上させ、従来型の信頼性の低さや
高い駆動電圧の必要性を解消することを目的とする。An object of the present invention is to improve the light scattering property by providing a substrate surface or liquid crystal aligning means, and to eliminate the conventional low reliability and the need for a high driving voltage.
【0004】[0004]
【構成】本発明は、液晶駆動用電極を設けた一対の基板
間に、正の誘電異方性を有する液晶組成物からなる液晶
層を挾持した構造を有し、該基板表面に液晶分子を配向
させる手段を有し、該液晶層が電圧が印加された場合と
印加されない場合とで光を透過する状態と光を散乱する
状態とに変化することを利用した液晶表示装置におい
て、該基板表面での液晶分子の配向方向を場所により異
ならせるため基板表面に液晶分子を配向させる手段を設
けたことを特徴とする液晶表示装置に関する。The present invention has a structure in which a liquid crystal layer made of a liquid crystal composition having positive dielectric anisotropy is sandwiched between a pair of substrates provided with liquid crystal driving electrodes, and liquid crystal molecules are provided on the surface of the substrates. In the liquid crystal display device, which has means for orienting the liquid crystal layer and utilizes the fact that the liquid crystal layer changes between a state of transmitting light and a state of scattering light when a voltage is applied or not applied, the substrate surface The present invention relates to a liquid crystal display device, characterized in that means for orienting liquid crystal molecules is provided on the surface of a substrate so that the orientation direction of the liquid crystal molecules can be varied depending on the location.
【0005】図1は本発明で用いられるような散乱型L
CDの基本動作をモデル的に示す図である。この液晶表
示装置は、電極が形成された一対の基板1、2を離間、
対向して配置し、その間に液晶層6を設けた構造を有し
ている。該液晶層6は、該基板表面に設けられた液晶配
向手段5によって光散乱性の構造をとっている。上下電
極3,3の間に電界を印加していない状態では、液晶配
向手段5の配向規制方向が場所によって異なるために液
晶層6の配向方向は乱され、液晶層6は光散乱性の状態
となっている。上下電極に電圧を印加した状態では、液
晶層6を構成する液晶組成物が正の誘電異方性を持つた
め垂直配向状態に似た状態になり、光透過性となる。こ
れらの光散乱状態と透過状態間の変化を利用することに
よって表示が可能となる。液晶配向手段5は、一般的な
用法では水平配向を誘起するような材料から構成するこ
とが可能であるが、従来のように液晶分子配向方向をあ
る一方向だけに規制するのではなく、1〜5ミクロン程
度の領域ごとに配向方向を異ならせるようにすることに
より、電圧非印加時に光散乱性の構造をとらせるように
なっている。具体的な方法の一例としては、結晶性の無
機物あるいは有機物の細結晶を基板表面に付着させる方
法がある。一般の結晶性物質の表面は、液晶分子を配向
させる傾向を持っているが、その配向方向は結晶の方位
に依存するため、粒径が1〜5ミクロン程度の細結晶に
粉砕して基板表面に付着させれば、結晶面の方向がラン
ダムとなるために液晶の配向方向もランダムとなり、光
散乱性の配向状態が得られる。細結晶を得る方法として
は、上記のように結晶を粉砕することのほかに、一般に
微粒子、微細結晶を得る方法として知られいるような、
ゾル−ゲル法、焼結法などが可能である。また、真空蒸
着によって細結晶を得ることは可能で、この場合は基板
面に直接細結晶が形成されるので、付着させるという工
程は省略できる。上記のような結晶を利用する方法のほ
かに、基板面に蒸着法、スパッタリング法、塗布法など
によって、またはそれらによって基板面に成膜した薄膜
をエッチングなどによって特定の構造を形成し、液晶の
配向方向を乱して光散乱性の配向状態を得ることも可能
である。また、熱可塑性、熱硬化性、または紫外線硬化
性高分子を基板表面にあらかじめ塗布し、金属表面のエ
ッチングなどによって形成した特定の凹凸を有するスタ
ンパーを用いて高分子表面に所望の構造を形成する方法
も利用できる。また、ITOなどの導電性の材料を用い
て液晶配向手段を形成することも可能である。この場合
は図2の8のように液晶配向手段と電極が兼用できるた
めに単純な構成となり、工程が簡略化される。さらに、
液晶配向手段を着色した材料で構成することも可能であ
り、この場合はカラーフィルターの役割を兼ねることが
できる。液晶配向手段が電極とカラーフィルターをも兼
ねる場合の構成例を図3に示した。上側電極13,1
4,15はそれぞれ赤、緑、青色のカラーフィルターと
もなっており、それぞれのフィルターの間隙はブラック
マトリックス18によって遮光されている。基板として
は、ガラスのような透明無機材料や、ポリエチレンテレ
フタレート、ポリカーボネート、ポリエーテルサルフォ
ン、ポリアリレートなどのような透明なポリマー基板を
使用することもできる。上下基板上の電極は、透過型液
晶表示装置の場合は、上下電極ともITOのような透明
導電材料を必要とするが、反射型の液晶表示素子の場合
は、上下電極のうち一方は透明である必要はなく、クロ
ムやアルミニウムなどのような一般の金属でも使用でき
る。液晶層6を構成する液晶組成物は一般のネマティッ
ク液晶でよく、光学活性物質を添加してねじれ構造をと
らせ、ピッチが1〜5ミクロンに調整すれば、さらに光
散乱効率を向上させることが可能である。液晶層6の厚
みは大きい程散乱効率が高くなるが、散乱構造をとらせ
るための規制力が基板表面に限られているため、10ミ
クロン程度以上の厚さになると散乱強度はあまり向上し
なくなり、しかも厚みの増加とともに印加電界強度が低
下してくるため好ましくない。以上、本発明による液晶
表示素子では、基板表面の構造によって液晶の配向方向
を乱し、光散乱性の構造を形成しているため、液晶層に
プレポリマーや不純物が入り込むこともなく、いわゆる
ポリマー分散型またはポリマーマトリックス型液晶にお
いて危惧される信頼性の点でも優れた液晶表示素子を提
供できる。FIG. 1 shows a scattering type L as used in the present invention.
It is a figure which shows the basic operation | movement of CD as a model. This liquid crystal display device separates a pair of substrates 1 and 2 on which electrodes are formed,
The liquid crystal layer 6 is arranged so as to face each other, and the liquid crystal layer 6 is provided between them. The liquid crystal layer 6 has a light-scattering structure by the liquid crystal aligning means 5 provided on the surface of the substrate. In the state where no electric field is applied between the upper and lower electrodes 3 and 3, the alignment direction of the liquid crystal alignment means 5 is different depending on the location, so that the alignment direction of the liquid crystal layer 6 is disturbed and the liquid crystal layer 6 is in a light scattering state. Has become. When a voltage is applied to the upper and lower electrodes, the liquid crystal composition that constitutes the liquid crystal layer 6 has a positive dielectric anisotropy, and thus becomes a state similar to a vertically aligned state and becomes light transmissive. Display can be performed by utilizing the change between the light scattering state and the transmission state. The liquid crystal aligning means 5 can be made of a material that induces horizontal alignment in a general usage, but the liquid crystal molecule aligning direction 5 is not limited to one direction as in the prior art, but is not limited to one direction. By making the orientation direction different for each region of approximately 5 μm, a light-scattering structure is formed when no voltage is applied. As an example of a specific method, there is a method of adhering crystalline inorganic or organic fine crystals to the substrate surface. The surface of a general crystalline material has a tendency to orient liquid crystal molecules, but since the orientation direction depends on the crystal orientation, the surface of the substrate is crushed into fine crystals with a particle size of 1 to 5 microns. If it is adhered to, the crystal plane direction becomes random, and the liquid crystal alignment direction also becomes random, and a light-scattering alignment state is obtained. As a method for obtaining fine crystals, in addition to crushing the crystals as described above, generally fine particles, as known as a method for obtaining fine crystals,
A sol-gel method, a sintering method, etc. are possible. Further, it is possible to obtain fine crystals by vacuum vapor deposition. In this case, since the fine crystals are directly formed on the substrate surface, the step of adhering can be omitted. In addition to the method using the crystal as described above, a specific structure is formed on the substrate surface by a vapor deposition method, a sputtering method, a coating method or the like, or a thin film formed on the substrate surface is etched to form a specific structure. It is also possible to disturb the alignment direction and obtain a light-scattering alignment state. In addition, a thermoplastic, thermosetting, or ultraviolet curable polymer is previously applied to the surface of the substrate, and a desired structure is formed on the surface of the polymer using a stamper having a specific unevenness formed by etching the metal surface or the like. Methods are also available. It is also possible to form the liquid crystal alignment means by using a conductive material such as ITO. In this case, since the liquid crystal aligning means and the electrode can be used as shown by 8 in FIG. 2, the structure is simple and the process is simplified. further,
The liquid crystal aligning means can be made of a colored material, and in this case, it can also serve as a color filter. FIG. 3 shows a constitutional example in which the liquid crystal aligning means also serves as an electrode and a color filter. Upper electrode 13, 1
Reference numerals 4 and 15 also serve as red, green, and blue color filters, respectively, and the gap between the filters is shielded by a black matrix 18. As the substrate, a transparent inorganic material such as glass or a transparent polymer substrate such as polyethylene terephthalate, polycarbonate, polyether sulfone or polyarylate can be used. The electrodes on the upper and lower substrates require a transparent conductive material such as ITO in the case of a transmissive liquid crystal display device, but in the case of a reflective liquid crystal display element, one of the upper and lower electrodes is transparent. It need not be present, and common metals such as chrome and aluminum can be used. The liquid crystal composition constituting the liquid crystal layer 6 may be a general nematic liquid crystal, and if an optically active substance is added to form a twisted structure and the pitch is adjusted to 1 to 5 μm, the light scattering efficiency can be further improved. It is possible. The larger the thickness of the liquid crystal layer 6 is, the higher the scattering efficiency is. However, since the restricting force for forming the scattering structure is limited to the surface of the substrate, the scattering intensity is not improved so much when the thickness is about 10 μm or more. Moreover, the applied electric field strength decreases as the thickness increases, which is not preferable. As described above, in the liquid crystal display device according to the present invention, the structure of the substrate surface disturbs the alignment direction of the liquid crystal to form a light-scattering structure, so that the prepolymer and impurities do not enter the liquid crystal layer, and the so-called polymer It is possible to provide a liquid crystal display device which is also excellent in terms of reliability, which is a concern in dispersed or polymer matrix liquid crystals.
【0006】[0006]
【実施例】以下本発明を実施例に基づき説明する。 実施例1 本実施例の層構成を図1に示す。基板1,2としてはガ
ラスを用いた。上下基板上の電極3は、スパッタリング
によって成膜したITOを、フォトリソグラフィーによ
ってパターニングして形成した。液晶配向手段5は、エ
ポキシ系接着剤を約1000オングストロームの厚さで
基板面に塗布した後、二酸化ケイ素の細結晶を散布し、
160℃まで加熱して接着剤を硬化させて形成した。細
結晶の粒径は約3ミクロンであった。液晶層6は、メル
ク社製のZLI−2293を用いた。液晶層の厚みは、
粒径が5ミクロンのガラスロッドを散布することによっ
て、液晶は、5ミクロンに制御した。 実施例2 実施例1において、液晶配向手段5を感光性ポリイミド
の塗膜のエッチングによって形成した。エッチング形状
は液晶の配向状態に大きな影響を及ぼすが、本実施例で
は、ポリイミドが図4に示すように円錐状に基板表面に
残るようにした。 実施例3 実施例1において、液晶配向手段5を熱可塑性樹脂の塗
膜に金属製スタンパーを用いて凹凸を形成して作製し
た。凹凸の形状は実施例2における図4と同様でもよい
が、本実施例の場合のほうが形状は自由に設計できる。 実施例4 図2の構成になる実施例を説明する。上下基板7として
はポリエーテルサルフォンを用いた。電極を兼ねた液晶
配向手段8はマスク蒸着によって、結晶性のITOを成
膜して形成した。液晶組成物として用いたものは、チッ
ソ社製のネマティック液晶GR−63に、ねじれのピッ
チが約1ミクロンとなるようにメルク社製の光学活性物
質S−811を添加したものである。液晶層の厚さは、
プラスチックビーズを散布することによって、6ミクロ
ンに制御した。 実施例5 図3の構成になる実施例を説明する。カラーフィルタ
ー、液晶配向手段、および電極の三役を兼ねる構造1
3,14,15は以下のようにして形成した。ブラック
マスク18を顔料分散法によって形成した後、印刷法に
よって一般のカラーフィルター層を形成した。カラーフ
ィルター層の加熱硬化前に結晶性のITO微粉末をカラ
ーフィルター上に散布して、加熱硬化した。カラーフィ
ルターの基材として、紫外線硬化型の樹脂を用いること
も可能で、この場合は加熱硬化のかわりに、紫外線の照
射を行なう。その他の工程は、上記実施例と同様に行な
った。EXAMPLES The present invention will be described below based on examples. Example 1 The layer structure of this example is shown in FIG. Glass was used as the substrates 1 and 2. The electrodes 3 on the upper and lower substrates were formed by patterning ITO formed by sputtering by photolithography. The liquid crystal alignment means 5 applies an epoxy adhesive to the substrate surface with a thickness of about 1000 angstroms, and then sprays fine crystals of silicon dioxide.
It was formed by heating to 160 ° C. to cure the adhesive. The crystallite size was about 3 microns. As the liquid crystal layer 6, ZLI-2293 manufactured by Merck Ltd. was used. The thickness of the liquid crystal layer is
The liquid crystal was controlled at 5 microns by spraying a glass rod with a particle size of 5 microns. Example 2 In Example 1, the liquid crystal alignment means 5 was formed by etching a coating film of photosensitive polyimide. Although the etching shape has a great influence on the alignment state of the liquid crystal, in this embodiment, the polyimide was made to remain in a conical shape on the substrate surface as shown in FIG. Example 3 In Example 1, the liquid crystal aligning means 5 was produced by forming irregularities on a coating film of a thermoplastic resin using a metal stamper. The shape of the concavities and convexities may be the same as that of FIG. 4 in the second embodiment, but the shape of the present embodiment can be freely designed. Example 4 An example having the configuration of FIG. 2 will be described. Polyether sulfone was used as the upper and lower substrates 7. The liquid crystal alignment means 8 also serving as an electrode was formed by depositing crystalline ITO by mask vapor deposition. The liquid crystal composition used was a nematic liquid crystal GR-63 manufactured by Chisso Corporation to which an optically active substance S-811 manufactured by Merck was added so that the pitch of twist was about 1 micron. The thickness of the liquid crystal layer is
Controlled to 6 microns by sprinkling with plastic beads. Example 5 An example having the configuration of FIG. 3 will be described. Structure 1 that doubles as a color filter, liquid crystal alignment means, and electrode
3, 14 and 15 were formed as follows. After forming the black mask 18 by a pigment dispersion method, a general color filter layer was formed by a printing method. Before heat-curing the color filter layer, crystalline ITO fine powder was sprayed on the color filter and heat-cured. It is also possible to use an ultraviolet curable resin as the base material of the color filter. In this case, irradiation with ultraviolet rays is carried out instead of heat curing. Other steps were performed in the same manner as in the above example.
【0007】[0007]
【効果】請求項1においては、基板表面の構造によって
光散乱性の構造を実現させているため、従来のポリマー
分散型液晶素子やポリマーマトリックス型液晶素子では
避けにくい、信頼性の低さ、駆動電圧の上昇などの欠点
を改善することが可能となった。請求項2においては、
結晶性物質の微細粉末を基板に付着させるという簡便な
方法で、光散乱性の液晶配向状態を得ることが可能とな
り、請求項1の効果を得ることができる。請求項3にお
いては、基板表面に特定の構造を形成し、光散乱性の液
晶配向状態を誘起しているために、配向状態のコントロ
ールが容易で、散乱効率の高い液晶素子の設計が可能と
なる。請求項4においては、スタンパーなどを用いた量
産性に優れた方法で液晶配向手段が作製可能となる。ま
た、液晶配向面の形状のコントロールは請求項3よりも
さらに自由となり、散乱効率の高い液晶素子の設計が容
易になる。請求項5においては、液晶配向手段が導電性
の物質からなるため、液晶配向手段は請求項6のように
電極も兼ねることができるようになり、工程数が減り、
液晶素子の作製が容易になる。請求項7においては、液
晶配向手段が着色されているために、カラーフィルター
も兼ねることが可能となり、請求項6と同様の効果があ
る。According to the first aspect of the present invention, since the light scattering structure is realized by the structure of the substrate surface, it is difficult to avoid with the conventional polymer dispersion type liquid crystal element or polymer matrix type liquid crystal element, low reliability, and driving. It has become possible to improve defects such as voltage rise. In claim 2,
The light scattering liquid crystal alignment state can be obtained by a simple method in which a fine powder of a crystalline substance is attached to the substrate, and the effect of claim 1 can be obtained. In the third aspect, since a specific structure is formed on the surface of the substrate to induce the light-scattering liquid crystal alignment state, it is possible to easily control the alignment state and design a liquid crystal element having high scattering efficiency. Become. In the fourth aspect, the liquid crystal aligning means can be manufactured by a method using a stamper or the like and having excellent mass productivity. Further, the shape of the liquid crystal alignment surface can be controlled more freely than in the third aspect, which facilitates the design of a liquid crystal element having high scattering efficiency. In the fifth aspect, since the liquid crystal aligning means is made of a conductive substance, the liquid crystal aligning means can also serve as an electrode as in the sixth aspect, and the number of steps is reduced.
The liquid crystal element can be easily manufactured. In the seventh aspect, since the liquid crystal aligning means is colored, it can also serve as a color filter, and the same effect as the sixth aspect can be obtained.
【図1】実施例1の液晶表示装置の構成を示す断面図で
ある。FIG. 1 is a cross-sectional view showing a configuration of a liquid crystal display device of Example 1.
【図2】実施例4の液晶表示装置の構成を示す断面図で
ある。FIG. 2 is a cross-sectional view showing a configuration of a liquid crystal display device of Example 4.
【図3】実施例5の液晶表示装置の構成を示す断面図で
ある。FIG. 3 is a cross-sectional view showing a configuration of a liquid crystal display device of Example 5.
【図4】実施例2の液晶配向手段であるポリイミド層の
凹凸形状を示す。FIG. 4 shows the uneven shape of a polyimide layer, which is the liquid crystal aligning means of Example 2.
1 基板 2 基板 3 電極 4 シール材 5 液晶配向手段 6 液晶層 7 基板 8 液晶配向手段兼電極 9 シール材 10 液晶層 11 基板 12 基板 13 上側電極 14 上側電極 15 上側電極 17 シール材 18 ブラックマトリックス 1 substrate 2 substrate 3 electrode 4 sealing material 5 liquid crystal aligning means 6 liquid crystal layer 7 substrate 8 liquid crystal aligning means / electrode 9 sealing material 10 liquid crystal layer 11 substrate 12 substrate 13 upper electrode 14 upper electrode 15 upper electrode 17 sealing material 18 black matrix
Claims (7)
に、正の誘電異方性を有する液晶組成物からなる液晶層
を挾持した構造を有し、該基板表面に液晶分子を配向さ
せる手段を有し、該液晶層が電圧が印加された場合と印
加されない場合とで光を透過する状態と光を散乱する状
態とに変化することを利用した液晶表示装置において、
該基板表面での液晶分子の配向方向を場所により異なら
せるため基板表面に液晶分子を配向させる手段を設けた
ことを特徴とする液晶表示装置。1. A structure in which a liquid crystal layer made of a liquid crystal composition having a positive dielectric anisotropy is sandwiched between a pair of substrates provided with liquid crystal driving electrodes, and liquid crystal molecules are aligned on the surfaces of the substrates. In the liquid crystal display device having means, utilizing the fact that the liquid crystal layer changes into a state of transmitting light and a state of scattering light when a voltage is applied or not applied,
A liquid crystal display device comprising means for orienting liquid crystal molecules on the surface of the substrate in order to make the orientation direction of the liquid crystal molecules on the surface of the substrate different depending on the location.
手段が、無機化合物または有機化合物の微細な結晶を基
板表面に付着させたものである請求項1記載の液晶表示
装置。2. The liquid crystal display device according to claim 1, wherein the means for aligning the liquid crystal molecules provided on the surface of the substrate is one in which fine crystals of an inorganic compound or an organic compound are attached to the surface of the substrate.
手段が、基板表面に成膜した薄膜をパターニングまたは
エッチングすることにより形成されたものである請求項
1記載の液晶表示装置。3. The liquid crystal display device according to claim 1, wherein the means for aligning the liquid crystal molecules provided on the surface of the substrate is formed by patterning or etching a thin film formed on the surface of the substrate.
手段が、微細な凹凸を有するスタンパーを該基板表面に
設けられた変形可能な高分子塗膜に押しつけることによ
って形成されたものである請求項1記載の液晶表示装
置。4. The means for aligning liquid crystal molecules provided on the surface of a substrate is formed by pressing a stamper having fine irregularities against a deformable polymer coating film provided on the surface of the substrate. Item 3. A liquid crystal display device according to item 1.
手段が、導電性材料層である請求項1記載の液晶表示装
置。5. The liquid crystal display device according to claim 1, wherein the means for aligning the liquid crystal molecules provided on the surface of the substrate is a conductive material layer.
ある請求項1記載の液晶表示装置。6. The liquid crystal display device according to claim 1, wherein the conductive material layer also serves as an electrode.
手段が、着色されており、カラーフィルタとしての機能
も備えたものである請求項1,2,3,4,5または6
記載の液晶表示装置。7. The means for aligning liquid crystal molecules provided on the surface of a substrate is colored and also has a function as a color filter.
The described liquid crystal display device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03329508A JP3091000B2 (en) | 1991-11-18 | 1991-11-18 | Liquid crystal display |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03329508A JP3091000B2 (en) | 1991-11-18 | 1991-11-18 | Liquid crystal display |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05142515A true JPH05142515A (en) | 1993-06-11 |
JP3091000B2 JP3091000B2 (en) | 2000-09-25 |
Family
ID=18222162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03329508A Expired - Fee Related JP3091000B2 (en) | 1991-11-18 | 1991-11-18 | Liquid crystal display |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3091000B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07311383A (en) * | 1994-05-18 | 1995-11-28 | Sanyo Electric Co Ltd | Liquid crystal display device |
WO1998016869A1 (en) * | 1996-10-14 | 1998-04-23 | S.P.S. S.P.A. | Liquid crystal display device |
WO1999044095A1 (en) * | 1998-02-24 | 1999-09-02 | Deep Video Imaging Limited | Improved display |
US6906762B1 (en) | 1998-02-20 | 2005-06-14 | Deep Video Imaging Limited | Multi-layer display and a method for displaying images on such a display |
JPWO2008096641A1 (en) * | 2007-02-06 | 2010-05-20 | 株式会社東芝 | Pattern forming apparatus and pattern forming method |
US8018559B2 (en) | 1998-09-18 | 2011-09-13 | Sharp Kabushiki Kaisha | Liquid crystal display apparatus having alignment control for brightness and response |
US9137525B2 (en) | 2002-07-15 | 2015-09-15 | Pure Depth Limited | Multilayer video screen |
US9721378B2 (en) | 2001-10-11 | 2017-08-01 | Pure Depth Limited | Display interposing a physical object within a three-dimensional volumetric space |
-
1991
- 1991-11-18 JP JP03329508A patent/JP3091000B2/en not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07311383A (en) * | 1994-05-18 | 1995-11-28 | Sanyo Electric Co Ltd | Liquid crystal display device |
WO1998016869A1 (en) * | 1996-10-14 | 1998-04-23 | S.P.S. S.P.A. | Liquid crystal display device |
US6906762B1 (en) | 1998-02-20 | 2005-06-14 | Deep Video Imaging Limited | Multi-layer display and a method for displaying images on such a display |
WO1999044095A1 (en) * | 1998-02-24 | 1999-09-02 | Deep Video Imaging Limited | Improved display |
AU740574B2 (en) * | 1998-02-24 | 2001-11-08 | Pure Depth Limited | Improved display |
US8018559B2 (en) | 1998-09-18 | 2011-09-13 | Sharp Kabushiki Kaisha | Liquid crystal display apparatus having alignment control for brightness and response |
US8023085B2 (en) | 1998-09-18 | 2011-09-20 | Sharp Kabushiki Kaisha | Liquid crystal display apparatus having alignment control for brightness and response |
US9721378B2 (en) | 2001-10-11 | 2017-08-01 | Pure Depth Limited | Display interposing a physical object within a three-dimensional volumetric space |
US10262450B2 (en) | 2001-10-11 | 2019-04-16 | Pure Depth Limited | Display interposing a physical object within a three-dimensional volumetric space |
US9137525B2 (en) | 2002-07-15 | 2015-09-15 | Pure Depth Limited | Multilayer video screen |
JPWO2008096641A1 (en) * | 2007-02-06 | 2010-05-20 | 株式会社東芝 | Pattern forming apparatus and pattern forming method |
Also Published As
Publication number | Publication date |
---|---|
JP3091000B2 (en) | 2000-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5625474A (en) | Full-color liquid crystal display device and fabrication process therefor | |
US5570216A (en) | Bistable cholesteric liquid crystal displays with very high contrast and excellent mechanical stability | |
US6958799B2 (en) | Liquid crystal display | |
US5178571A (en) | Method for manufacturing an electro-optical device | |
JP2000047200A (en) | Diffuse reflector, liquid crystal display device using the same and method of manufacturing the same | |
US6259501B1 (en) | Liquid crystal display with dielectric layer having at least two openings corresponding to each picture element and method of making same | |
JP3091000B2 (en) | Liquid crystal display | |
WO2021232481A1 (en) | Optical film, and manufacturing method and application of optical film | |
JP4028633B2 (en) | Liquid crystal display | |
KR970004880B1 (en) | A liquid crystal electro-optical device and tis making method | |
JPH08262445A (en) | Liquid crystal orienting substrate and its production | |
JPH0534730A (en) | Liquid crystal display device | |
JPH06273743A (en) | Color liquid crystal electrooptic device | |
JP4298055B2 (en) | Liquid crystal panel and manufacturing method thereof | |
KR101186009B1 (en) | fabrication method for In-Plane Switching mode LCD and the alignment layer forming method | |
JPH04308816A (en) | Reflection type liquid crystal display device and production thereof | |
JP2839362B2 (en) | Liquid crystal panel manufacturing method | |
KR20050058594A (en) | Liquid crystal display device and the fabrication method thereof | |
JP2001255533A (en) | Liquid crystal display device | |
JP3467817B2 (en) | Liquid crystal display device and method of manufacturing the same | |
JPH01241520A (en) | liquid crystal display device | |
JP2629448B2 (en) | Liquid crystal panel manufacturing method | |
JPH1115004A (en) | Electrooptical device and production therefor | |
JPH04188113A (en) | lcd display panel | |
KR100298391B1 (en) | liquid crystal display device, its fabricating method and liquid crystal composition for display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070721 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080721 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |