[go: up one dir, main page]

JPH05142006A - Offset voltage measuring device - Google Patents

Offset voltage measuring device

Info

Publication number
JPH05142006A
JPH05142006A JP3289721A JP28972191A JPH05142006A JP H05142006 A JPH05142006 A JP H05142006A JP 3289721 A JP3289721 A JP 3289721A JP 28972191 A JP28972191 A JP 28972191A JP H05142006 A JPH05142006 A JP H05142006A
Authority
JP
Japan
Prior art keywords
voltage
constant temperature
control circuit
temperature control
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3289721A
Other languages
Japanese (ja)
Inventor
Masuo Akamatsu
培雄 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3289721A priority Critical patent/JPH05142006A/en
Publication of JPH05142006A publication Critical patent/JPH05142006A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

(57)【要約】 【目的】空気流量計の定温度制御回路の入力オフセット
電圧と発熱抵抗体の加熱設定温度を直接測定する事にあ
る。 【構成】空気流量計から発熱抵抗体を外し定温度制御回
路1に大小2種類の電圧V2 を印加し,その各々に対す
る定温度制御回路1の出力V1 を分圧抵抗15,16に
より分圧して得る電圧V3とV2の差電圧を演算増幅する
事により定温度制御回路1の入力オフセット電圧VTOFF
を検出する。 【効果】定温度制御回路の入力オフセット電圧と発熱抵
抗体の加熱設定温度を直接測定する事ができるので流量
計の応答性と発熱抵抗体の加熱設定温度を空気を流さな
いで測定する事ができる。
(57) [Abstract] [Purpose] The purpose is to directly measure the input offset voltage of the constant temperature control circuit of the air flow meter and the heating set temperature of the heating resistor. [Structure] The heating resistor is removed from the air flow meter, two types of voltage V 2 of large and small are applied to the constant temperature control circuit 1, and the output V 1 of the constant temperature control circuit 1 for each is divided by the voltage dividing resistors 15 and 16. The input offset voltage V TOFF of the constant temperature control circuit 1 is obtained by calculating and amplifying the difference voltage between the voltages V 3 and V 2
To detect. [Effect] Since the input offset voltage of the constant temperature control circuit and the heating set temperature of the heating resistor can be directly measured, the responsiveness of the flow meter and the heating set temperature of the heating resistor can be measured without flowing air. it can.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自動車の電子式燃料制御
システムに使用する熱線式空気流量計の電子回路調整用
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for adjusting an electronic circuit of a hot wire type air flow meter used in an electronic fuel control system for an automobile.

【0002】[0002]

【従来の技術】従来の技術は『トランジスタ技術、19
77,8月号,p265−p275記載の様に定温度型
熱線式空気流量計の流量変化応答性と定温度制御回路の
入力オフセット電圧との関係は公知であり、応答性を調
整する為に入力オフセット電圧を調整している。
2. Description of the Related Art The conventional technology is "transistor technology, 19
77, August issue, p265-p275, the relationship between the flow rate change responsiveness of the constant temperature hot wire air flow meter and the input offset voltage of the constant temperature control circuit is known, and in order to adjust the responsiveness. Adjusting the input offset voltage.

【0003】[0003]

【発明が解決しようとする課題】従来の技術は定温度制
御回路内に空気温度補正回路が含まれる場合等、入力オ
フセット電圧を直接測定する事が困難な場合には、流量
計として動作させた状態に於いてその出力波形を観測し
ながら定温度制御回路の入力オフセット電圧を調整する
方法で応答調整が行なわれており、流量計を組立てた後
に空気を流して応答調整を行なう必要が有った。又、定
温度制御回路の出力電圧を直接測定してオフセット電圧
を求めると動作電圧に対するオフセット電圧の比率が小
さい為、正確な測定が困難である。本発明の課題は、定
温度制御回路の入力オフセット電圧を直接測定し、流量
計の応答性を簡便且つ確実に調整する装置を提供する事
である。又、入力オフセット電圧検出装置に於いて測定
回路の分圧抵抗の抵抗値を非測定回路の特性に合わせて
調整する必要がある、この抵抗値の調整を測定器自身が
行なうと調整作業が更に簡便になる。測定装置自身が抵
抗値の自動調整を行なう際、測定器を構成する電子回路
に飽和が起きた場合、測定値が不適当となり前記分圧抵
抗の自己調整機能も動作しなくなる可能性が有る。この
問題を解決する為に、電子回路が一定の電圧範囲を越え
た事を検出し、その飽和のモードに基づき前記分圧抵抗
の自動調整を行なう。又、応答調整と同時に発熱抵抗体
の加熱温度を決定する定温度制御回路の増幅率も同時に
測定すると調整作業が一度にでき、作業効率が更に向上
する。
The conventional technique operates as a flow meter when it is difficult to directly measure the input offset voltage, such as when an air temperature correction circuit is included in the constant temperature control circuit. The response adjustment is performed by adjusting the input offset voltage of the constant temperature control circuit while observing the output waveform in the state, and it is necessary to flow air after the flow meter is assembled and then adjust the response. It was Further, if the offset voltage is obtained by directly measuring the output voltage of the constant temperature control circuit, the ratio of the offset voltage to the operating voltage is small, so that accurate measurement is difficult. An object of the present invention is to provide a device that directly measures the input offset voltage of a constant temperature control circuit and adjusts the responsiveness of a flow meter simply and reliably. In addition, in the input offset voltage detection device, it is necessary to adjust the resistance value of the voltage dividing resistor of the measurement circuit according to the characteristics of the non-measurement circuit. It becomes easy. When the measuring device itself automatically adjusts the resistance value, if the electronic circuit forming the measuring device is saturated, the measured value may become inappropriate and the self-adjustment function of the voltage dividing resistor may not operate. In order to solve this problem, it is detected that the electronic circuit exceeds a certain voltage range, and the voltage dividing resistor is automatically adjusted based on the saturation mode. Further, when the amplification factor of the constant temperature control circuit that determines the heating temperature of the heating resistor is also measured at the same time as the response adjustment, the adjustment work can be performed at one time, and the work efficiency is further improved.

【0004】[0004]

【課題を解決するための手段】上記目的を達成する為
に、定温度制御回路に大小2種類の入力電圧を印加し、
定温度制御回路の出力をその増幅率に近い分圧比の分圧
抵抗で分圧した値と入力電圧の差を増幅して得る電圧
を、大小各々の入力に対してサンプルホールドし、アナ
ログ演算を行なう事により定温度制御回路の入力オフセ
ット電圧を検出する。次に非測定サンプルの定温度制御
回路の増幅特性に合わせて調整する前記分圧抵抗に摺動
可変抵抗を用い、ステッピングモータにて駆動するよう
に構成し、定温度制御回路の増幅率と前記分圧抵抗の分
圧比とが等しくなる様にステッピングモータの回転方向
を制御する様にする。更に、前記分圧抵抗を複数の固定
抵抗スイッチにより構成し、アップダウンカウンタを用
いてスイッチを制御することにより分圧比の調整を迅速
に行なう。
In order to achieve the above object, two types of input voltage, large and small, are applied to a constant temperature control circuit,
The voltage obtained by amplifying the difference between the input voltage and the value obtained by dividing the output of the constant temperature control circuit by the voltage dividing resistor with a voltage division ratio close to its amplification factor is sample-held for each large and small input, and analog calculation is performed. By doing so, the input offset voltage of the constant temperature control circuit is detected. Next, a sliding variable resistor is used as the voltage dividing resistor that is adjusted according to the amplification characteristic of the constant temperature control circuit of the non-measured sample, and it is configured to be driven by a stepping motor. The rotation direction of the stepping motor is controlled so that the voltage dividing ratio of the voltage dividing resistor becomes equal. Further, the voltage dividing resistance is composed of a plurality of fixed resistance switches, and the switch is controlled by using an up-down counter, whereby the voltage division ratio is adjusted quickly.

【0005】又、測定装置内の電子回路が飽和した場合
に対処する為に、大小各々の入力電圧に対してサンプル
ホールドされる分圧と入力電圧の差電圧が一定の電圧範
囲を越えていることを比較器により検出し、飽和のモー
ドを判別して分圧抵抗の調整方向を決定する様に構成す
る。
Further, in order to cope with the case where the electronic circuit in the measuring device is saturated, the differential voltage between the divided voltage sampled and held for each large and small input voltage and the input voltage exceeds a certain voltage range. This is detected by the comparator, the saturation mode is discriminated, and the adjusting direction of the voltage dividing resistor is determined.

【0006】[0006]

【作用】定温度型熱線式空気流量計の定温度制御回路は
発熱抵抗体の加熱電流を電流検出抵抗により検出した電
圧V2に対してV2を直流増幅した電圧V1 を出力し、こ
れを発熱抵抗体と電流検出抵抗に印加する事により発熱
抵抗体を一定の抵抗値即ち一定の温度に加熱制御する。
定温度制御回路に大小2種類の電圧V2a,V2bを交互に
印加すると、入力を直流増幅した出力V1a,V1bが各々
得られるのでこれを分圧抵抗で分圧してV3a,V3bを得
る。定温度制御回路の入力オフセット電圧VTOFFは分圧
抵抗の分圧V3と入力電圧V2の差電圧V4a,V4bと大小
二種類の入力電圧の比率(V2a/V2b)からアナログ演
算により求める事が出来る。この時、分圧抵抗の値は定
温度制御回路の増幅率に近い程、入力オフセット電圧を
精度良く検出できるので、検出した各々の差電圧の差
(ΔV4=V4a−V4b)が小さくなる様に分圧抵抗の値を
調整する。この調整を行なう為にステッピングモータに
より駆動される摺動可変抵抗若しくはアップダウンカウ
ンタによりスイッチングされる固定抵抗を使用する。
The constant temperature control circuit of the constant temperature hot wire air flow meter outputs the voltage V 1 obtained by DC amplifying V 2 with respect to the voltage V 2 detected by the current detecting resistor for the heating current of the heating resistor. Is applied to the heating resistor and the current detection resistor to heat the heating resistor to a constant resistance value, that is, a constant temperature.
Constant temperature control circuit to the magnitude two kinds of voltages V 2a, is applied to V 2b alternately output V 1a that DC amplifying the input and divided by dividing resistors this because V 1b is obtained each V 3a, V Get 3b The input offset voltage V TOFF of the constant temperature control circuit is analog from the ratio (V 2a / V 2b ) of the difference voltages V 4a and V 4b between the voltage division V 3 of the voltage dividing resistor and the input voltage V 2 and the two large and small input voltages. It can be calculated. At this time, the closer the value of the voltage dividing resistor is to the amplification factor of the constant temperature control circuit, the more accurately the input offset voltage can be detected.
The value of the voltage dividing resistor is adjusted so that (ΔV 4 = V 4a −V 4b ) becomes smaller. To make this adjustment, a sliding variable resistor driven by a stepping motor or a fixed resistor switched by an up / down counter is used.

【0007】V1を定温度制御回路の増幅率Aを用いて
表わすと、
When V 1 is represented by the amplification factor A of the constant temperature control circuit,

【0008】[0008]

【数1】 [Equation 1]

【0009】となる。定温度制御回路に大小2種類の電
圧V2a,V2bを交互に印加すると、入力電圧を直流増幅
した電圧V1a,V1bが得られる。
[0009] When the large and small voltages V 2a and V 2b are alternately applied to the constant temperature control circuit, the voltages V 1a and V 1b obtained by DC amplifying the input voltage are obtained.

【0010】[0010]

【数2】 [Equation 2]

【0011】[0011]

【数3】 [Equation 3]

【0012】定温度制御回路の出力電圧V1を分圧比K
なる分圧抵抗で分圧し、入力V2との差をm倍に差動増
幅するとV4を得る。
The output voltage V 1 of the constant temperature control circuit is divided by the voltage division ratio K.
The voltage is divided by a voltage dividing resistor and the difference from the input V 2 is differentially amplified by m times to obtain V 4 .

【0013】[0013]

【数4】 [Equation 4]

【0014】[0014]

【数5】 [Equation 5]

【0015】V4a,V4bをサンプルホールドした後にア
ナログ演算を行なう事により入力オフセット電圧が得ら
れる。V2a,V2bの大きさの比をnとすると、
An input offset voltage can be obtained by performing an analog operation after sampling and holding V 4a and V 4b . If the ratio of the magnitudes of V 2a and V 2b is n,

【0016】[0016]

【数6】 [Equation 6]

【0017】となり、数4,数5よりVTOFFを求める
と、
[Mathematical formula-see original document] If V TOFF is obtained from equations 4 and 5,

【0018】[0018]

【数7】 [Equation 7]

【0019】となり、A・K=1に近づける程数7の値
は数8の値に近づく。
The closer the value of A · K = 1 is, the closer the value of Expression 7 becomes to the value of Expression 8.

【0020】[0020]

【数8】 [Equation 8]

【0021】数8の値は演算増幅器を用いて差動増幅を
行なう事により得る事ができる。
The value of equation 8 can be obtained by performing differential amplification using an operational amplifier.

【0022】[0022]

【実施例】本発明の一実施例を図1及び図2を用いて説
明する。図1は熱線式空気流量計から発熱抵抗体を除き
定温度制御回路に本発明の装置を接続した時の回路構
成、図2は測定に使用する電圧信号のタイミングチャー
トである。図1に於いて演算増幅器11,トランジスタ
19,抵抗18は、抵抗12,13、トランジスタ14
によりクロック信号Ck1 に合わせて作られる所定の電
圧V2a,V2bを定温度制御回路1の入力端子に印加する
為に定温度制御回路1のV1端子からV2端子へ電流を流
す。ここで、演算を簡単にする為に抵抗12,13をほ
ぼ等しい値に選び数6に於いてn=2となる様にする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a circuit configuration when the device of the present invention is connected to a constant temperature control circuit except a heating resistor from a hot wire air flow meter, and FIG. 2 is a timing chart of voltage signals used for measurement. In FIG. 1, operational amplifier 11, transistor 19 and resistor 18 are resistors 12, 13 and transistor 14, respectively.
In order to apply the predetermined voltages V 2a and V 2b generated in accordance with the clock signal Ck 1 to the input terminal of the constant temperature control circuit 1, a current flows from the V 1 terminal to the V 2 terminal of the constant temperature control circuit 1. Here, in order to simplify the calculation, the resistors 12 and 13 are selected to have substantially equal values, and n = 2 in the equation (6).

【0023】V2a,V2bの印加に於ける定温度制御回路
1の出力電圧V1a,V1bを抵抗15,16により分圧し
て得られる電圧V3a,V3bと入力V2a,V2bとの差を、
差動増幅回路17を用いて本実施例に於いては100倍
に増幅してV4a,V4bを得る。この時の各部の電圧波形
を図2に示す、V2を切り換えるクロック信号Ck1に対
する差動増幅回路17の出力電圧は図2に示すV4の様
に変化する、このV4からV4a,V4bを直流電圧として
取り出す為にクロックCk2,Ck3に示すタイミング
で、スイッチ20,23を開閉しコンデンサ21,24
を充電する。スイッチがクロックCk2,Ck3のHiの
ときonとなる様にすると演算増幅器22,25の出力
電圧はそれぞれV4a,V4bに保持される。図1の実施例
の回路は数7に於いてn=2,m=100とした場合に
相当するので、これを数7に代入すると、
The voltages V 3a and V 3b and the inputs V 2a and V 2b obtained by dividing the output voltages V 1a and V 1b of the constant temperature control circuit 1 upon application of V 2a and V 2b by resistors 15 and 16, respectively. The difference between
In this embodiment, the differential amplifier circuit 17 is used to amplify the signal 100 times to obtain V 4a and V 4b . The voltage waveform of each part at this time is shown in FIG. 2. The output voltage of the differential amplifier circuit 17 with respect to the clock signal Ck 1 for switching V 2 changes like V 4 shown in FIG. 2, from V 4 to V 4a , In order to take out V 4b as a DC voltage, the switches 20 and 23 are opened and closed at the timings shown in the clocks Ck 2 and Ck 3 so as to open the capacitors 21 and 24.
To charge. When the switches are turned on when the clocks Ck 2 and Ck 3 are Hi, the output voltages of the operational amplifiers 22 and 25 are held at V 4a and V 4b , respectively. Since the circuit of the embodiment of FIG. 1 corresponds to the case where n = 2 and m = 100 in the equation 7, substituting this into the equation 7,

【0024】[0024]

【数9】 [Equation 9]

【0025】となる。数9の値はV4a−V4bの値が充分
小さい時、分母は1と近似できるので、抵抗26と、抵
抗27の値を等しくすると演算増幅器28の出力は、
[0025] Since the denominator of the value of the equation 9 can be approximated to 1 when the value of V 4a −V 4b is sufficiently small, the output of the operational amplifier 28 becomes

【0026】[0026]

【数10】 [Equation 10]

【0027】となり、定温度制御回路1の入力オフセッ
ト電圧VTOFFを検出する事が出来る。数10が有効とな
る為には差動増幅回路29により得られるΔV4=V4a
−V4bが0に近づく様に抵抗15を調節する。
Therefore , the input offset voltage V TOFF of the constant temperature control circuit 1 can be detected. For the expression 10 to be effective, ΔV 4 = V 4a obtained by the differential amplifier circuit 29.
Adjust resistor 15 so that −V 4b approaches zero.

【0028】ΔV4及びV4a,V4bの値に基づきΔV4
0に近づく様に抵抗15を変化させる装置の一実施例を
図3を用いて説明する。図3はV4a,V4bが一定の電圧
範囲を越えた事を検出する飽和検出回路2,ΔV4
正,負を検出する方向検出回路3,回転摺動抵抗より成
る分圧抵抗を回転させるステッピングモータ6,ステッ
ピングモータ6に電流を供給する巻線制御回路5,飽和
検出回路2及び方向検出回路3の出力に基づきステッピ
ングモータ6の回転方向を決定し、巻線制御回路5に信
号を出力する判別回路4により構成したところのΔV4
及びV4a,V4bの値に基づきΔV4が0に近づく様に抵
抗15を変化させる装置である。
An embodiment of a device for changing the resistance 15 so that ΔV 4 approaches 0 based on the values of ΔV 4 and V 4a , V 4b will be described with reference to FIG. FIG. 3 shows a saturation detection circuit 2 for detecting that V 4a and V 4b exceed a certain voltage range, a direction detection circuit 3 for detecting the positive / negative of ΔV 4, and a voltage dividing resistor composed of a rotary sliding resistor. The rotation direction of the stepping motor 6 is determined based on the outputs of the winding control circuit 5, the saturation detection circuit 2 and the direction detection circuit 3 which supply current to the stepping motor 6 and the stepping motor 6, and a signal is sent to the winding control circuit 5. ΔV 4 when it is composed of the discrimination circuit 4 for outputting
And a device for changing the resistance 15 so that ΔV 4 approaches 0 based on the values of V 4a and V 4b .

【0029】V4a,V4bの値の大小に対し飽和検出回路
2より出力される信号を各々、V4a過大のときD1,V
4a過小のときD2,V4b過大のときD3,V4b過小のとき
4とし、方向検出回路3のΔV4に対する出力を、ΔV
4が近似式数10の実用可能な値より小さいときQL,大
きいときQHとすると、判別回路4の出力QOK,QNG
Fは各々、ΔV4が充分に小さく分圧比が適正となると
き、
The signals output from the saturation detection circuit 2 for the magnitudes of V 4a and V 4b are respectively D 1 and V when V 4a is excessive.
4a under-time and D 2, V 4b D 3, V 4b D 4 when the under-case excessive, the output for the [Delta] V 4 of the direction detection circuit 3, [Delta] V
When 4 is smaller than the practical value of approximate expression 10 and Q L , and when larger than Q H , outputs Q OK , Q NG of the discrimination circuit 4,
Q F is, respectively, when ΔV 4 is sufficiently small and the voltage division ratio is appropriate,

【0030】[0030]

【数11】 [Equation 11]

【0031】分圧比の調整が不可能なとき、When the adjustment of the voltage division ratio is impossible,

【0032】[0032]

【数12】 [Equation 12]

【0033】但し、@=EORである。However, @ = EOR.

【0034】分圧比をΔV4が増加する方向に変化させ
るべきとき、
When the voltage division ratio should be changed in the direction of increasing ΔV 4 ,

【0035】[0035]

【数13】 [Equation 13]

【0036】となる。It becomes

【0037】以上の様にして判別回路4で得られた出力
OK,QNG,QF に基づき巻線制御回路5にてステッピ
ングモータ6の巻線電流を供給すると、ステッピングモ
ータ6によって変化させられる分圧抵抗の分圧比は数1
0を有効ならしめる様に調整される。図3の回路構成を
実施する事により、入力オフセット電圧検出回路の分圧
抵抗15が自動調整され数9の演算を数10で代用で
き、定温度制御回路の入力オフセット電圧を図1に示し
た演算増幅回路により得る事が出来る。
When the winding current of the stepping motor 6 is supplied by the winding control circuit 5 based on the outputs Q OK , Q NG , and Q F obtained by the discrimination circuit 4 as described above, the stepping motor 6 changes the winding current. The division ratio of the voltage dividing resistor is 1
It is adjusted so that 0 is valid. By implementing the circuit configuration of FIG. 3, the voltage dividing resistor 15 of the input offset voltage detection circuit is automatically adjusted, and the operation of Equation 9 can be substituted by Equation 10, and the input offset voltage of the constant temperature control circuit is shown in FIG. It can be obtained by an operational amplifier circuit.

【0038】本発明の別の一実施例を図4を用いて説明
する。図4は、図3の実施例に於ける巻線制御回路5と
ステッピングモータ6及び回転摺動抵抗器により構成し
た分圧抵抗を変化させる手段をアップダウンカウンタ3
4と抵抗32a〜32i,スイッチ33b〜33iを用
いて構成したものである。図4の実施例では、抵抗32
a〜32iの抵抗値をR32aからR32iまで2進数に従い
増加させる事で、256段階の抵抗値が得られ、抵抗3
1,32,16による分圧比を判別回路4の出力ΔV4
=V4a−V4b に従って調整する事が出来る。図4の実
施例によれば、機械的部品による遅延,バックラシュ等
が無く、より高速な分圧比の調整ができる。
Another embodiment of the present invention will be described with reference to FIG. FIG. 4 shows an up / down counter 3 which is a means for changing the voltage dividing resistance constituted by the winding control circuit 5, the stepping motor 6 and the rotary sliding resistor in the embodiment of FIG.
4 and resistors 32a to 32i and switches 33b to 33i. In the embodiment of FIG. 4, the resistor 32
By increasing the resistance value of a to 32i from R 32a to R 32i in accordance with a binary number, a resistance value of 256 levels can be obtained, and the resistance 3
The division ratio by 1, 32, 16 is output by the discrimination circuit 4 ΔV 4
= It can be adjusted according to the V 4a -V 4b. According to the embodiment of FIG. 4, there is no delay due to mechanical parts, backlash, etc., and the division ratio can be adjusted faster.

【0039】本発明の別の一実施例を図5を用いて説明
する。図5は、図1の実施例に加えて、V2aを印加した
ときのV1とV2の差電圧を出力する回路を差動増幅器4
1,スイッチ42,コンデンサ43,演算増幅器44に
より構成したものである。定温度制御回路1のV1,V2
端子間は流量計動作時に於いて発熱抵抗体が接続され加
熱制御されるものであるから、電流検出抵抗1aの電圧
2とVH=V1−V2との間には発熱抵抗体の抵抗値をR
Hとすると、
Another embodiment of the present invention will be described with reference to FIG. In addition to the embodiment of FIG. 1, FIG. 5 shows a circuit that outputs a voltage difference between V 1 and V 2 when V 2a is applied.
1, a switch 42, a capacitor 43, and an operational amplifier 44. V 1 and V 2 of the constant temperature control circuit 1
Since a heating resistor is connected between the terminals to control heating during operation of the flowmeter, a heating resistor is connected between the voltage V 2 of the current detection resistor 1a and V H = V 1 -V 2 . Resistance value is R
If H ,

【0040】[0040]

【数14】 [Equation 14]

【0041】が成立する。又、温度依存抵抗体である発
熱抵抗体の温度係数をα、0℃に於ける抵抗値をRH0
すると、抵抗値RHは、発熱抵抗体の温度THを用いて、
Is satisfied. Further, when the temperature coefficient of the heating resistor which is a temperature dependent resistor is α and the resistance value at 0 ° C. is R H0 , the resistance value R H is obtained by using the temperature T H of the heating resistor.

【0042】[0042]

【数15】 [Equation 15]

【0043】と表わされるので、V2a印加時のVH をサ
ンプルホールドする事により定温度制御回路1の設定す
る発熱抵抗体の制御温度を知る事が出来る。定温度制御
回路1の入力オフセット電圧は調整抵抗1d,1eによ
り調整され、発熱抵抗体の加熱温度は調整抵抗1b,1
cにより設定され、入力オフセット電圧と加熱温度は互
いに他方の調整より干渉を受けるので、この2つの特性
調整は同時に行なうと良い。図5の発明を実施する事に
より、流量計の定温度制御回路の入力オフセット電圧と
加熱設定温度の両方を連続的且つ同時に測定する事がで
きるので、定温度型熱線式空気流量計の応答性と発熱抵
抗体の加熱設定温度を迅速に調整する事が出来る。
Therefore, the control temperature of the heating resistor set by the constant temperature control circuit 1 can be known by sample-holding V H when V 2a is applied. The input offset voltage of the constant temperature control circuit 1 is adjusted by the adjusting resistors 1d and 1e, and the heating temperature of the heating resistor is adjusted by the adjusting resistors 1b and 1e.
Since the input offset voltage and the heating temperature are set by c and interfere with each other due to the adjustment of the other, these two characteristic adjustments should be performed simultaneously. By implementing the invention of FIG. 5, both the input offset voltage of the constant temperature control circuit of the flowmeter and the heating set temperature can be measured continuously and simultaneously, so the responsiveness of the constant temperature hot wire air flowmeter And the heating set temperature of the heating resistor can be quickly adjusted.

【0044】[0044]

【発明の効果】本発明を実施する事により、定温度制御
回路の入力オフセット電圧を直接に精度良く測定する事
が出来るので、空気を流し流量を変化させる事無く定温
度型熱線式空気流量計の応答性を、知ることが出来、分
圧抵抗の分圧比を自動調整することにより常に精度の良
い測定値を得る事ができる。又、定温度制御回路の入力
電圧と出力電圧の差をサンプルホールドすることにより
熱線式空気流量計の応答性と発熱抵抗体の加熱設定温度
を電子回路のみの特性として調整する事ができるので、
熱線式空気流量計を組み立てて空気を流す事無く定温度
制御回路の調整を精度良く迅速に行う事が出来る。
By implementing the present invention, the input offset voltage of the constant temperature control circuit can be directly measured with high accuracy, so that a constant temperature hot wire type air flow meter can be used without flowing air and changing the flow rate. The responsiveness of can be known, and by automatically adjusting the voltage dividing ratio of the voltage dividing resistor, it is possible to always obtain an accurate measured value. In addition, since the difference between the input voltage and the output voltage of the constant temperature control circuit is sampled and held, the response of the hot wire air flow meter and the heating set temperature of the heating resistor can be adjusted as the characteristics of the electronic circuit only.
The hot wire type air flow meter can be assembled and the constant temperature control circuit can be adjusted accurately and quickly without flowing air.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の回路構成図である。FIG. 1 is a circuit configuration diagram of an embodiment of the present invention.

【図2】図1の実施例のタイミングチャートである。FIG. 2 is a timing chart of the embodiment of FIG.

【図3】本発明の別の一実施例の回路構成図である。FIG. 3 is a circuit configuration diagram of another embodiment of the present invention.

【図4】本発明の別の一実施例の回路構成図である。FIG. 4 is a circuit configuration diagram of another embodiment of the present invention.

【図5】本発明の別の一実施例の回路構成図である。FIG. 5 is a circuit configuration diagram of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…定温度制御回路、2…飽和検出回路、3…方向検出
回路、4…判別回路、5…巻線制御回路、6…ステッピ
ングモータ。
1 ... Constant temperature control circuit, 2 ... Saturation detection circuit, 3 ... Direction detection circuit, 4 ... Discrimination circuit, 5 ... Winding control circuit, 6 ... Stepping motor.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】定温度型熱線式空気流量計に於いて、発熱
抵抗体の定温度制御回路に大小二種類の電圧を交互に印
加し、各々の入力電圧に対する定温度制御回路の出力電
圧を定温度制御回路の増幅率に近い分圧比を持つ分圧抵
抗で分圧して得る電圧と定温度制御回路に入力した電圧
の差を増幅して得る電圧を各入力に対してサンプルホー
ルドし各々の電圧を演算増幅する事を特徴とするオフセ
ット電圧測定装置。
1. In a constant temperature hot wire type air flow meter, two kinds of voltage, large and small, are alternately applied to a constant temperature control circuit of a heating resistor, and an output voltage of the constant temperature control circuit for each input voltage is changed. The voltage obtained by dividing the voltage obtained by dividing the voltage with a voltage divider having a voltage division ratio close to the amplification factor of the constant temperature control circuit and the voltage obtained by amplifying the voltage input to the constant temperature control circuit is sample-held for each input. An offset voltage measuring device characterized by arithmetically amplifying voltage.
【請求項2】定温度制御回路の出力電圧を分圧する分圧
抵抗を可変抵抗により構成し、その分圧比が定温度制御
回路の設定する発熱抵抗体と電流検出抵抗の比に等しく
なる様に可変抵抗を自動調整する事を特徴とする請求項
1記載のオフセット電圧測定装置。
2. A voltage dividing resistor for dividing the output voltage of the constant temperature control circuit is constituted by a variable resistor so that the voltage dividing ratio becomes equal to the ratio of the heating resistor and the current detecting resistor set by the constant temperature control circuit. The offset voltage measuring device according to claim 1, wherein the variable resistance is automatically adjusted.
【請求項3】定温度制御回路の出力を分圧する分圧抵抗
をステッピングモータにより駆動される摺動可変抵抗に
より構成し、その分圧比が定温度制御回路の増幅率に等
しくなる様にステッピングモータを制御する事を特徴と
する請求項1記載のオフセット電圧測定装置。
3. A stepping motor in which a voltage dividing resistor for dividing the output of the constant temperature control circuit is constituted by a sliding variable resistor driven by a stepping motor, and the voltage dividing ratio is equal to the amplification factor of the constant temperature control circuit. The offset voltage measuring device according to claim 1, wherein the offset voltage measuring device is controlled.
【請求項4】定温度制御回路の出力を分圧する分圧抵抗
を固定抵抗とカウンターにより制御されるスイッチによ
り構成し、その分圧比が定温度制御回路の増幅率に等し
くなる様にカウンターを制御する事を特徴とする請求項
1記載のオフセット電圧測定装置。
4. A voltage dividing resistor for dividing the output of the constant temperature control circuit is composed of a fixed resistor and a switch controlled by the counter, and the counter is controlled so that the voltage dividing ratio becomes equal to the amplification factor of the constant temperature control circuit. The offset voltage measuring device according to claim 1, wherein
【請求項5】定温度制御回路の出力を分圧する分圧抵抗
の分圧と定温度制御回路に入力した電圧の差を増幅する
回路が飽和した事を検出し、飽和条件に基づき分圧抵抗
の分圧比の調整方向を決める事を特徴とする請求項1記
載のオフセット電圧測定装置。
5. A voltage dividing resistor is detected based on a saturation condition by detecting saturation of a circuit for amplifying a difference between a voltage dividing resistor for dividing the output of the constant temperature control circuit and a voltage input to the constant temperature control circuit. 2. The offset voltage measuring device according to claim 1, wherein the adjusting direction of the voltage division ratio is determined.
【請求項6】定温度制御回路に大小2種類の入力電圧を
交互に印加して入力オフセット電圧を検出すると同時
に、定温度制御回路の出力電圧と入力電圧の差をサンプ
ルホールドして定温度制御回路の増幅率を検出する事を
特徴とする請求項1記載のオフセット電圧測定装置。
6. A constant temperature control circuit is applied with two types of input voltage, large and small, alternately to detect an input offset voltage, and at the same time, a difference between the output voltage of the constant temperature control circuit and the input voltage is sample-held to perform constant temperature control. The offset voltage measuring device according to claim 1, wherein the amplification factor of the circuit is detected.
JP3289721A 1991-11-06 1991-11-06 Offset voltage measuring device Pending JPH05142006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3289721A JPH05142006A (en) 1991-11-06 1991-11-06 Offset voltage measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3289721A JPH05142006A (en) 1991-11-06 1991-11-06 Offset voltage measuring device

Publications (1)

Publication Number Publication Date
JPH05142006A true JPH05142006A (en) 1993-06-08

Family

ID=17746895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3289721A Pending JPH05142006A (en) 1991-11-06 1991-11-06 Offset voltage measuring device

Country Status (1)

Country Link
JP (1) JPH05142006A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110035959A1 (en) * 2009-08-13 2011-02-17 Maguire Products, Inc. Gas flow rate determination method and apparatus and granular material dryer and method for control thereof
US10539366B2 (en) 2014-04-30 2020-01-21 Stephen B. Maguire Method and apparatus for vacuum drying granular resin material
US11203133B2 (en) 2018-04-04 2021-12-21 Novatec, Inc. Method and apparatus for polymer drying using inert gas
US11364657B2 (en) 2018-04-04 2022-06-21 Novatec, Inc. Reducing moisture in granular resin material using inert gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110035959A1 (en) * 2009-08-13 2011-02-17 Maguire Products, Inc. Gas flow rate determination method and apparatus and granular material dryer and method for control thereof
US8141270B2 (en) * 2009-08-13 2012-03-27 Maguire Products, Inc. Gas flow rate determination method and apparatus and granular material dryer and method for control thereof
US10539366B2 (en) 2014-04-30 2020-01-21 Stephen B. Maguire Method and apparatus for vacuum drying granular resin material
US11203133B2 (en) 2018-04-04 2021-12-21 Novatec, Inc. Method and apparatus for polymer drying using inert gas
US11364657B2 (en) 2018-04-04 2022-06-21 Novatec, Inc. Reducing moisture in granular resin material using inert gas

Similar Documents

Publication Publication Date Title
CA2455102C (en) Sensor temperature control in a thermal anemometer
US4082998A (en) Dual slope integration circuit
US5753815A (en) Thermo-sensitive flow sensor for measuring flow velocity and flow rate of a gas
JPH07159460A (en) Input device for resistance sensor
CN108490373B (en) A fully automatic zero-adjusting electronic impulse current meter and its zero-adjusting method
JPH05142006A (en) Offset voltage measuring device
JP3580817B2 (en) Measuring amplifier
JP3081751B2 (en) Electric quantity measuring device
JP3559323B2 (en) Method for determining a measured value representing the current flowing through a load in a vehicle
CN111051831B (en) Current-based temperature measurement apparatus and method
JPS62261968A (en) Measuring instrument for physical quantity
SU1397743A1 (en) Multipoint digital thermometer
JP3321966B2 (en) Time ratio detection circuit
US20060021442A1 (en) Method of operating a resistive heat-loss pressure sensor
JPH0537248Y2 (en)
JPH0583135A (en) Double integral type a/d converter
JPH0365626A (en) Measuring apparatus of temperature
JPH0546090Y2 (en)
SU1688191A1 (en) Device for measuring high resistances
JP2588304B2 (en) Jitter analyzer
SU1167450A1 (en) Pulsed thermal noise thermometer
JPH0443791Y2 (en)
JPS6093933U (en) temperature measuring device
JPH0833775B2 (en) Temperature / frequency converter
JP2003107115A (en) Circuit capacity measuring circuit