JPH05141975A - Survey measurement standard and surveying method utilizing it - Google Patents
Survey measurement standard and surveying method utilizing itInfo
- Publication number
- JPH05141975A JPH05141975A JP33570091A JP33570091A JPH05141975A JP H05141975 A JPH05141975 A JP H05141975A JP 33570091 A JP33570091 A JP 33570091A JP 33570091 A JP33570091 A JP 33570091A JP H05141975 A JPH05141975 A JP H05141975A
- Authority
- JP
- Japan
- Prior art keywords
- reference points
- survey
- point
- distance
- measurement point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Radar Systems And Details Thereof (AREA)
- Measurement Of Optical Distance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、田畑、宅地、造成地等
の土地や地形を計測する測量方法及び装置に関し、更に
詳細には、測量地に赴いて一人で正確な測量ができる測
量の方法とその装置を提供するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surveying method and device for measuring land and topography such as fields, residential land, and land reclamation. More specifically, the present invention relates to a surveying method that enables a person to go to a surveying site and make accurate surveys by himself. A method and an apparatus therefor are provided.
【0002】[0002]
【従来の技術】従来、土地、地形等の測量は、二人が一
組となり、その一人がミラ−を付けたポ−ルを持って測
点に立ち、もう一方の者がトランシットや測距儀等で角
度、距離を読み、その計測結果から、実測図や面積の求
積及び測点位置の割出し等を行なっている。そして、そ
の器具もトランシット等の改良により、計測したデ−タ
が自動的に計算がなされる省力的改良がなされている。
しかし、この改良された機械器具であっても、測量作業
に当っては必ず二人がペアを組まねばならないことは従
来通りであり、しかも、この作業は測点を結ぶ順番を知
ったポ−ルマンと、測量機器を熟知した観測者の夫々専
門知識を有する技術者でなければならず、病気、仕事の
都合等で一方が欠けると、他の者は作業ができない等の
不便が多いものであった。加えて、人手不足が深刻化し
ており、技術者の養成に時間がかかり、測量作業の効率
を図る策が要望されていた。2. Description of the Related Art Conventionally, two people in a set measure land, topography, etc., one of whom stands at a measuring point with a pole with a mirror attached, and the other person takes a transit or a distance measurement. Angles and distances are read by a ceremonial device, etc., and the measured results are used to calculate the actual area, calculate the area, and calculate the position of the measuring point. The instrument is also improved in labor saving by improving the transit etc. so that the measured data is automatically calculated.
However, even with this improved machine / equipment, it is the same as before that two people must always make a pair in a surveying work, and this work is a port that knows the order of connecting the measuring points. Le Mans and an observer who is familiar with surveying instruments must be engineers with specialized knowledge, and if one is lacking due to illness or work, there are many inconveniences, such as the other being unable to work. there were. In addition, the shortage of manpower has become serious, it took time to train engineers, and there was a demand for measures to improve the efficiency of surveying work.
【0003】[0003]
【発明が解決しようとする課題】本発明は、上記実情に
基づいてなされたもので、測量地に赴いて、一人で正確
な作業ができる方法及びそれを用いた装置を開発せんと
するものである。SUMMARY OF THE INVENTION The present invention has been made based on the above-mentioned circumstances, and is intended to develop a method and an apparatus using the method, which enables a person to go to a surveying place and perform an accurate work. is there.
【0004】[0004]
【課題を解決するための手段】本発明測量用基準器は、
平行光線を反対方向に反射するプリズム型の反射器を球
状に組合せて20面体とし、全方向からの赤外線又はレ
−ザ−光線を反射する反射器を配したことを特徴として
構成される。又、別の態様は、平行光線を反対方向に反
射するプリズム型の反射器を環状に組合せて8面体と
し、360゜に囲僥された方向からの赤外線又はレ−ザ
−光線を反射する反射器を配したことを特徴とする。そ
して、その基準器を利用した本発明測量方法は、a)測
量地域の近傍又はその地域内で測点が見通せる位置に二
箇所以上の基準点を設置し、その基準点間の距離と角度
を予め測定して座標化し、b)該基準点の上に、全方向
又は360゜に囲僥された方向からの赤外線又はレ−ザ
−光線を反射する測量用反射器を設置し、c)測点の上
に赤外線又はレ−ザ−光線を放射して距離を測定可能な
測距儀を設置して、上記基準点のうち二箇所を選んで、
その基準点と測点との距離l1、l2 を測定し、d)上
記基準点間の距離L0 及び基準点と測点との距離l1、
l2 の三辺から、測点のX軸座標及びY軸座標の位置を
求め、e)測点を移し、上記と同様の測量を重ねて、各
々の測点のX軸座標及びY軸座標を順次求めることを特
徴として構成される。その測点のX軸座標及びY軸座標
を求めるには、測定した基準点間の距離L0及び基準点
と測点との距離l1、l2 の値から、 cosγ=L0 2+l2 2−l1 2/2L0l2 を求め、これを、 XP1 =l1cos(α1+γ)+Xk1 YP1 =l1sin(α1+γ)+Yk1 に代入して測点のX軸座標及びY軸座標の位置を求め
る。The surveying standard instrument of the present invention comprises:
A prism type reflector for reflecting parallel rays in the opposite direction is spherically combined to form an icosahedron, and a reflector for reflecting infrared rays or laser rays from all directions is arranged. Another mode is to form an octahedron by combining prism type reflectors that reflect parallel rays in opposite directions into an octahedron and reflect infrared rays or laser rays from a direction surrounded by 360 °. It is characterized by the arrangement of vessels. Then, the surveying method of the present invention using the reference device is: a) installing two or more reference points in the vicinity of the survey area or in a position where the survey point can be seen in the area, and measuring the distance and angle between the reference points. Measure and coordinate in advance, b) install a surveying reflector that reflects infrared rays or laser rays from all directions or directions surrounded by 360 ° on the reference point, and c) measure. Install a rangefinder that can measure the distance by emitting infrared rays or laser rays on the points, and select two points from the above reference points,
The distances l 1 and l 2 between the reference point and the measurement point are measured, and d) the distance L 0 between the reference points and the distance l 1 between the reference point and the measurement point,
The position of the X-axis coordinate and the Y-axis coordinate of the measuring point is obtained from the three sides of l 2 , and e) the measuring point is moved, the same survey as above is overlapped, and the X-axis coordinate and the Y-axis coordinate of each measuring point. It is characterized by sequentially obtaining. To obtain the X-axis coordinate and the Y-axis coordinate of the measurement point, cosγ = L 0 2 + l 2 from the measured distance L 0 between the reference points and the distances l 1 and l 2 between the reference point and the measurement point. 2 −l 1 2 / 2L 0 l 2 is obtained, and this is substituted into X P1 = l 1 cos (α 1 + γ) + X k1 Y P1 = l 1 sin (α 1 + γ) + Y k1 to measure X The position of the axis coordinate and the Y-axis coordinate is obtained.
【0005】[0005]
【作用】本発明基準器は、プリズム型の反射器を球状に
組合せて20面体とし、全方向からの平行光線を反対方
向に反射するので、測距儀をどの方向から用いても、放
射される赤外線又はレ−ザ−光線を反射してその測量を
可能にする。又、プリズム型の反射器を環状に組合せて
8面体とした反射器は、360゜に囲僥された方向に対
応して反射するので、その範囲で測距儀を用いれば赤外
線又はレ−ザ−光線を反射して、通常の測量には充分対
応できる。上記反射器を利用して、本発明測量方法は、
測量地域の近傍又はその地域内で測点が見通せる位置に
立って、設定した基準点間の距離と角度を予め測定し、
これを座標化しておく。次いで、赤外線又はレ−ザ−光
線を放射して距離を測定可能な測距儀を用いて、上記基
準点K1との距離l1 と基準点Bとの距離l2 との距離
を測定する。すると、基準点間の距離L0 及び基準点と
測点との距離l1、l2 から、 cosγ=L0 2+l2 2−l1 2/2L0l2 を求め、これを、 XP1 =l1cos(α1+γ)+Xk1 YP1 =l1sin(α1+γ)+Yk1 に代入して、測点のX軸座標及びY軸座標の位置を求め
ることができる。このとき、全方向に向って反射可能な
上記反射器によって、観測者はどの位置に立っても、測
点と基準点との距離を測量することが可能であるから、
基準点に向けて測距儀を操作することで、一人で測量が
可能となる。In the reference device of the present invention, prism type reflectors are combined in a spherical shape to form an icosahedron, and parallel rays from all directions are reflected in the opposite directions. Therefore, no matter which direction the rangefinder is used, it is emitted. It reflects infrared rays or laser rays and makes it possible to measure them. Also, since the prism-shaped reflectors are combined into a ring and formed into an octahedron, the reflectors reflect in the direction surrounded by 360 °, so if a rangefinder is used in that range, infrared rays or a laser beam will be emitted. -Reflects light rays and is adequate for normal surveying. Utilizing the above reflector, the surveying method of the present invention,
Standing in the vicinity of the survey area or at a position where the survey point can be seen in the area, measure the distance and angle between the set reference points in advance,
This is converted into coordinates. Then, the distance between the reference point K 1 and the reference point B 1 and the distance l 2 is measured using a rangefinder capable of radiating infrared rays or laser rays to measure the distance. .. Then, from the distance L 0 between the reference points and the distances l 1 and l 2 between the reference points and the measurement points, cosγ = L 0 2 + l 2 2 −l 1 2 / 2L 0 l 2 is obtained, and this is given by X P1 = L 1 cos (α 1 + γ) + X k1 Y P1 = l 1 sin (α 1 + γ) + Y k1 can be substituted to obtain the positions of the X-axis coordinate and the Y-axis coordinate of the measurement point. At this time, the above-mentioned reflector capable of reflecting in all directions allows the observer to measure the distance between the measurement point and the reference point at any position.
By operating the rangefinder toward the reference point, it is possible to do the survey by yourself.
【0006】[0006]
【実施例】本発明の実施例を図面を基に説明すると、本
発明基準器は、例えば図3に示す如く、安定して支持可
能な三脚の支持脚3を有し、その上に水平に調整可能な
固定台4を設けて、水平度を保つようにする。そして、
その固定台4の上に垂直な支持棒5を立て、その上に反
射器2を連結し、頭上には遠方からの視認の為の目印6
を立設する。そして、反射器2は、赤外線又はレ−ザ−
光線を反射するもので、平行する入射光を逆方向に反射
するよう頂角を45度にした三角錐型のプリズム2aを
用い、これを図1に示す如く、全方向からの光波に対応
できるよう、三角形を球状に組合せて表面を20面体に
形成し、内側に頂角45度の錐形を伸す。即ち、入射し
た光波が、球状に展開した三角面のいずれかに入射し、
プリズムの屈折作用で交差角45度の面を跨いで反対方
向に反射する構造とする。又、高低差のあまり激しくな
い地域の場合には、図2に示す如く、周囲360度から
の光に対応できるよう環状に連ねて8面体に形成し、内
側に錐形を伸す。この場合、三角錐の向きは上下に分れ
るため、90度程度の高低差には充分対応できるので、
極端に高低差を有するところ以外は全て対応できる構造
となる。DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the drawings, an embodiment of the present invention will be described below. The reference device of the present invention has, as shown in, for example, FIG. An adjustable fixing base 4 is provided to maintain the levelness. And
A vertical support rod 5 is erected on the fixed base 4, the reflector 2 is connected on the vertical support rod 5, and a mark 6 is provided above the head for visual recognition from a distance.
To stand. The reflector 2 is an infrared ray or a laser.
A triangular pyramid prism 2a that reflects light rays and has an apex angle of 45 degrees so as to reflect parallel incident light in the opposite direction is used, and this can handle light waves from all directions as shown in FIG. As described above, the surface is formed into an icosahedron by combining the triangles in a spherical shape, and a pyramid having an apex angle of 45 degrees is extended inside. That is, the incident light wave is incident on one of the spherical triangular surfaces,
Due to the refraction effect of the prism, the structure is such that it is reflected in the opposite direction across a surface having an intersection angle of 45 degrees. Further, in the case of a region where the height difference is not so severe, as shown in FIG. 2, it is formed into an octahedron in a ring shape so as to correspond to light from the surrounding 360 degrees, and a pyramid shape is extended inward. In this case, since the direction of the triangular pyramid is divided into upper and lower, it is possible to sufficiently cope with a height difference of about 90 degrees.
The structure will be able to handle everything except where the height difference is extremely high.
【0007】次に、本発明の測量方法を説明すると、先
ず、図4に示す如く、田畑、宅地、造成地等の対象とな
る測量地域Sの近傍又はその地域内で測点が見通せる位
置に、基準点K1,K2,K3・・・を二箇所以上設定
し、その真上に赤外線又はレ−ザ−光線を反射できる上
記基準器2を設置する。この基準点K1,K2,K3・・
・の設定は、対象となる測量地域Sの広さや地形によっ
て異なるが、比較的狭い地域の場合には、測量地域Sの
近くで境界線や標識が見通せる位置に、二箇所設定す
る。そして、測量地域Sがもっと広くなり二箇所では全
体を見通せない場合には、更に基準点をK2,K3 ,K4
・・・と、その数を増やして行く。又、基準点K1,
K2,K3・・・は、周囲が崖や山地となって設定に不適
な場合には、測量地域S内に設けても良く、このときも
測点P1,P2,P3・・・が見通せる位置に設定するこ
とは上記と同様である。Next, the surveying method of the present invention will be described. First, as shown in FIG. 4, a surveying point is located in the vicinity of a surveying area S such as a field, a residential land, a land for construction or the like, or a position where the surveying point can be seen in the area. , Reference points K 1 , K 2 , K 3 ... Are set at two or more places, and the above-mentioned reference device 2 capable of reflecting infrared rays or laser rays is installed directly above them. These reference points K 1 , K 2 , K 3 ...
The setting of * depends on the size and topography of the target survey area S, but in the case of a relatively narrow area, two locations are set near the survey area S where the boundaries and signs can be seen. When the survey area S becomes wider and the two areas cannot be seen through, the reference points are set to K 2 , K 3 , K 4
... and increase the number. Also, the reference point K 1 ,
K 2 , K 3, ... May be provided in the surveying area S when the surroundings are not suitable for setting due to cliffs or mountains, and at this time, the measuring points P 1 , P 2 , P 3 Setting the position so that .. can be seen through is the same as above.
【0008】そして、その基準点K1,K2 のXY軸座
標上での位置を求める。その為に、基準点K1,K2 間
の距離とその角度を、測距儀を用いて測定する。図4に
示す如く、基準点K1,K2 を(XK1 ,YK1 ),(XK2
,YK2 )とし、その間の距離をL0、X軸となす角度
をα1 とした場合、 XK2 =L0cosα1 +XK1 YK2 =L0sinα1 +YK1 又、基準点がK3,K4・・・とさらに増える場合には、 αn =θn+αn-1+180゜ であり、これを、 Xn+1 =Lncosα1 +Xn Yn+1 =Lnsinα1 +Yn αn=θn+αn-1+180゜ に代入して、K1,K2 ・・・のX軸及びY軸上の座標
位置を求める。Then, the positions of the reference points K 1 and K 2 on the XY axis coordinates are obtained. Therefore, the distance between the reference points K 1 and K 2 and its angle are measured using a rangefinder. As shown in FIG. 4, the reference points K 1 and K 2 are set to (X K1 , Y K1 ), (X K2
, Y K2 ), the distance between them is L 0 , and the angle formed with the X axis is α 1 , X K 2 = L 0 cos α 1 + X K1 Y K 2 = L 0 sin α 1 + Y K1 when the further increase as K 3, K 4 ··· is αn = θn + αn-1 + 180 °, which, Xn + 1 = Lncosα 1 + Xn Yn + 1 = Lnsinα 1 + Yn αn = substituted in θn + αn-1 + 180 ° Then, the coordinate positions of K 1 , K 2, ... On the X axis and the Y axis are obtained.
【0009】次いで、図5に示す如く、境界点又は標識
等の測点P1 の真上に測距儀を設置し、先ず、上記基準
点K1 に向けて、赤外線又はレ−ザ−光線を放ち、該基
準点K1 と測点P1との距離l1を測定する。次いで、そ
の測点に測距儀を設定したまま、その方向を二つ目の基
準点K2 に向けて赤外線等を放ち、測点P1 と基準点K
2 との距離l2 を測定する。このとき、基準器1を設け
た反射器2は、球状の20面体又は環状の8面体に形成
してあるので、赤外線がどんな方向から放射されても、
いずれかのプリズムがこれを捕促して、逆方向に反射す
る。従って、基準器1は、そのまま基準点K 1,K2 に
固定し、測量者が測点に立って、基準点に向けて測距儀
を操作すれば良いから、従来二人が対面して行なってい
た操作が一人で可能である。Next, as shown in FIG.
Measuring point P such as1 Install a rangefinder just above the
Point K1 Infrared rays or laser rays are emitted toward
Quasipoint K1 And station P1Distance to1To measure. Then,
With the rangefinder still set for the
Quasipoint K2 Infrared rays, etc. are emitted toward the measurement point P1 And reference point K
2 Distance to2 To measure. At this time, the reference device 1 is provided.
The reflector 2 is formed into a spherical icosahedron or an annular octahedron.
Therefore, no matter what direction infrared rays are emitted from,
Either prism catches this and reflects it in the opposite direction
It Therefore, the reference device 1 is the reference point K as it is. 1, K2 To
Fix it and let the surveyor stand at the measuring point and aim the rangefinder toward the reference point.
It is only necessary to operate
The operation can be done by one person.
【0010】更に、測点P1 のX軸座標及びY軸座標を
求める為、上記で測定した基準点間の距離L0 及び基準
点と測点との距離l1、l2 の三辺の値から、余弦定理
を用いて、 cosγ=L0 2+l2 2−l1 2/2L0l2 を求める。これを、 XP1 =l1cos(α1+γ)+Xk1 YP1 =l1sin(α1+γ)+Yk1 (但しα1>90゜の場合は、α1に代えてα1−90゜
の値を代入する)に代入して、測点P1 のX軸座標及び
Y軸座標の位置を求める。この測量は、角度によらず、
三辺の計測値のみから座標位置を求めることができるの
で、計測が単純化され、熟練のない者でも比較的容易に
計測できる。Further, in order to obtain the X-axis coordinates and the Y-axis coordinates of the measuring point P 1 , the distance L 0 between the reference points measured above and the distances l 1 , l 2 between the reference point and the measuring point are three sides. From the values, cos γ = L 0 2 + l 2 2 -l 1 2 / 2L 0 l 2 is calculated using the cosine theorem. This, X P1 = l 1 cos ( α 1 + γ) + X k1 Y P1 = l 1 sin (α 1 + γ) + Y k1 ( where alpha 1> For 90 °, instead of the α 1 α 1 -90 ° (Substituting the value of) for the position of X-axis coordinate and Y-axis coordinate of the measurement point P 1 . This survey is independent of the angle
Since the coordinate position can be obtained only from the measured values on the three sides, the measurement is simplified, and even an unskilled person can relatively easily perform the measurement.
【0011】次いで、次の測点の位置を測定する為、測
点をP2 に移し、測距儀を移動させる。そして、そこか
ら上記と同様に、基準点K1,K2 に向けて赤外線又は
レ−ザ−光線を放って、その距離を測定する。その際、
測点の移動により、基準点K1,K2 が測点から見通せ
ない場合があるが、そうした場合には、その基準点をK
1,K2 からK2,K3 に変更する等して、その測点から
見通せる最も望ましい位置の基準点を選択すれば良い。
そうして、この基準点の位置を基に測点をP3 ,P4 ・
・・から順々に移動させ、各々の測点の計測を重ね、X
軸座標及びY軸座標を求めて行く。従って、どんな地形
の測量地域にも対応でき、且つ、基準点の移動には、距
離測定専用の計測器を開発すれば軽量化されるから、重
い器材を運ぶことなく、動きが容易になる。Next, in order to measure the position of the next measuring point, the measuring point is moved to P 2 and the rangefinder is moved. Then, similarly to the above, infrared rays or laser rays are emitted toward the reference points K 1 and K 2 and the distance is measured. that time,
The reference points K 1 and K 2 may not be visible from the measurement point due to the movement of the measurement point.
By changing from 1 , K 2 to K 2 , K 3 , etc., the reference point at the most desirable position that can be seen from the measured point may be selected.
Then, based on the position of this reference point, the measurement points are set to P 3 , P 4 ,.
.. are moved in sequence from, and measurement of each measuring point is repeated, X
Axial coordinates and Y-axis coordinates are obtained. Therefore, it can be applied to any terrain survey area, and the movement of the reference point can be facilitated without carrying heavy equipment because the weight of the reference point can be reduced by developing a measuring instrument dedicated to distance measurement.
【0012】こうして得たデ−タは、測距儀と演算器と
を組合せて、その場で解析できるようにするのが望まし
いが、大型化してしまう場合には、そのデ−タを持帰
り、コンピュ−タ−に入力して解析するようにしても良
い。It is desirable that the data thus obtained can be analyzed on the spot by combining a rangefinder and a computing unit. However, if the data becomes large, bring it back. , May be input to the computer for analysis.
【0013】[0013]
【発明の効果】以上の構成に基づく本発明は、独自の基
準器とそれを使用した測量方法を開発したので、測距儀
で距離さえ測定すれば一人で測量が可能となり、測量の
効率を大幅に向上させることができる。その際、専用の
測距儀を開発すれば、従来は距離と角度を測定するため
かなりの重量物になっていたものを、距離専用のため軽
量化でき、現場で持回る際に極めて軽便になる。又、距
離を測定するだけの作業に単純化されたため作業がやり
易く、収集したデ−タをコンピュ−タ−で解析すれば良
いので、熟練を要さない。The present invention based on the above configuration has developed a unique reference device and a surveying method using the same. Therefore, if the distance is measured with a rangefinder, the surveying can be performed by one person, and the efficiency of the surveying can be improved. It can be greatly improved. At that time, if a special rangefinder is developed, it can be made lighter than the conventional heavy weight for measuring distance and angle, but it is extremely convenient when carrying around on site. Become. Further, since the work is simplified to only measure the distance, the work is easy to perform, and the collected data may be analyzed by a computer, so no skill is required.
【図1】本発明基準器の反射器を示す正面図である。FIG. 1 is a front view showing a reflector of a reference device of the present invention.
【図2】本発明基準器の反射器の別の態様を示す正面図
である。FIG. 2 is a front view showing another embodiment of the reflector of the reference device of the present invention.
【図3】本発明基準器の全体を示す正面図である。FIG. 3 is a front view showing the entire standard of the present invention.
【図4】本発明測量方法の一部をなす基準点の設定方法
を表わす模式的平面図である。FIG. 4 is a schematic plan view showing a method of setting reference points, which is a part of the surveying method of the present invention.
【図5】本発明測量方法の一例を表わす模式的平面図で
ある。FIG. 5 is a schematic plan view showing an example of the surveying method of the present invention.
1 基準器 2 反射器 2a プリズム 3 三脚 4 固定台 6 目印 1 Reference device 2 Reflector 2a Prism 3 Tripod 4 Fixing stand 6 Mark
Claims (4)
を球状に組合せて20面体とし、全方向からの赤外線又
はレ−ザ−光線を反射する反射器を配したことを特徴と
する測量用基準器。1. A surveying standard characterized in that a prism for reflecting parallel rays in opposite directions is spherically combined to form an icosahedron, and a reflector for reflecting infrared rays or laser rays from all directions is arranged. vessel.
を環状に組合せて8面体とし、360゜に囲僥された方
向からの赤外線又はレ−ザ−光線を反射する反射器を配
したことを特徴とする測量用基準器。2. An octahedron is formed by combining prisms for reflecting parallel rays in opposite directions in an annular shape, and a reflector for reflecting infrared rays or laser rays from a direction surrounded by 360 ° is arranged. A standard instrument for surveying.
点が見通せる位置に二箇所以上の基準点を設置し、その
基準点間の距離と角度を予め測定して座標化し、 b)該基準点の上に、全方向又は360゜に囲僥された
方向からの赤外線又はレ−ザ−光線を反射する測量用基
準器を設置し、 c)測点の上に赤外線又はレ−ザ−光線を放射して距離
を測定可能な測距儀を設置して、上記基準点のうち二箇
所を選んで、その基準点と測点との距離l1、l2を測定
し、 d)上記基準点間の距離L0 及び基準点と測点との距離
l1、l2 の三辺から、測点のX軸座標及びY軸座標の
位置を求め、 e)測点を移し、上記と同様の測量を重ねて、各々の測
点のX軸座標及びY軸座標を順次求めることを特徴とす
る測量方法。3. A) Two or more reference points are installed near the survey area or in a position where the survey points can be seen in the area, and the distance and angle between the reference points are measured in advance and coordinated, and b). A measuring standard for reflecting infrared rays or laser rays from all directions or a direction surrounded by 360 ° is installed on the reference point, and c) infrared rays or laser is placed on the measuring point. -Installing a rangefinder capable of emitting a ray to measure the distance, selecting two positions from the above-mentioned reference points, and measuring the distances l 1 and l 2 between the reference point and the measurement point, d) From the three sides of the distance L 0 between the reference points and the distances l 1 and l 2 between the reference point and the measurement point, find the position of the X-axis coordinate and the Y-axis coordinate of the measurement point, and e) move the measurement point, and A surveying method, characterized in that the same surveying is repeated and the X-axis coordinate and the Y-axis coordinate of each measurement point are sequentially obtained.
と測点との距離l1、l2 の値から、 cosγ=L0 2+l2 2−l1 2/2L0l2 を求め、これを、 XP1 =l1cos(α1+γ)+Xk1 YP1 =l1sin(α1+γ)+Yk1 に代入して測点のX軸座標及びY軸座標を求める請求項
3記載の測量方法。4. From the measured distance L 0 between the reference points and the values of the distances l 1 and l 2 between the reference points and the measurement points, cosγ = L 0 2 + l 2 2 −l 1 2 / 2L 0 l 2 4. An X-axis coordinate and a Y-axis coordinate of a measurement point are obtained by substituting this into X P1 = l 1 cos (α 1 + γ) + X k1 Y P1 = l 1 sin (α 1 + γ) + Y k1. The survey method described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33570091A JPH05141975A (en) | 1991-11-25 | 1991-11-25 | Survey measurement standard and surveying method utilizing it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33570091A JPH05141975A (en) | 1991-11-25 | 1991-11-25 | Survey measurement standard and surveying method utilizing it |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05141975A true JPH05141975A (en) | 1993-06-08 |
Family
ID=18291507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33570091A Pending JPH05141975A (en) | 1991-11-25 | 1991-11-25 | Survey measurement standard and surveying method utilizing it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05141975A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19530809A1 (en) * | 1995-08-22 | 1997-02-27 | Leica Ag | Arrangement for retroreflection of radiation with triple prisms |
JP2000304538A (en) * | 1999-04-22 | 2000-11-02 | Imada Shoji Kk | Light reflection device for survey device |
JP2010085217A (en) * | 2008-09-30 | 2010-04-15 | Jitta:Kk | Method and calculating apparatus for surveying |
KR100973591B1 (en) * | 2010-02-23 | 2010-08-02 | 주식회사 고원항공정보 | Measurement target for confirming the position of the undergrounded equipment |
KR101143513B1 (en) * | 2011-07-11 | 2012-05-09 | 김은주 | Electronic dist measure used for the site survey applying trilateration and resection |
KR101143507B1 (en) * | 2011-07-11 | 2012-05-09 | 김은주 | Measure prism used for the site survey applying trilateration and resection |
KR101349381B1 (en) * | 2013-10-28 | 2014-01-13 | 주식회사 한국에스지티 | Apparatus for operating management system of measuring position of construction in water and sewage underground facility using gps |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS577668A (en) * | 1980-06-16 | 1982-01-14 | Nippon Telegr & Teleph Corp <Ntt> | Switching connection device for telephone set and telephone-circuit utilizing equipment to telephone circuit |
JPS62288513A (en) * | 1986-06-07 | 1987-12-15 | Tokyo Optical Co Ltd | surveying equipment |
JPH0259417B2 (en) * | 1982-06-24 | 1990-12-12 | Terumo Corp |
-
1991
- 1991-11-25 JP JP33570091A patent/JPH05141975A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS577668A (en) * | 1980-06-16 | 1982-01-14 | Nippon Telegr & Teleph Corp <Ntt> | Switching connection device for telephone set and telephone-circuit utilizing equipment to telephone circuit |
JPH0259417B2 (en) * | 1982-06-24 | 1990-12-12 | Terumo Corp | |
JPS62288513A (en) * | 1986-06-07 | 1987-12-15 | Tokyo Optical Co Ltd | surveying equipment |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19530809A1 (en) * | 1995-08-22 | 1997-02-27 | Leica Ag | Arrangement for retroreflection of radiation with triple prisms |
JP2000304538A (en) * | 1999-04-22 | 2000-11-02 | Imada Shoji Kk | Light reflection device for survey device |
JP2010085217A (en) * | 2008-09-30 | 2010-04-15 | Jitta:Kk | Method and calculating apparatus for surveying |
KR100973591B1 (en) * | 2010-02-23 | 2010-08-02 | 주식회사 고원항공정보 | Measurement target for confirming the position of the undergrounded equipment |
KR101143513B1 (en) * | 2011-07-11 | 2012-05-09 | 김은주 | Electronic dist measure used for the site survey applying trilateration and resection |
KR101143507B1 (en) * | 2011-07-11 | 2012-05-09 | 김은주 | Measure prism used for the site survey applying trilateration and resection |
KR101349381B1 (en) * | 2013-10-28 | 2014-01-13 | 주식회사 한국에스지티 | Apparatus for operating management system of measuring position of construction in water and sewage underground facility using gps |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9858712B2 (en) | System and method capable of navigating and/or mapping any multi-dimensional space | |
Lichti | Ground-based laser scanners: operation, systems and applications | |
US5110202A (en) | Spatial positioning and measurement system | |
CN106093954A (en) | A kind of Quick Response Code laser ranging vehicle positioning method and equipment thereof | |
US20070064246A1 (en) | Method and system for determining the spatial position of a hand-held measuring appliance | |
JP6910511B2 (en) | Laser measurement method, laser measurement sign, and coordinate calculation program | |
WO1992003701A1 (en) | Spatial positioning system | |
JP2006162444A (en) | Surveying method, three-dimensional figure creating method, and target for surveying | |
JPH05141975A (en) | Survey measurement standard and surveying method utilizing it | |
Feng | Novel methods for 3-D semi-automatic mapping of fracture geometry at exposed rock faces | |
CN113640758B (en) | SAR image scaler placement method and system under urban complex environment | |
JPH06186036A (en) | Three-dimensional position measuring device | |
KR19990028980A (en) | Ray-reflective devices using triple prisms | |
Mudicka et al. | Application of handheld scanner in documentation of historical buildings | |
WO2010094751A2 (en) | Mobile projection system for scaling and orientation of surfaces surveyed by an optical measuring system | |
CN218824686U (en) | Laser radar and optical camera joint calibration target device | |
US11662432B2 (en) | System and method for positioning of a laser projection system | |
CN114279424B (en) | A ground photogrammetry mark for observing fault activity and its use method | |
JP3451911B2 (en) | Steel frame guidance system using tracking type ranging and goniometer | |
JP3751963B2 (en) | Sphericality judgment method and curved screen construction method | |
JP2020190502A (en) | Landform measuring method and marker for measuring landform | |
CN105652343B (en) | A kind of level formula undersea detection localization method | |
US20230288201A1 (en) | Reference free calibration method for a point cloud measuring module combined with a geodetic single point measurement unit | |
JP2010085217A (en) | Method and calculating apparatus for surveying | |
JP2544546Y2 (en) | Remote object position and distance measurement device |