JPH0514185B2 - - Google Patents
Info
- Publication number
- JPH0514185B2 JPH0514185B2 JP12672285A JP12672285A JPH0514185B2 JP H0514185 B2 JPH0514185 B2 JP H0514185B2 JP 12672285 A JP12672285 A JP 12672285A JP 12672285 A JP12672285 A JP 12672285A JP H0514185 B2 JPH0514185 B2 JP H0514185B2
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- condenser
- gas
- evaporator
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、非共沸混合冷媒を用いたヒートポン
プにおける混合冷媒の組成比調節方法に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for adjusting the composition ratio of a mixed refrigerant in a heat pump using a non-azeotropic refrigerant mixture.
(従来技術)
従来、ヒートポンプにおいては各種の冷媒(ジ
クロロジフルオロメタン:R12、クロロジフルオ
ロメタン:R22など)が用いられているが、これ
らはいずれも一種類の冷媒からなる単一冷媒であ
る。このヒートポンプは、周知のように、凝縮器
にて高圧高温ガス状態の冷媒を凝縮(液化)させ
ることにより、外部熱源(高温側)を昇温させる
一方、膨張弁および蒸発器にて、低圧低温液体状
態の冷媒を蒸発(気化)させることにより、外部
熱源(低温側)を冷却するようにしたものであ
る。そして、このような単一冷媒を用いたヒート
ポンプの凝縮器および蒸発器(向流形)における
熱交換の関係は、第4図のT−S線図のように表
すことができる。すなわち、本図の縦方向には温
度Tを、横方向にはエントロピSをとつてあり、
線分ab,efは凝縮器での冷媒および高温側外部熱
源(例えば、水)の状態変化を、線分cd,ghは
蒸発器での冷媒および低温側の外部熱源(同じ
く、水)の状態変化を示し、単一冷媒ゆえ線分
ab,cdで示される凝縮温度、蒸発温度は一定と
なつている。また、図中矢印は冷媒あるいは外部
熱源の流れに対応し、Δt1、Δt2は外部熱源の蒸
発器あるいは凝縮器の出入口での温度差を表して
いる。(Prior Art) Conventionally, various refrigerants (dichlorodifluoromethane: R12, chlorodifluoromethane: R22, etc.) have been used in heat pumps, but all of these are single refrigerants made of one type of refrigerant. As is well known, this heat pump uses a condenser to condense (liquefy) high-pressure, high-temperature gaseous refrigerant to raise the temperature of an external heat source (high-temperature side), while an expansion valve and an evaporator raise the temperature of a low-pressure, low-temperature gas refrigerant. The external heat source (low temperature side) is cooled by evaporating (vaporizing) a liquid refrigerant. The heat exchange relationship in the condenser and evaporator (countercurrent type) of a heat pump using such a single refrigerant can be expressed as in the T-S diagram in FIG. 4. In other words, the temperature T is plotted in the vertical direction of this figure, and the entropy S is plotted in the horizontal direction.
The line segments ab and ef represent the state changes of the refrigerant and the high-temperature external heat source (e.g., water) in the condenser, and the line segments cd and gh represent the state of the refrigerant and the low-temperature external heat source (also water) in the evaporator. It shows change, and since it is a single refrigerant, it is a line segment.
The condensation temperature and evaporation temperature, indicated by ab and cd, remain constant. Further, the arrows in the figure correspond to the flow of the refrigerant or the external heat source, and Δt 1 and Δt 2 represent the temperature difference at the entrance and exit of the evaporator or condenser of the external heat source.
したがつて、このヒートポンプにおいて、冷媒
を1サイクルさせるのに要する所要動力は、点
a,b,c,dで囲まれた部分の面積(面積
abcdという。以下同様)に比例する。 Therefore, in this heat pump, the required power for one cycle of the refrigerant is the area (area) of the part surrounded by points a, b, c, and d.
It's called abcd. (same below).
ところで、近年ヒートポンプが広範囲に普及す
るにするにつれて、特に大規模な熱利用系への適
用のため、省エネルギに寄与するヒートポンプの
必要性が増し、成績係数COP(=蒸発能力/動
力)の良好なヒートポンプの開発が強く要請され
ていた。 By the way, as heat pumps have become widespread in recent years, the need for heat pumps that contribute to energy conservation has increased, especially for applications in large-scale heat utilization systems, and the need for heat pumps that contribute to energy conservation has increased, with a good coefficient of performance COP (= evaporation capacity / power). There was a strong demand for the development of a heat pump.
そこで、本発明者らは、高沸点冷媒(トリクロ
ロフルオロメタン:R11、ジクロロテトラフルオ
ロエタン:R114など)と低沸点冷媒(R12、R22
など)とを組合わせれば非共沸となり、これを圧
力一定で蒸発(または凝縮)さた場合、蒸発開始
時と終了時で温度が変化する点に着目し、非共沸
混合冷媒(以下、混合冷媒という。)のヒートポ
ンプへの適用について種々研究を行い、以下の様
な分析結果を得た。 Therefore, the present inventors developed high boiling point refrigerants (trichlorofluoromethane: R11, dichlorotetrafluoroethane: R114, etc.) and low boiling point refrigerants (R12, R22, etc.).
When combined with a non-azeotropic refrigerant (such as We conducted various studies on the application of mixed refrigerants (referred to as mixed refrigerants) to heat pumps, and obtained the following analytical results.
上記第4図において、点a,cの温度と負荷側
との温度差(af、ch)を一定とし、さらに負荷側
と冷媒側の温度差が熱交換可能な最小限の値(ピ
ンチ温度差)以上となるようにし、かつ線分ab,
cdの勾配を自由に選択できるとした場合、この
勾配が線分ef,ghの勾配に等しいときに面積
abcdを最小とすることができるため、ヒートポ
ンプのCOPは最も良くなる。第5図は、この最
も良い状態を示し、第4図とは線分ab,cdの勾
配を除き、他は同一である。すなわち、第5図で
はΔt1=ΔTe、Δt2=ΔTc、即ち線分abと線分ef
および線分cdと線分ghがそれぞれ平行となつて
おり、通常ΔTc=約TeとなるためΔt1=約Δt2と
なつている。 In Figure 4 above, the temperature difference (af, ch) between points a and c and the load side is constant, and the temperature difference between the load side and the refrigerant side is the minimum value that allows heat exchange (pinch temperature difference). ) or more, and the line segment ab,
If the slope of cd can be freely selected, if this slope is equal to the slope of line segments ef and gh, then the area
Since abcd can be minimized, the COP of the heat pump is the best. FIG. 5 shows this best condition, and is the same as FIG. 4 except for the slopes of the line segments ab and cd. That is, in Fig. 5, Δt 1 = ΔTe, Δt 2 = ΔTc, that is, line segment ab and line segment ef
Also, line segment cd and line segment gh are parallel to each other, and normally ΔTc = approximately Te, so Δt 1 = approximately Δt 2 .
しかしながら、負荷側の温度条件として、上記
のようにΔt1=約Δt2にできない場合がある。例
えば、凝縮器で外部熱源である水を常温より給湯
温度まで昇温する場合(この場合、Δt2=約50
℃)には、蒸発器でこの温度差と同じだけの温度
差で、低温側の外部熱源である水を冷却できな
い。なぜならば、水を冷却しすぎると、凍結させ
てしまうことになるからである。 However, as a temperature condition on the load side, it may not be possible to make Δt 1 =approximately Δt 2 as described above. For example, when using a condenser to raise the temperature of water, which is an external heat source, from room temperature to the hot water supply temperature (in this case, Δt 2 = approximately 50
℃), the evaporator cannot cool the water, which is an external heat source on the low temperature side, with a temperature difference equal to this temperature difference. This is because if you cool the water too much, it will freeze.
このように、Δt1とΔt2とが大きく異なる場合、
第6図に示すように線分abと線分cdとが平行で
ある限り、微小なΔt1に制約されて、上記両線分
の勾配も小さくならざるを得ず、混合冷媒を使用
してもCOP改善のメリツトは小さいという問題
があつた。 In this way, when Δt 1 and Δt 2 are significantly different,
As shown in Fig. 6, as long as line segment ab and line segment cd are parallel, the gradient of both lines has to be small due to the restriction of minute Δt 1 , and it is not possible to use a mixed refrigerant. However, the problem was that the benefits of improving COP were small.
(発明の目的)
本発明は、上記従来の問題点に鑑みてなされた
もので、その目的は外部熱源の出入口での温度差
が凝縮器と蒸発器とで大きく異なる場合にも、
COPの改善を可能とするヒートポンプにおける
混合冷媒の組成比調節方法を提供することにあ
る。(Object of the Invention) The present invention has been made in view of the above conventional problems, and its purpose is to solve the problem even when the temperature difference at the entrance and exit of the external heat source is large between the condenser and the evaporator.
An object of the present invention is to provide a method for adjusting the composition ratio of a mixed refrigerant in a heat pump, which makes it possible to improve COP.
(発明の構成)
上記の目的を達成するために、本発明は、容積
形圧縮機本体、第1凝縮器、気液分離器、この気
液分離器の液溜め部に続くエコノマイザ、主膨張
弁、蒸発器を経て、上記圧縮機本体に至るクロー
ズドループと、上記気液分離器の上部のガス空間
部から上記クローズドループから分岐し、第2凝
縮器、中間膨張弁へ経て、上記エコノマイザ内の
冷媒とは隔離された状態で、かつ熱交換可能にこ
のエコノマイザを内を通過し、上記圧縮機本体の
上記蒸発器からの冷媒を吸込む吸込口と、上記第
1凝縮器に冷媒を送込む吐出口との間の中間圧力
部分に至る流路とを設けて形成したヒートポンプ
の上記クローズドループおよび上記流路に非共沸
混合冷媒を循環させることにより、上記第1、第
2凝縮器および蒸発器内を通過する冷媒の組成比
を異ならせるようにした。(Structure of the Invention) In order to achieve the above object, the present invention includes a positive displacement compressor main body, a first condenser, a gas-liquid separator, an economizer following the liquid reservoir of the gas-liquid separator, and a main expansion valve. , a closed loop leading to the compressor body via the evaporator, and a gas space in the upper part of the gas-liquid separator branching from the closed loop, passing through the second condenser and intermediate expansion valve, and then flowing into the economizer. A suction port that passes through the economizer while being isolated from the refrigerant and capable of heat exchange, and sucks the refrigerant from the evaporator of the compressor main body, and a discharge port that sends the refrigerant to the first condenser. By circulating the non-azeotropic mixed refrigerant through the closed loop of the heat pump formed by providing a flow path leading to an intermediate pressure portion between the outlet and the flow path, the first and second condensers and the evaporator The composition ratio of the refrigerant passing through the inside is made to differ.
(実施例)
次に、本発明の一実施例を図面にしたがつて説
明する。(Example) Next, an example of the present invention will be described with reference to the drawings.
第1図は本発明に係る混合冷媒の組成比調節方
法を適用したヒートポンプを示し、2段、直列に
配した圧縮機本体(以下、本体という。)1、第
1凝縮器2、分離器3、第2凝縮器4、中間膨張
弁5、エコノマイザ6、主膨張弁7および蒸発器
8を含むクローズドループからなつている。第1
凝縮器2で部分凝縮した冷媒液、ガスは分離器3
にて気液分離され、高圧液はエコノマイザ6に導
かれ、ガスは第2凝縮器4にて凝縮後中間膨張弁
5を経てエコノマイザ6に導かれ、上記高圧液を
冷却してガス状態となり高圧段側の本体1に導か
れる。エコノマイザ6にて冷却された高圧液は主
膨張弁7を経て蒸発器8にてガス状態となり、低
圧段側の本体1に導かれる。 FIG. 1 shows a heat pump to which the method for adjusting the composition ratio of mixed refrigerant according to the present invention is applied, and the compressor body (hereinafter referred to as the body) 1 is arranged in series in two stages, a first condenser 2, and a separator 3. , a second condenser 4, an intermediate expansion valve 5, an economizer 6, a main expansion valve 7 and an evaporator 8. 1st
Refrigerant liquid and gas partially condensed in condenser 2 are transferred to separator 3
The high-pressure liquid is led to the economizer 6, and the gas is condensed in the second condenser 4, then passed through the intermediate expansion valve 5 and led to the economizer 6, where the high-pressure liquid is cooled and becomes a gas at high pressure. It is guided to the main body 1 on the stage side. The high-pressure liquid cooled by the economizer 6 passes through the main expansion valve 7, becomes a gas in the evaporator 8, and is guided to the main body 1 on the low-pressure stage side.
なお、第1凝縮器2および第2凝縮器4には高
温側の外部熱源である温水を流す管9が、蒸発器
8には低温側の外部熱源である低温熱源水を流す
管10が各々冷媒との間で熱交換可能に設けてあ
る。 Note that the first condenser 2 and the second condenser 4 each have a tube 9 through which hot water, which is an external heat source on the high temperature side, flows, and the evaporator 8 has a tube 10 through which low-temperature heat source water, which is an external heat source on the low temperature side, flows. It is provided so that heat can be exchanged with the refrigerant.
そして、冷媒として上記の混合冷媒を用いると
ともに分離器3の前後で、その組成を適宜異なら
せることにより、第1凝縮器2、第2凝縮器4お
よび蒸発器8での冷媒と外部熱源との間の熱交換
を最も効率よく行うように形成してある。 By using the above-mentioned mixed refrigerant as the refrigerant and changing its composition appropriately before and after the separator 3, the refrigerant in the first condenser 2, the second condenser 4, and the evaporator 8 is connected to the external heat source. The structure is designed to achieve the most efficient heat exchange between the two.
次に、本発明に係る混合冷媒の組成比調節方法
ならびにこれによる冷媒および外部熱源の状況変
化について、上記構成からなるヒートポンプに適
用して説明する。 Next, a method for adjusting the composition ratio of a mixed refrigerant according to the present invention and a change in the conditions of the refrigerant and external heat source due to the method will be described as applied to the heat pump having the above configuration.
まずはじめに、第1図に示すように、ヒートポ
ンプ内を循環する冷媒の状態として、高圧段側の
本体1の吐出側を状態、第1凝縮器2内におけ
る凝縮開始時を状態、分離器3の液出口を状態
、エコノマイザ6の出口を状態、蒸発器8の
入口、出口の状態を、、第2凝縮器4の凝縮
開始時を状態、第2凝縮器4の出口を状態、
エコノマイザ入口、出口の状態を、とすると
ともに混合冷媒の組成比を一定とした場合の各状
態を上記各状態にダツシユを付して表す。 First of all, as shown in FIG. 1, the state of the refrigerant circulating in the heat pump is as follows: the discharge side of the main body 1 on the high-pressure stage side is the state, the state is the state at the start of condensation in the first condenser 2, and the state is the state of the refrigerant circulating in the heat pump. The state of the liquid outlet, the state of the outlet of the economizer 6, the state of the inlet and outlet of the evaporator 8, the state of the start of condensation of the second condenser 4, the state of the outlet of the second condenser 4,
The states of the economizer inlet and outlet are as follows, and each state when the composition ratio of the mixed refrigerant is constant is shown by attaching a dash to each of the above states.
また、上記同様、外部熱源の出入口での温度差
を低温側ではΔt1、高温側ではΔt2とする一方、
冷媒の蒸発器8での出入口の温度差をΔTe、第
1凝縮器入口と第2凝縮器の出口の温度差を
ΔTcとする。第4図中の点a,b,c,dは上
記状態、、、が対応する。 Also, as above, while the temperature difference at the entrance and exit of the external heat source is Δt 1 on the low temperature side and Δt 2 on the high temperature side,
The temperature difference between the inlet and outlet of the refrigerant evaporator 8 is ΔTe, and the temperature difference between the inlet of the first condenser and the outlet of the second condenser is ΔTc. Points a, b, c, and d in FIG. 4 correspond to the above states.
したがつて、冷媒は、状態では高温高圧気体
状態、状態では高温高圧気体と高温高圧液体と
の境界領域、状態では高温高圧液体状態、状態
では低温高圧液体状態、状態では低温低圧気
液混合状態、状態では低温低圧気体状態、状態
では高温高圧気体と高温高圧液体との境界領域
の状態、状態では高温高圧液体状態、状態で
は低温中間圧力気液混合状態、状態では低温中
間圧力気体状態にある。 Therefore, the refrigerant is in a high-temperature, high-pressure gas state in the state, a boundary region between a high-temperature, high-pressure gas and a high-temperature, high-pressure liquid in the state, a high-temperature, high-pressure liquid state in the state, a low-temperature, high-pressure liquid state in the state, and a low-temperature, low-pressure gas-liquid mixed state in the state. , state is a low-temperature, low-pressure gas state, state is a state in the boundary region between a high-temperature, high-pressure gas and a high-temperature, high-pressure liquid, state is a high-temperature, high-pressure liquid state, state is a low-temperature intermediate-pressure gas-liquid mixed state, and state is a low-temperature, intermediate-pressure gas state. .
ところで、上記混合冷媒の蒸発あるいは凝縮の
開始時と終了時の温度差ΔTe、ΔTcは、高沸点
冷媒Xと低沸点冷媒Yの組成比によつて決まると
ともに、蒸発および凝縮時の温度自体が圧力の関
数となつており、圧力の上昇とともに温度は高く
なる。このため、第2図の気液平衡線図に示すよ
うに、混合冷媒の気相線と液相線は圧力一定
でも別個の線となり、かつ圧力が異なることによ
り、すなわち凝縮圧力(c)、中間圧力(m)、蒸発圧力
(e)毎に各々別個の線となる(図中各圧力毎に添字
c、m、eを付して区別してある。)。 By the way, the temperature difference ΔTe, ΔTc between the start and end of evaporation or condensation of the mixed refrigerant is determined by the composition ratio of the high boiling point refrigerant X and the low boiling point refrigerant Y, and the temperature itself during evaporation and condensation is dependent on the pressure. The temperature increases as the pressure increases. Therefore, as shown in the vapor-liquid equilibrium diagram in Figure 2, the vapor and liquidus lines of the mixed refrigerant are separate lines even if the pressure is constant, and because the pressures are different, that is, the condensation pressure (c), Intermediate pressure (m), evaporation pressure
(e) is a separate line (in the diagram, subscripts c, m, and e are attached to each pressure to distinguish it).
そして、実施例として、第1凝縮器2までの混
合冷媒の組成比をX1とすると、第1凝縮器2で
分離された分離器3内の液は高沸点冷媒の比率の
大きい組成比X2となり、分離器3内のガスは低
沸点冷媒の比率の大きい組成比X3となる。第2
図より、組成比X2とX3は、第1凝縮器2での凝
縮量で決まるため、結局第1凝縮器2と第2凝縮
器4における冷媒の凝縮量を調節することによ
り、組成比X2とX3は調節できる。そこで、この
混合冷媒の状態〜の変化を第2図の気液平衡
線図上に表すと折れ線上の数字〜および折
れ線上の数字〜の順序で変化する。なお破
線上の数字1′〜6′、9′、10′は組成比が一定であ
るとした場合の上記状態1〜6、9、10に対応す
る状態を表している。 As an example, if the composition ratio of the mixed refrigerant up to the first condenser 2 is set to X 1 , the liquid in the separator 3 separated by the first condenser 2 has a composition ratio of X with a large proportion of high boiling point refrigerant. 2 , and the gas in the separator 3 has a composition ratio of X 3 with a large proportion of low boiling point refrigerant. Second
From the figure, the composition ratios X 2 and X 3 are determined by the amount of condensation in the first condenser 2, so by adjusting the amount of refrigerant condensed in the first condenser 2 and the second condenser 4, the composition ratio can be adjusted. X 2 and X 3 are adjustable. Therefore, when the change in the state of the mixed refrigerant is represented on the vapor-liquid equilibrium diagram of FIG. 2, it changes in the order of the numbers on the polygonal line and the numbers on the polygonal line. Note that the numbers 1' to 6', 9', and 10' on the broken lines represent states corresponding to the above states 1 to 6, 9, and 10, assuming that the composition ratio is constant.
図より明らかなように、組成比が一定の場合に
はΔTc′=約ΔTe′となるのが、上述のように、分
離器3内の液中の混合冷媒の組成比と、ガス中の
混合冷媒の組成比を調節することによりΔTc>
ΔTeとすることができる。 As is clear from the figure, when the composition ratio is constant, ΔTc′ = approximately ΔTe′, which is determined by the composition ratio of the mixed refrigerant in the liquid in the separator 3 and the mixture in the gas, as described above. By adjusting the composition ratio of the refrigerant, ΔTc>
It can be ΔTe.
第3図は、上記第4図〜第6図と同様のT−S
線図で、その実施例が適用される場合を示し、外
部熱源の温度条件としてΔt2≫Δt1となる関係に
あり、破線で示す組成比X1の状態から、凝縮で
は組成比X1およびX3の状態で実線abとなり、蒸
発では組成比X2の状態で実線cdとすることによ
り、点ab間の温度差を大きくし、点c,d間の
温度差を小さくする(すなわちΔTc>ΔTc′、
ΔTe<ΔTe′)により、線分a,bを線分e,f
と、線分c,dを線分g,hと平行に近づけるこ
とができ、斜線部の面積AおよびBに相当する動
力ロスがなくなり、ヒートポンプのCOPを改善
できる。また、上記実施例において、第1、第2
凝縮器2,4の凝縮量の調節を第2凝縮器4の出
口と高温熱源の管9の入口との温度差に基づい
て、第1凝縮器2と第2凝縮器4内を流れる高温
熱源の流量比を調節することによつて行うことに
より、より正確な組成比の調節が可能となる。 Figure 3 is a T-S similar to Figures 4 to 6 above.
The diagram shows the case where the example is applied, and there is a relationship such that Δt 2 ≫ Δt 1 as the temperature condition of the external heat source, and from the state of the composition ratio X 1 shown by the broken line, the composition ratio X 1 and By drawing a solid line ab in the state of X 3 and a solid line cd in the state of evaporation with a composition ratio of ΔTc′,
By ΔTe<ΔTe′), line segments a and b are transformed into line segments e and f
Then, the line segments c and d can be brought close to parallel to the line segments g and h, and the power loss corresponding to the areas A and B of the hatched portions is eliminated, and the COP of the heat pump can be improved. Further, in the above embodiment, the first and second
The amount of condensation in the condensers 2 and 4 is adjusted based on the temperature difference between the outlet of the second condenser 4 and the inlet of the high-temperature heat source tube 9. By adjusting the flow rate ratio of , it is possible to more accurately adjust the composition ratio.
(発明の効果)
以上の説明より明らかなように、本発明によれ
ば、容積形圧縮機本体、第1凝縮器、気液分離
器、この気液分離器の液溜め部に続くエコノマイ
ザ、主膨張弁、蒸発器を経て、上記圧縮機本体に
至るクローズドループと、上記気液分離器の上部
のガス空間部から上記クローズドループから分岐
し、第2凝縮器、中間膨張弁を経て、上記エコノ
マイザ内の冷媒とは隔離された状態で、かつ熱交
換可能にこのエコノマイザを内を通過し、上記圧
縮機本体の上記蒸発器からの冷媒を吸込む吸込口
と、上記第1凝縮器に冷媒を送込む吐出口との間
の中間圧力部分に至る流路とを設けて形成したヒ
ートポンプの上記クローズドループおよび上記流
路に非共沸混合冷媒を循環させることにより、上
記第1、第2凝縮器および蒸発器内を通過する冷
媒の組成比を異ならせるようにしてある。(Effects of the Invention) As is clear from the above description, according to the present invention, the positive displacement compressor main body, the first condenser, the gas-liquid separator, the economizer following the liquid reservoir of the gas-liquid separator, and the main A closed loop that passes through an expansion valve and an evaporator to the compressor body, and a branch from the closed loop that branches from the gas space above the gas-liquid separator, passes through a second condenser and an intermediate expansion valve, and then connects to the economizer. The refrigerant is passed through the economizer in a state where it is isolated from the refrigerant inside and capable of heat exchange, and is sent to the suction port for sucking the refrigerant from the evaporator of the compressor main body, and to the first condenser. By circulating the non-azeotropic mixed refrigerant through the closed loop and the flow path of the heat pump, which is formed by providing a flow path leading to an intermediate pressure portion between the discharge port and the flow path, the first and second condensers and The composition ratio of the refrigerant passing through the evaporator is varied.
このため、外部熱源の出入口での温度差が凝縮
器と蒸発器とで大きく異なる場合にも、第1、第
2凝縮器での冷媒の凝縮量を調節することが可能
となり、混合冷媒の凝縮および蒸発時の温度差を
上記外部熱源の温度差に近似させることができ、
この結果高いCOPを得ることができるという効
果を有している。 Therefore, even if the temperature difference at the entrance and exit of the external heat source is large between the condenser and the evaporator, it is possible to adjust the amount of refrigerant condensed in the first and second condensers, and the amount of refrigerant condensed in the first and second condensers can be adjusted. and the temperature difference during evaporation can be approximated to the temperature difference of the external heat source,
As a result, it has the effect of being able to obtain a high COP.
第1図は本発明に係る方法を適用したヒートポ
ンプの機器構成図、第2図は第1図のヒートポン
プでの混合冷媒の状態を示す気液平衡線図、第3
図は第2図に対応するT−S線図、第4図〜第6
図は従来のヒートポンプでの熱交換の関係を示す
T−S線図である。
1……本体(圧縮機本体)、2……第1凝縮器、
3……分離器、4……第2凝縮器、5……中間膨
張弁、6……エコノマイザ、7……主膨張弁、8
……蒸発器。
Fig. 1 is an equipment configuration diagram of a heat pump to which the method according to the present invention is applied, Fig. 2 is a vapor-liquid equilibrium diagram showing the state of mixed refrigerant in the heat pump of Fig. 1, and Fig. 3
The figure is a T-S diagram corresponding to Figure 2, Figures 4 to 6.
The figure is a T-S diagram showing the relationship of heat exchange in a conventional heat pump. 1...Main body (compressor main body), 2...First condenser,
3...Separator, 4...Second condenser, 5...Intermediate expansion valve, 6...Economizer, 7...Main expansion valve, 8
……Evaporator.
Claims (1)
器、この気液分離器の液溜め部に続くエコノマイ
ザ、主膨張弁、蒸発器を経て、上記圧縮機本体に
至るクローズドループと、上記気液分離器の上部
のガス空間部から上記クローズドループから分岐
し、第2凝縮器、中間膨張弁を経て、上記エコノ
マイザ内の冷媒とは隔離された状態で、かつ熱交
換可能にこのエコノマイザを内を通過し、上記圧
縮機本体の上記蒸発器からの冷媒を吸込む吸込口
と、上記第1凝縮器に冷媒を送込む吐出口との間
の中間圧力部分に至る流路とを設けて形成したヒ
ートポンプの上記クローズドループおよび上記流
路に非共沸混合冷媒を循環させることにより、上
記第1、第2凝縮器および蒸発器内を通過する冷
媒の組成比を異ならせるようにしたことを特徴と
するヒートポンプにおける混合冷媒の組成比調節
方法。 2 上記第1、第2凝縮器を流れる高温熱源の流
量比を調節することにより、冷媒の凝縮量を調節
するようにしたことを特徴とする特許請求の範囲
第1項に記載のヒートポンプにおける混合冷媒の
組成比調節方法。[Scope of Claims] 1. A positive displacement compressor main body, a first condenser, a gas-liquid separator, an economizer following the liquid reservoir of the gas-liquid separator, a main expansion valve, an evaporator, and then the compressor main body. The gas space at the top of the gas-liquid separator branches off from the closed loop, passes through a second condenser and an intermediate expansion valve, and is isolated from the refrigerant in the economizer, and heat is removed. A flow exchangeably passes through the economizer and reaches an intermediate pressure portion of the compressor body between an inlet for sucking refrigerant from the evaporator and an outlet for delivering refrigerant to the first condenser. By circulating a non-azeotropic mixed refrigerant through the closed loop and the flow path of the heat pump formed by providing a path, the composition ratio of the refrigerant passing through the first and second condensers and the evaporator is made different. A method for adjusting the composition ratio of a mixed refrigerant in a heat pump, characterized in that: 2. Mixing in the heat pump according to claim 1, wherein the amount of condensation of the refrigerant is adjusted by adjusting the flow rate ratio of the high temperature heat source flowing through the first and second condensers. Method for adjusting composition ratio of refrigerant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12672285A JPS61285350A (en) | 1985-06-11 | 1985-06-11 | Method of adjusting composition ratio of mixed refrigerant in heat pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12672285A JPS61285350A (en) | 1985-06-11 | 1985-06-11 | Method of adjusting composition ratio of mixed refrigerant in heat pump |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61285350A JPS61285350A (en) | 1986-12-16 |
JPH0514185B2 true JPH0514185B2 (en) | 1993-02-24 |
Family
ID=14942250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12672285A Granted JPS61285350A (en) | 1985-06-11 | 1985-06-11 | Method of adjusting composition ratio of mixed refrigerant in heat pump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61285350A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08209418A (en) * | 1995-02-03 | 1996-08-13 | Hisashi Mineta | Finery such as clothes having laterally extended mark |
-
1985
- 1985-06-11 JP JP12672285A patent/JPS61285350A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08209418A (en) * | 1995-02-03 | 1996-08-13 | Hisashi Mineta | Finery such as clothes having laterally extended mark |
Also Published As
Publication number | Publication date |
---|---|
JPS61285350A (en) | 1986-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4526009A (en) | Method of operating a bimodal heat pump, as well as bimodal heat pump for using said method | |
US4809521A (en) | Low pressure ratio high efficiency cooling system | |
JPH0425463B2 (en) | ||
Åhlby et al. | NH3/H2O LiBr as working fluid for the compression/absorption cycle | |
EP0499999B1 (en) | Refrigerant cycling apparatus | |
Pourreza-Djourshari et al. | Calculation of the performance of vapour compression heat pumps with solution circuits using the mixture R22-DEGDME | |
JPH0514185B2 (en) | ||
EP0524197A4 (en) | Apparatus for expanding the temperature glide of a non-azeotropic working fluid mixture in a vapor compression cycle | |
JPS6230696Y2 (en) | ||
JPS6353456B2 (en) | ||
JP2002364936A (en) | Refrigeration unit | |
JPS63238367A (en) | Refrigeration cycle device | |
JPH01155149A (en) | Refrigeration cycle device | |
JP2574545B2 (en) | Refrigeration cycle device | |
JP2532754B2 (en) | Refrigeration cycle equipment | |
JPS6246781B2 (en) | ||
JPS60226668A (en) | Heat pump | |
JPH02195156A (en) | Low temperature refrigerator | |
SU1021888A1 (en) | Heat pump | |
JPS5818061A (en) | Refrigerator | |
JPS58104467A (en) | Heat pump device | |
JPS583011Y2 (en) | heat pump equipment | |
JPH01244250A (en) | Refrigerating plant | |
JPH01212866A (en) | Heat pump | |
JPH0248823B2 (en) | HIITOHONPU |