[go: up one dir, main page]

JPH05141267A - Steam cooling method for gas turbine - Google Patents

Steam cooling method for gas turbine

Info

Publication number
JPH05141267A
JPH05141267A JP32707991A JP32707991A JPH05141267A JP H05141267 A JPH05141267 A JP H05141267A JP 32707991 A JP32707991 A JP 32707991A JP 32707991 A JP32707991 A JP 32707991A JP H05141267 A JPH05141267 A JP H05141267A
Authority
JP
Japan
Prior art keywords
steam
turbine
cooling
gas turbine
combustor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32707991A
Other languages
Japanese (ja)
Other versions
JP2984442B2 (en
Inventor
Shigemi Bandai
重実 万代
Satoshi Tanimura
聡 谷村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3327079A priority Critical patent/JP2984442B2/en
Publication of JPH05141267A publication Critical patent/JPH05141267A/en
Application granted granted Critical
Publication of JP2984442B2 publication Critical patent/JP2984442B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To improve combined thermal efficiency and further to eliminate necessity for surplus fuel and makeup water. CONSTITUTION:Steam from the intermediate stage of a steam turbine 6, to which exhaust gas from an exhaust gas boiler 4 is supplied, is guided to a gas turbine 3 and its combustor 2 through a line 9 to serve for cooling a combustor inner cylinder and a turbine hollow stationary blade. Steam after cooling is collected through a line 10, guided again to the trailing stream of extraction stage of the steam turbine 6, expanded to a vacuum and thereafter condensed by a condenser 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガスタービン・蒸気タ
ービンコンバインドプラントに適用されるガスタービン
の蒸気冷却方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas turbine steam cooling method applied to a gas turbine / steam turbine combined plant.

【0002】[0002]

【従来の技術】図2は、従来の蒸気冷却方法を採用した
ガスタービン・蒸気タービンコンバインドプラントの系
統図である。図2において、圧縮機1で圧縮された空気
は、燃焼器2で燃料を燃焼させて高温ガスとなり、ガス
タービン3で膨脹した後、排ガスボイラ4に送られて蒸
気を発生させ、その後煙突5から大気中に排出される。
一方、排ガスボイラ4で発生した蒸気は蒸気タービン6
に送られて仕事をなし、その後復水器7に送られて復水
する。そして、ガスタービン3および蒸気タービン6は
それぞれ発電機8を駆動する。
2. Description of the Related Art FIG. 2 is a system diagram of a gas turbine / steam turbine combined plant adopting a conventional steam cooling method. In FIG. 2, the air compressed by the compressor 1 burns fuel in the combustor 2 to become high-temperature gas, expands in the gas turbine 3, and then is sent to the exhaust gas boiler 4 to generate steam, and then the chimney 5 Emitted into the atmosphere.
On the other hand, the steam generated in the exhaust gas boiler 4 is the steam turbine 6
Sent to the factory to work, and then sent to the condenser 7 to condense water. Then, the gas turbine 3 and the steam turbine 6 respectively drive the generator 8.

【0003】以上述べた構成において、燃焼器2および
ガスタービン3を冷却するのに、従来は一般に、圧縮機
1の吐出空気や抽気が使われ、冷却後は燃焼器2内又は
ガスタービン3のガスパス内に放出されている。このた
め、燃焼器2内では燃焼に与える空気量が減少してNO
xを増大させ、ガスタービン3では冷却空気が作動ガス
に混入してガス温度を下げ、効率低下の原因となってい
る。
In the above-described structure, conventionally, in order to cool the combustor 2 and the gas turbine 3, conventionally, discharge air or bleed air of the compressor 1 is used, and after cooling, the inside of the combustor 2 or the gas turbine 3 is cooled. It is released into the gas path. Therefore, in the combustor 2, the amount of air given to the combustion is reduced and NO
x is increased, cooling air is mixed with the working gas in the gas turbine 3 to lower the gas temperature, which causes a decrease in efficiency.

【0004】そこで、図2に示す従来例では、蒸気ター
ビン6の中間段からの蒸気をライン9を通して燃焼器2
およびガスタービン3に導入し、燃焼器内筒およびター
ビン中空静翼の冷却に供するようにしている。このよう
な蒸気冷却の場合は、燃焼器2に流入する空気のすべて
が燃焼用空気に使われるため、低NOx化を図ることが
でき、また冷却空気の圧縮動力が不要となるため、ガス
タービン効率が向上する。
Therefore, in the conventional example shown in FIG. 2, the steam from the intermediate stage of the steam turbine 6 is passed through the line 9 to the combustor 2
And is introduced into the gas turbine 3 to be used for cooling the combustor inner cylinder and the turbine hollow stationary blade. In the case of such steam cooling, since all of the air flowing into the combustor 2 is used as combustion air, it is possible to achieve low NOx, and because compression power for cooling air is unnecessary, the gas turbine is used. Efficiency is improved.

【0005】[0005]

【発明が解決しようとする課題】しかし、この図2に示
した従来例においては、燃焼器2およびガスタービン3
の冷却に使用された蒸気は燃焼器2内又はガスタービン
3のガスパス内に放出されているため、次のような問題
点が発生していた。
However, in the conventional example shown in FIG. 2, the combustor 2 and the gas turbine 3 are provided.
Since the steam used for cooling is discharged into the combustor 2 or the gas path of the gas turbine 3, the following problems occur.

【0006】すなわち、蒸気タービン6で真空まで膨脹
する蒸気が大気圧までしか膨脹せず、コンバインドプラ
ント熱効率を低下させていた。また、燃焼器2について
も、冷却蒸気をガスタービン3の所定入口温度まで加熱
するために余分の燃料を必要とし、プラント熱効率低下
の原因となっていた。更に、冷却蒸気が回収されないた
めに余分な補給水を必要とし、蒸留水補給のための水処
理設備および運転費を増大させていた。
That is, the steam that expands to a vacuum in the steam turbine 6 expands only up to the atmospheric pressure, thus lowering the thermal efficiency of the combined plant. Further, also in the combustor 2, extra fuel is required to heat the cooling steam to a predetermined inlet temperature of the gas turbine 3, which causes a decrease in plant thermal efficiency. Further, since the cooling steam is not recovered, an extra make-up water is required, which increases the water treatment equipment and the operating cost for making up the distilled water.

【0007】本発明は、このような従来技術の課題を解
決するためになされたもので、ガスタービン・蒸気ター
ビンコンバインドプラントにおいて、コンバインド熱効
率を向上でき、かつ余分な燃料および補給水を必要とし
ないガスタービンの蒸気冷却方法を提供することを目的
とする。
The present invention has been made in order to solve the problems of the prior art, and in a gas turbine / steam turbine combined plant, combined thermal efficiency can be improved and no extra fuel and make-up water are required. An object of the present invention is to provide a steam cooling method for a gas turbine.

【0008】[0008]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明に係るガスタービンの蒸気冷却方法は、ガ
スタービンと、このガスタービンからの排ガスが供給さ
れる排ガスボイラと、この排ガスボイラからの蒸気が供
給される蒸気タービンとを備えるコンバインドプラント
において、上記蒸気タービンの中間段からの蒸気をガス
タービンの燃焼器およびタービン中空静翼に導いて冷却
に供し、冷却後の蒸気を回収して、上記蒸気タービン抽
気段の後流側に導くようにしたものである。
In order to solve the above-mentioned problems, a gas turbine steam cooling method according to the present invention includes a gas turbine, an exhaust gas boiler to which exhaust gas from the gas turbine is supplied, and an exhaust gas. In a combined plant including a steam turbine to which steam from a boiler is supplied, the steam from the intermediate stage of the steam turbine is introduced into a combustor of a gas turbine and a hollow turbine vane for cooling, and the steam after cooling is recovered. The steam turbine extraction stage is then guided to the downstream side.

【0009】[0009]

【作用】上記の手段によれば、ガスタービン冷却後の蒸
気は蒸気タービンで真空まで膨脹して復水する。また、
冷却蒸気は所定の蒸気タービン入口温度まで加熱され
る。このため、余分の燃料を必要としない。したがっ
て、コンバインドプラント熱効率が向上し、余分な補給
水が不要となる。
According to the above means, the steam after cooling the gas turbine is expanded to a vacuum in the steam turbine and condensed. Also,
The cooling steam is heated to a predetermined steam turbine inlet temperature. Therefore, no extra fuel is needed. Therefore, the thermal efficiency of the combined plant is improved and extra make-up water is unnecessary.

【0010】[0010]

【実施例】以下、図1を参照して本発明の一実施例につ
いて詳細に説明する。図1は本実施例に係る蒸気冷却方
法を採用したガスタービン・蒸気タービンコンバインド
プラントの系統図であり、図2に示したものと同一の部
分には同一の符号を付して、重複する説明は省略する。
An embodiment of the present invention will be described in detail below with reference to FIG. FIG. 1 is a system diagram of a gas turbine / steam turbine combined plant adopting the steam cooling method according to the present embodiment. The same parts as those shown in FIG. Is omitted.

【0011】図1に示すように、本実施例によれば、蒸
気タービン6の中間段からの蒸気は抽気ライン9を通し
てガスタービン3の燃焼器2およびガスタービン3に導
かれ、それぞれ燃焼器内筒およびタービン中空静翼の冷
却に供される。そして、冷却後の蒸気は、回収ライン1
0を通して回収されて、ガスタービン3の外部に導か
れ、再び蒸気タービン6の抽気段後流側に流入して膨脹
する。
As shown in FIG. 1, according to this embodiment, the steam from the intermediate stage of the steam turbine 6 is guided to the combustor 2 and the gas turbine 3 of the gas turbine 3 through the extraction line 9, and the steam inside the combustor is exhausted. It is used for cooling the cylinder and turbine hollow vane. Then, the steam after cooling is collected in the recovery line 1
It is recovered through 0, guided to the outside of the gas turbine 3, and again flows into the downstream side of the extraction stage of the steam turbine 6 to expand.

【0012】なお、この種ガスタービンの燃焼器内筒に
は、フィルム冷却によらず、対流冷却によって内筒壁面
の冷却を図る二重壁構造のものが使われる。
The combustor inner cylinder of this type of gas turbine has a double wall structure for cooling the inner cylinder wall surface by convection cooling instead of film cooling.

【0013】[0013]

【発明の効果】以上述べたように、本発明によれば、ガ
スタービン・蒸気タービンコンバインドプラントにおい
て、蒸気タービンの中間段からの蒸気をガスタービンの
燃焼器およびタービン中空静翼の冷却に供し、冷却後の
蒸気をガスタービンの外部に導き、再び蒸気タービンで
膨脹させるようにしているので、冷却蒸気が燃焼ガスに
混入せず、また冷却後蒸気タービンへ回収されるため、
コンバインドプラント熱効率が向上するとともに、冷媒
蒸気は所定の蒸気タービン入口温度まで加熱されるため
余分の燃料を必要とせず、かつ冷却蒸気に対応していた
補給水も不要となり、設備費および運転費が大幅に減少
するなどの効果を奏する。
As described above, according to the present invention, in the gas turbine / steam turbine combined plant, steam from the intermediate stage of the steam turbine is used for cooling the combustor of the gas turbine and the hollow turbine vane, Since the steam after cooling is guided to the outside of the gas turbine and expanded again by the steam turbine, the cooling steam does not mix with the combustion gas and is recovered by the steam turbine after cooling.
The combined plant thermal efficiency is improved, and since the refrigerant steam is heated to the prescribed steam turbine inlet temperature, no extra fuel is required, and make-up water corresponding to the cooling steam is no longer required, which reduces equipment and operating costs. It has the effect of being significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る蒸気冷却方法を採用し
たガスタービン・蒸気タービンコンバインドプラントの
系統図である。
FIG. 1 is a system diagram of a gas turbine / steam turbine combined plant adopting a steam cooling method according to an embodiment of the present invention.

【図2】従来の蒸気冷却方法を採用したガスタービン・
蒸気タービンコンバインドプラントの系統図である。
[Fig. 2] Gas turbine adopting the conventional steam cooling method
It is a system diagram of a steam turbine combined plant.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 燃焼器 3 ガスタービン 4 排ガスボイラ 5 煙突 6 蒸気タービン 7 復水器 8 発電機 9 抽気ライン 10 回収ライン 1 Compressor 2 Combustor 3 Gas Turbine 4 Exhaust Gas Boiler 5 Chimney 6 Steam Turbine 7 Condenser 8 Generator 9 Extraction Line 10 Recovery Line

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F02C 6/18 A 7910−3G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display area F02C 6/18 A 7910-3G

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ガスタービンと、このガスタービンからの
排ガスが供給される排ガスボイラと、この排ガスボイラ
からの蒸気が供給される蒸気タービンとを備えるコンバ
インドプラントにおいて、上記蒸気タービンの中間段か
らの蒸気をガスタービンの燃焼器およびタービン中空静
翼に導いて冷却に供し、冷却後の蒸気を回収して、上記
蒸気タービン抽気段の後流側に導くことを特徴とするガ
スタービンの蒸気冷却方法。
1. A combined plant comprising a gas turbine, an exhaust gas boiler to which exhaust gas from the gas turbine is supplied, and a steam turbine to which steam from the exhaust gas boiler is supplied. A steam cooling method for a gas turbine, characterized in that the steam is guided to a combustor of a gas turbine and a hollow turbine vane for cooling, and the steam after cooling is recovered and guided to a downstream side of the steam turbine extraction stage. .
JP3327079A 1991-11-15 1991-11-15 Gas turbine steam cooling method and apparatus Expired - Fee Related JP2984442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3327079A JP2984442B2 (en) 1991-11-15 1991-11-15 Gas turbine steam cooling method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3327079A JP2984442B2 (en) 1991-11-15 1991-11-15 Gas turbine steam cooling method and apparatus

Publications (2)

Publication Number Publication Date
JPH05141267A true JPH05141267A (en) 1993-06-08
JP2984442B2 JP2984442B2 (en) 1999-11-29

Family

ID=18195056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3327079A Expired - Fee Related JP2984442B2 (en) 1991-11-15 1991-11-15 Gas turbine steam cooling method and apparatus

Country Status (1)

Country Link
JP (1) JP2984442B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0670418A1 (en) * 1994-03-04 1995-09-06 Westinghouse Electric Corporation Method to use superheated cooling steam from a gas turbine in a thermochemical process
EP0674099A1 (en) * 1994-03-21 1995-09-27 ABB Management AG Cooling method for the thermically charged components of a gasturbine powerplant
EP0764767A2 (en) * 1995-09-22 1997-03-26 Kabushiki Kaisha Toshiba Combined cycle power plant
DE19716721A1 (en) * 1997-04-21 1998-11-12 Siemens Ag Method of operating a gas turbine and gas turbine operating thereafter
WO1998059158A1 (en) * 1997-06-24 1998-12-30 Mitsubishi Heavy Industries, Ltd. Steam cooling apparatus for gas turbine
EP0939201A1 (en) * 1996-10-29 1999-09-01 Mitsubishi Heavy Industries, Ltd. Combined cycle power plant
CN102216569A (en) * 2008-11-13 2011-10-12 西门子公司 Inner housing for a turbomachine
JP2012533017A (en) * 2009-07-10 2012-12-20 エヌアールジー エネジー インコーポレイテッド Combined cycle power unit

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0670418A1 (en) * 1994-03-04 1995-09-06 Westinghouse Electric Corporation Method to use superheated cooling steam from a gas turbine in a thermochemical process
EP0674099A1 (en) * 1994-03-21 1995-09-27 ABB Management AG Cooling method for the thermically charged components of a gasturbine powerplant
EP1184541A1 (en) * 1995-09-22 2002-03-06 Kabushiki Kaisha Toshiba Combined cycle power plant
EP0764767A3 (en) * 1995-09-22 1998-05-27 Kabushiki Kaisha Toshiba Combined cycle power plant
US6000213A (en) * 1995-09-22 1999-12-14 Kabushiki Kaisha Toshiba Combined cycle power plant
EP0764767A2 (en) * 1995-09-22 1997-03-26 Kabushiki Kaisha Toshiba Combined cycle power plant
EP0939201A1 (en) * 1996-10-29 1999-09-01 Mitsubishi Heavy Industries, Ltd. Combined cycle power plant
DE19716721A1 (en) * 1997-04-21 1998-11-12 Siemens Ag Method of operating a gas turbine and gas turbine operating thereafter
WO1998059158A1 (en) * 1997-06-24 1998-12-30 Mitsubishi Heavy Industries, Ltd. Steam cooling apparatus for gas turbine
US6128895A (en) * 1997-06-24 2000-10-10 Mitsubishi Heavy Industries, Ltd. Steam cooling apparatus for gas turbine
CN102216569A (en) * 2008-11-13 2011-10-12 西门子公司 Inner housing for a turbomachine
JP2012508844A (en) * 2008-11-13 2012-04-12 シーメンス アクティエンゲゼルシャフト Inner housing for turbomachinery
JP2012533017A (en) * 2009-07-10 2012-12-20 エヌアールジー エネジー インコーポレイテッド Combined cycle power unit
US8943836B2 (en) 2009-07-10 2015-02-03 Nrg Energy, Inc. Combined cycle power plant

Also Published As

Publication number Publication date
JP2984442B2 (en) 1999-11-29

Similar Documents

Publication Publication Date Title
JP3500020B2 (en) Steam cooled gas turbine system
EP0939202B1 (en) Steam cooled gas turbine system
US5513488A (en) Power process utilizing humidified combusted air to gas turbine
KR100818830B1 (en) Compressor discharge bleed air circuit in gas turbine plants and related method
US6499302B1 (en) Method and apparatus for fuel gas heating in combined cycle power plants
US20040088995A1 (en) Method for cooling a gas turbine and gas turbine installation
JPH1089086A (en) Method for generating rotatioaxis output power and power plant
US20070256424A1 (en) Heat recovery gas turbine in combined brayton cycle power generation
JPH0586898A (en) Halfopen cycle operation type natural gas steam turbine system
JPH11257023A (en) Operation method for gas turbine group
KR970066002A (en) How to operate a power plant
US8943836B2 (en) Combined cycle power plant
JPH10510897A (en) Heat recovery steam cooled gas turbine
JPH11510581A (en) Hydrogen fuel semi-enclosed steam turbine power plant
US4271665A (en) Installation for generating pressure gas or mechanical energy
EP1566529A4 (en) ATMOSPHERIC PRESSURE COMBUSTION TURBINE SYSTEM
US6199363B1 (en) Method for operating a gas turbogenerator set
JPH05141267A (en) Steam cooling method for gas turbine
JP2021110332A (en) Systems and methods for operating turbocharged gas turbine engines
JP2001107748A (en) Gas turbine plant
JPH04191418A (en) Carbon dioxide (co2) recovering power generation plant
JPH0988518A (en) Composite power generating plant
US20020189262A1 (en) Method for operating a steam turbine , and a turbine system provided with a steam turbine that functions according to said method
JPH06146924A (en) Gas turbine
JPH0821207A (en) Steam producing system by waste heat of steam, gas turbine composite plant

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990831

LAPS Cancellation because of no payment of annual fees