[go: up one dir, main page]

JPH05138758A - Production of fiber reinforced thermoplastic resin pipe - Google Patents

Production of fiber reinforced thermoplastic resin pipe

Info

Publication number
JPH05138758A
JPH05138758A JP3307771A JP30777191A JPH05138758A JP H05138758 A JPH05138758 A JP H05138758A JP 3307771 A JP3307771 A JP 3307771A JP 30777191 A JP30777191 A JP 30777191A JP H05138758 A JPH05138758 A JP H05138758A
Authority
JP
Japan
Prior art keywords
layer
thermoplastic resin
reinforcing
fiber
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3307771A
Other languages
Japanese (ja)
Inventor
Hiroshi Sugawara
宏 菅原
Kiyoyasu Fujii
清康 藤井
Koichi Adachi
浩一 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP3307771A priority Critical patent/JPH05138758A/en
Publication of JPH05138758A publication Critical patent/JPH05138758A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Moulding By Coating Moulds (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To efficiently produce a fiber reinforced thermoplastic resin pipe excellent in interlaminar bonding strength even when first and second reinforced layers are formed by employing an inner core system. CONSTITUTION:A double-layered pipe consisting of an inner thermoplastic resin layer B3 and a first reinforced layer A3 is introduced into an inner core 6c in such a state that it is held to the temp. range from the softening temp. of the matrix resin constituting the first reinforced layer A3 to below the m.p. thereof and a fiber composite C1 is wound around the inner core 6c at the outside position thereof at temp. below the m.p. of the matrix resin to form a second reinforced layer C2. By this constitution, the floating of the fibers forming the respective reinforced layers and the adhesion of the inner layer B3 to the inner core 6c are prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱可塑性樹脂管を最も
内側の層とし、その外側に、連続強化繊維を管の長手方
向に配して形成された第1強化層と、この第1強化層の
外周に、連続強化繊維を巻回して形成された第2強化層
とを有する繊維強化熱可塑性樹脂管の製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a thermoplastic resin tube as the innermost layer, and a first reinforcing layer formed by arranging continuous reinforcing fibers in the longitudinal direction of the tube on the outermost layer. The present invention relates to a method for manufacturing a fiber-reinforced thermoplastic resin pipe having a second reinforcing layer formed by winding continuous reinforcing fibers around the outer periphery of a reinforcing layer.

【0002】[0002]

【従来の技術】従来、内層となる熱可塑性樹脂管の外面
に、液状の熱硬化性樹脂を含浸した強化繊維を配置し、
これを加熱硬化して強化層を形成してなる複合管は、強
化層のマトリックス樹脂が熱硬化性樹脂で形成されてい
るため、内層の熱可塑性樹脂管との接着力が弱く、複合
管を高温条件下で使用すると、内層の熱可塑性樹脂管と
強化層との線膨張率の差により、両層の間で界面剥離が
発生するという問題があった。
2. Description of the Related Art Conventionally, a reinforcing fiber impregnated with a liquid thermosetting resin is arranged on the outer surface of a thermoplastic resin tube which is an inner layer,
The composite pipe formed by heat-curing this to form a reinforced layer has a weak adhesive force with the thermoplastic resin pipe of the inner layer because the matrix resin of the reinforced layer is formed of a thermosetting resin, so that the composite pipe When used under high temperature conditions, there has been a problem that interfacial peeling occurs between both layers due to the difference in linear expansion coefficient between the thermoplastic resin tube of the inner layer and the reinforcing layer.

【0003】そこで、この問題を解決する為に、本出願
人は、強化層のマトリックス樹脂として熱可塑性樹脂を
用いると共に、この熱可塑性樹脂を連続繊維に保持させ
てなる繊維複合体となし、熱可塑性樹脂層を最内層とし
て、その外面に連続繊維が管の長手方向に配された第1
強化層を形成し、更にその外側に、連続繊維が管の周方
向に巻回配置された第2強化層を形成してなる複合管及
びその製造方法を先に提案した(特開平3−15759
1号公報参照)。
Therefore, in order to solve this problem, the present applicant uses a thermoplastic resin as a matrix resin for the reinforcing layer and forms a fiber composite in which the thermoplastic resin is held by continuous fibers. A first layer in which a continuous layer is arranged in the longitudinal direction of the pipe on the outer surface of the plastic resin layer as the innermost layer.
A composite pipe in which a reinforcing layer is formed, and further, a second reinforcing layer in which continuous fibers are wound and arranged in the circumferential direction of the pipe is formed on the outer side thereof, and a method for producing the composite pipe have been previously proposed (JP-A-3-15759).
(See Japanese Patent Publication No. 1).

【0004】この技術では、強化繊維が管の長手方向に
配された第1強化層と、周方向に配された第2強化層と
の2層構造からなる強化層を有すること、及びこれらの
強化層を形成する強化繊維として、多数の連続するフィ
ラメントに熱可塑性樹脂が保持されてなる繊維複合体を
用いることにより、各層の界面において熱可塑性樹脂が
融着一体化したものが得られるようにしたことがその骨
子であるが、更に、第1強化層と熱可塑性樹脂内層とか
らなる2層管に、第2強化層を形成する方法の一例とし
て、内コアを2層管の内部に突出させ、この内コアの外
側位置で繊維複合体を2層管に巻回する方法を提案した
(同上公報の4頁、下右側欄参照)。これは、未だ充分
に固化していない2層管が、繊維複合体の巻回により変
形するのを防止する為である。
According to this technique, the reinforcing fiber has a reinforcing layer having a two-layer structure of a first reinforcing layer arranged in the longitudinal direction of the tube and a second reinforcing layer arranged in the circumferential direction, and these. By using a fiber composite in which a thermoplastic resin is held in a large number of continuous filaments as a reinforcing fiber forming the reinforcing layer, it is possible to obtain one in which the thermoplastic resin is fused and integrated at the interface of each layer. What is done is the essence, but as an example of the method of forming the second reinforcing layer in the two-layer pipe consisting of the first reinforcing layer and the thermoplastic resin inner layer, the inner core is projected inside the two-layer pipe. Then, a method of winding the fiber composite around the inner core at a position outside of the inner core was proposed (see page 4, lower right column of the above publication). This is to prevent the two-layer tube which has not been sufficiently solidified from being deformed by winding the fiber composite.

【0005】[0005]

【本発明が解決しようとする課題】ところが、第1強化
層上に第2強化層を加熱融着して一体化する為に、巻回
のための繊維複合体や、すでに形成された第1強化層
を、熱源からの熱エネルギーにより相互に融着可能な温
度にまで加熱しながら巻回するために、加熱温度を精密
に制御しないと、繊維複合体中のマトリックス樹脂が溶
けてその粘度が低くなり、強化繊維のみが表面に浮き出
して、第1と第2の強化層を充分に融着させることが困
難な場合がある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, in order to heat-seal and integrate the second reinforcing layer on the first reinforcing layer, the fiber composite for winding and the already formed first composite layer are formed. Since the reinforcing layer is wound while being heated to a temperature at which they can be mutually fused by the heat energy from the heat source, if the heating temperature is not precisely controlled, the matrix resin in the fiber composite will melt and its viscosity will increase. It may become low, and only the reinforcing fibers may be raised on the surface, and it may be difficult to sufficiently fuse the first and second reinforcing layers.

【0006】また一方において、上記内コア方式を採っ
ているので、製造速度が比較的速い場合は、2層管の熱
可塑性樹脂内層の樹脂を充分に冷却することが出来ない
ので、内コア上を摺動させる際に、内コアと熱可塑性樹
脂内層の内面との間の摩擦が激しくなり、内コアの表面
に樹脂が付着したりして、内コアと熱可塑性樹脂内層と
の摺動に円滑性を欠き、甚だしい場合は、強化層と熱可
塑性樹脂内層とが剥離し、引き取りが困難になる場合が
ある。
On the other hand, since the above-mentioned inner core system is adopted, the resin in the inner layer of the thermoplastic resin of the two-layer pipe cannot be cooled sufficiently when the production speed is relatively fast, so When sliding, the friction between the inner core and the inner surface of the thermoplastic resin inner layer becomes severe, and the resin adheres to the surface of the inner core, causing sliding between the inner core and the thermoplastic resin inner layer. In the case of lacking smoothness and extremeness, the reinforcing layer and the thermoplastic resin inner layer may be separated from each other, which may make it difficult to pick up.

【0007】本発明は、上述のような従来技術の問題点
を解消し、強化層を形成する樹脂として熱可塑性樹脂を
用い、且つ内コア方式を採って第1と第2の二重の強化
層を形成する場合であっても、層間の接着力に優れた繊
維強化熱可塑性樹脂管を能率よく生産することのできる
製造方法を提供することを目的とする。
The present invention solves the problems of the prior art as described above, uses a thermoplastic resin as the resin for forming the reinforcing layer, and adopts the inner core system to provide the first and second double reinforcements. An object of the present invention is to provide a production method capable of efficiently producing a fiber-reinforced thermoplastic resin tube having excellent adhesive strength between layers even when forming layers.

【0008】[0008]

【課題を解決する為の手段】請求項1記載の発明は、繊
維強化熱可塑性樹脂管の製造方法において、押出機の金
型に、金型より押し出し方向に向けて内コアを突設し、
この内コアに、前記2層管を構成する樹脂の温度を軟化
温度以上溶融温度未満の温度範囲内に維持した状態で、
前記2層管を導入し、内コアの外側位置でテープ状また
はひも状繊維複合体を、その繊維複合体に保持されてい
る樹脂の溶融温度未満の温度で巻回することを特徴とす
る繊維強化熱可塑性樹脂管の製造方法をその要旨とする
ものであって、かくすることにより、各強化層のマトリ
ックス樹脂の溶融による繊維の浮きだしを防止するとと
もに、内コアでの熱可塑性樹脂内層の摺動が円滑に行わ
れるようにしたことを骨子としている。
According to a first aspect of the present invention, in a method for producing a fiber-reinforced thermoplastic resin pipe, an inner core is provided in a die of an extruder so as to project from the die in an extruding direction.
In the inner core, in a state where the temperature of the resin forming the two-layer pipe is maintained within a temperature range of the softening temperature or more and less than the melting temperature,
A fiber characterized by introducing the two-layer pipe and winding a tape-shaped or string-shaped fiber composite at a position outside the inner core at a temperature lower than a melting temperature of a resin held in the fiber composite. The essence is a method for producing a reinforced thermoplastic resin tube, and by doing so, it is possible to prevent the fibers from rising due to the melting of the matrix resin of each reinforced layer, and to prevent the thermoplastic resin inner layer of the inner core from forming. The main point is to ensure smooth sliding.

【0009】また、請求項2記載の発明は、得られた3
層管の少なくとも第1強化層と第2強化層との界面を溶
融温度以上に再加熱することを特徴とする請求項1記載
の繊維強化熱可塑性樹脂管の製造方法をその要旨とする
ものであり、かくすることにより、各層間の接着強度を
より高めることを骨子としている。
According to the invention described in claim 2, the obtained 3
The method for producing a fiber-reinforced thermoplastic resin pipe according to claim 1, wherein at least an interface between the first reinforcing layer and the second reinforcing layer of the layered tube is reheated to a melting temperature or higher. The main point is to increase the adhesive strength between the layers by doing so.

【0010】請求項1または2記載の発明において、シ
ート状、テープ状もしくは紐状繊維複合体に用いられる
連続強化繊維としては、直径が1〜数十μmの連続フイ
ラメントよりなるロービング状またはストランド状のも
のが用いられる。
In the invention according to claim 1 or 2, the continuous reinforcing fibers used in the sheet-shaped, tape-shaped or string-shaped fiber composite are roving-shaped or strand-shaped composed of continuous filaments having a diameter of 1 to several tens of μm. What is used.

【0011】具体的には、ガラス繊維、炭素繊維、シリ
コン・チタン・炭素繊維、ボロン繊維、微細な金属繊維
等の無機繊維、アラミド繊維、ビニロン繊維、液晶ポリ
マー繊維、ポリエステル繊維、ポリアミド繊維等の有機
繊維等、合成樹脂の補強繊維として使用可能な連続繊維
の全てが挙げられる。
Concretely, inorganic fibers such as glass fiber, carbon fiber, silicon / titanium / carbon fiber, boron fiber, fine metal fiber, aramid fiber, vinylon fiber, liquid crystal polymer fiber, polyester fiber, polyamide fiber, etc. All of the continuous fibers that can be used as reinforcing fibers for synthetic resins, such as organic fibers, can be mentioned.

【0012】そして、第1及び第2の強化層形成に用い
られる繊維複合体は、互いに同じ種類の繊維を用いても
よいし、異なる種類の繊維を用いてもよい。また、連続
繊維はそのフィラメント一本一本の間に熱可塑性樹脂が
充分に含浸され、保持されたものが好ましく、このよう
な連続繊維によって強化層を形成していることが、得ら
れる管の水密性、及び連続繊維と熱可塑性樹脂との接着
性を高める点で好ましく、この観点から、後述するとこ
ろの繊維複合体を製造する段階の前段階で、予めフィラ
メント間に熱可塑性樹脂を含浸させる等の表面処理を施
すのが好ましい。
The fiber composites used for forming the first and second reinforcing layers may use the same type of fibers or different types of fibers. Further, the continuous fiber is preferably one in which the thermoplastic resin is sufficiently impregnated and retained between the filaments, and it is preferable that the continuous fiber forms a reinforcing layer. It is preferable from the viewpoint of enhancing watertightness and adhesion between the continuous fiber and the thermoplastic resin. From this viewpoint, the thermoplastic resin is preliminarily impregnated between the filaments before the step of producing the fiber composite, which will be described later. It is preferable to perform surface treatment such as.

【0013】請求項1または2記載の発明において、繊
維複合体は、連続繊維のフィラメント間に熱可塑性樹脂
が付着乃至含浸されて保持され、加熱・加圧等によりシ
ート状、テープ状或いは紐状に形成されたものであっ
て、この複合体には、連続繊維がその長手方向にほぼ平
行に配置されたものとなっている。
In the invention according to claim 1 or 2, the fiber composite is held by a continuous resin filament being adhered or impregnated with a thermoplastic resin, and held by heating, pressurizing or the like into a sheet, tape or string. In this composite, continuous fibers are arranged substantially parallel to the longitudinal direction thereof.

【0014】この繊維複合体の幅、厚みについては、特
に制限はないが、紐状の繊維複合体を用いる場合は、直
径が0.5〜5mm程度のものが好適であり、テープ状
のものを用いる場合は、厚みが0.1〜10mm程度の
ものが好適である。
The width and thickness of this fiber composite are not particularly limited, but when using a string-shaped fiber composite, a diameter of 0.5 to 5 mm is suitable, and a tape-shaped one. In the case of using, those having a thickness of about 0.1 to 10 mm are suitable.

【0015】繊維複合体中の繊維量は、5〜70容量%
が好適であって、5容量%未満では充分な補強効果が得
られず、逆に70容量%を超えると、充分に熱可塑性樹
脂が含浸せず、かえって補強効果が小さくなる。また、
テープ状の繊維複合体中の連続繊維は、前述の通りその
長手方向とほぼ平行に配置されている必要があるが、そ
の他に、この連続繊維と直交する方向等交差する方向に
配置された有限長さの繊維が含まれたものであってもよ
い。
The amount of fibers in the fiber composite is 5 to 70% by volume.
If it is less than 5% by volume, a sufficient reinforcing effect cannot be obtained. On the contrary, if it exceeds 70% by volume, the thermoplastic resin is not sufficiently impregnated and the reinforcing effect is rather reduced. Also,
The continuous fibers in the tape-shaped fiber composite need to be arranged substantially parallel to the longitudinal direction thereof as described above, but in addition to that, the finite fibers arranged in the intersecting direction such as the direction orthogonal to the continuous fibers are also available. It may include a length of fiber.

【0016】請求項1または2記載の発明において、連
続強化繊維に保持させる熱可塑性樹脂としては、特に制
限はなく、例えば、ポリ塩化ビニル、塩素化ポリ塩化ビ
ニル、ポリエチレン、ポリプロピレン、ポリスチレン、
ポリアミド、ポリカーボネート、ポリフェニレンサルフ
ァイド、ポリスルホン、ポリエーテル・エーテルケトン
等が挙げられる。これらの熱可塑性樹脂は、管の使用目
的に応じて、単独あるいは複数の混合物として用いられ
てもよい。また、熱安定剤、可塑剤、滑剤、酸化防止
剤、紫外線吸収剤、顔料、強化繊維等の添加剤、無機充
填材、加工助剤、改質剤等が加えられてもよい。
In the invention of claim 1 or 2, the thermoplastic resin to be retained in the continuous reinforcing fiber is not particularly limited, and examples thereof include polyvinyl chloride, chlorinated polyvinyl chloride, polyethylene, polypropylene, polystyrene,
Examples thereof include polyamide, polycarbonate, polyphenylene sulfide, polysulfone, and polyether / etherketone. These thermoplastic resins may be used alone or as a mixture of two or more depending on the purpose of use of the tube. Further, additives such as heat stabilizers, plasticizers, lubricants, antioxidants, ultraviolet absorbers, pigments, reinforcing fibers, inorganic fillers, processing aids, modifiers, etc. may be added.

【0017】内層用熱可塑性樹脂としては、上記繊維複
合体における連続強化繊維に保持される熱可塑性樹脂と
特に同一である必要はなく、管状に押し出し成形可能な
ものであって、融着性の良いものであれば採用可能であ
る。
The thermoplastic resin for the inner layer does not have to be the same as the thermoplastic resin retained by the continuous reinforcing fibers in the fiber composite, and it can be extruded into a tubular shape and has a fusible property. If it is good, it can be adopted.

【0018】しかしながら、第2強化層用の繊維複合体
中の熱可塑性樹脂は、内層用熱可塑性樹脂に対する融着
性よりも、直接に接する第1強化層に用いられている熱
可塑性樹脂に対する融着性の方を重視すべきであって、
それの大きいものを選択使用するべきであり、このよう
にすれば、第1強化層と第2強化層との層間接着性がよ
り高くなり、優れた繊維強化熱可塑性樹脂管が得られ
る。
However, the thermoplastic resin in the fiber composite for the second reinforcing layer is more fused to the thermoplastic resin used in the first reinforcing layer which is in direct contact than the fusion property to the thermoplastic resin for the inner layer. You should emphasize the wearability,
The larger one should be selected and used, and by doing so, the interlayer adhesion between the first reinforcing layer and the second reinforcing layer becomes higher, and an excellent fiber-reinforced thermoplastic resin pipe can be obtained.

【0019】尚、ここに言う融着性とは、双方の樹脂を
溶融状態になるまで加熱した上で圧着し、冷却後融着し
た界面が容易に破断しないことをいう。連続強化繊維
に、熱可塑性樹脂を保持させる方法としては、公知の方
法がすべて採用可能であって、例えば、(1)連続強化
繊維を、粉体状熱可塑性樹脂の流動床中を通過させ、粉
体状熱可塑性樹脂を繊維フィラメントに付着させた後加
熱し、繊維と樹脂とを一体化せしめる方法、(2)連続
強化繊維を熱可塑性樹脂のエマルジョン中を通過させて
熱可塑性樹脂をフィラメント間に含浸させ、続いて溶融
温度以上に加熱して繊維と樹脂とを一体化するか、或い
はエマルジョン中を通過させた後一旦乾燥させ、その後
に溶融温度以上に加熱して一体化する方法、(3)溶融
粘度が低い樹脂の場合には、束状連続強化繊維をこの溶
融樹脂を満たした槽中に浸漬して樹脂を含浸する方法、
(4)連続強化繊維にフイルム状熱可塑性樹脂を積層
し、加熱加圧する方法等が採用される。
The term "fusing property" as used herein means that both resins are heated to a molten state and then pressure-bonded, and after cooling, the fused interface is not easily broken. As a method for holding the thermoplastic resin in the continuous reinforcing fiber, all known methods can be adopted, and, for example, (1) the continuous reinforcing fiber is passed through a fluidized bed of powdered thermoplastic resin, A method in which a powdery thermoplastic resin is adhered to a fiber filament and then heated to integrate the fiber and the resin, (2) continuous reinforcing fibers are passed through an emulsion of the thermoplastic resin to form the thermoplastic resin between the filaments. A method of impregnating the same with the resin and then heating it to a temperature higher than the melting temperature to integrate the fibers and the resin, or allowing the resin to pass through the emulsion and drying once, and then heating to a temperature higher than the melting temperature to integrate them. 3) In the case of a resin having a low melt viscosity, a method of immersing a bundle of continuous reinforcing fibers in a tank filled with the molten resin to impregnate the resin,
(4) A method in which a film-like thermoplastic resin is laminated on continuous reinforcing fibers and heated and pressed is adopted.

【0020】また、請求項1または2記載の発明におい
て、3層管を形成した後に、その上層に更に熱可塑性樹
脂の外層を設けるのは任意であり、外層に用いる樹脂
は、特に制限はなく、全ての熱可塑性樹脂が採用可能で
あるが、第2強化層に保持されている樹脂と融着性の良
い樹脂を用いるのが好ましい。
Further, in the invention according to claim 1 or 2, after forming the three-layer pipe, it is optional to further provide an outer layer of a thermoplastic resin on the upper layer, and the resin used for the outer layer is not particularly limited. Although all thermoplastic resins can be used, it is preferable to use a resin having a good fusion property with the resin held in the second reinforcing layer.

【0021】請求項1または2記載の発明において、内
コアに導入する際の2層管の温度を軟化温度以上溶融温
度未満の温度範囲内に維持する方法としては、金型の先
端に細い材料からなる支承材を突き出して設け、この支
承材に内コアを取りつけて内コアに入る迄に距離をおく
方法、この支承材から温度調節された空気等の気体を噴
出して、内面から冷却する方法(この方法は、冷却が過
剰になり勝ちで内コアへの導入が困難となる場合がある
ので注意が必要である。)、2層管の外側に、同じく温
度調節された空気等の気体を噴出して冷却する方法等が
ある。
In the invention according to claim 1 or 2, as a method of maintaining the temperature of the two-layer pipe at the time of introduction into the inner core within a temperature range from the softening temperature to less than the melting temperature, a thin material is attached to the tip of the mold. A support material consisting of is attached to the support material, and an inner core is attached to the support material to allow a distance to enter the inner core. A gas such as temperature-controlled air is ejected from this support material to cool it from the inner surface. Method (Note that this method is likely to be over-cooled and may be difficult to introduce into the inner core.) A gas such as air whose temperature is controlled outside the two-layer tube There is a method of jetting and cooling.

【0022】請求項2記載の発明において、3層管を再
加熱する方法としては、その周囲から直接熱風等を当て
て加熱してもよいが、過熱すると再び強化繊維が浮き出
すことがあるので、遠赤外線加熱装置等、電磁波を利用
して内部加熱方式を採用するのが好ましい。
In the second aspect of the invention, as a method for reheating the three-layer tube, it may be heated by directly applying hot air or the like from the surroundings, but when it is overheated, the reinforcing fibers may come out again. It is preferable to employ an internal heating method utilizing electromagnetic waves, such as a far infrared heating device.

【0023】[0023]

【作用】請求項1記載の発明は、熱可塑性樹脂内層を最
内層とし、その外側に連続繊維が管の長手方向に配され
た第1強化層を形成し、更にその外側に、連続繊維が管
の周方向に巻回配置された第2強化層を形成してなる複
合管の製造方法において、押出機の金型に、該金型より
押し出し方向に向けて内コアを設けるとともに、2層管
の温度を、軟化温度以上溶融温度未満の温度範囲内に維
持した状態で、これに導入するようにしたので、熱可塑
性樹脂内層が内コアへ密着することがなく、また熱可塑
性樹脂内層と第1強化層とが強固に融着する。更に、第
2強化層形成のための繊維複合体の巻回により、2層管
の第1強化層中の繊維が浮き出ることもない。
According to the first aspect of the present invention, the innermost layer of the thermoplastic resin is used as the innermost layer, and the continuous fiber is formed on the outer side of the inner layer, and the continuous fiber is formed on the outer side of the first reinforcing layer. In a method for producing a composite pipe formed by forming a second reinforcing layer wound in the circumferential direction of the pipe, an inner core is provided in a die of an extruder in an extrusion direction from the die, and two layers are formed. Since the temperature of the pipe was introduced into the tube while maintaining it in the temperature range of the softening temperature or more and less than the melting temperature, the thermoplastic resin inner layer did not adhere to the inner core, and the thermoplastic resin inner layer The first reinforcing layer is firmly fused. Furthermore, the winding of the fiber composite for forming the second reinforcing layer does not cause the fibers in the first reinforcing layer of the two-layer tube to stand out.

【0024】また、この内コアに対応する位置、即ち内
コアの外側位置で繊維複合体の巻回を行い、且つ繊維複
合体中のマトリックス樹脂の温度がその溶融温度未満の
温度にして巻回するようにしたので、巻回による締めつ
け力が働いても、2層管が変形するのを防止できるばか
りでなく、第1または第2の強化層中の繊維が浮き出し
てくることがない。
Further, the fiber composite is wound at a position corresponding to the inner core, that is, at a position outside the inner core, and the matrix resin in the fiber composite is wound at a temperature lower than its melting temperature. Therefore, even if the tightening force due to the winding works, it is possible not only to prevent the two-layer tube from being deformed, but also to prevent the fibers in the first or second reinforcing layer from protruding.

【0025】なお、強化繊維が、第1強化層においては
軸方向に配されているので、連続的に成形される3層管
を引き取る際に、同管に加わる引っ張り力によって生ず
る管変形をも最小限に抑えることができる。
Since the reinforcing fibers are arranged in the axial direction in the first reinforcing layer, when a continuously molded three-layer pipe is taken in, the pipe is deformed by a tensile force applied to the pipe. Can be kept to a minimum.

【0026】請求項2記載の発明は、また、得られた3
層管の少なくとも第1強化層と第2強化層との界面をそ
の溶融温度以上に加熱するようにしたので、複合管の強
化層間の融着がより確実になされる。
The invention according to claim 2 also provides the obtained 3
Since the interface between at least the first reinforcing layer and the second reinforcing layer of the layered tube is heated to the melting temperature or higher, fusion between the reinforcing layers of the composite tube can be performed more reliably.

【0027】[0027]

【実施例】実施例1 先ず、この発明の実施に使用する装置につき、図面を参
照して説明する。図面は請求項1記載の発明と同2記載
の発明とを合わせて説明するものである。以下の説明に
おいて、前とは図1においてその右方向を指すものとす
る。
Embodiment 1 First, an apparatus used for carrying out the present invention will be described with reference to the drawings. The drawings explain the invention of claim 1 and the invention of claim 2 together. In the following description, the term "front" means the rightward direction in FIG.

【0028】図1及び図2に示す繊維強化熱可塑性樹脂
管の製造装置は、第1強化層用シート状繊維複合体A1
が巻回されている巻き戻しロール1と、その前方に配置
され、かつ先端部が前向き直角に折り曲げられ、その外
周部が横断面円形の内金型2となされた内層用熱可塑性
樹脂押出機である第一の押出機3と、その後部一側方に
配置された加熱手段4と、内金型2を両側から挟んでい
る一対の鼓状賦形ロール5と、第一の押出機3の先端部
の軸芯に設けられ、且つ内金型2よりも前方に突き出し
たコア6とを有している。
The apparatus for producing a fiber-reinforced thermoplastic resin pipe shown in FIGS. 1 and 2 is a sheet-like fiber composite A1 for a first reinforcing layer.
A rewinding roll 1 in which is wound, and a thermoplastic resin extruder for an inner layer, which is arranged in front of the rewinding roll 1 and has a tip portion bent forward at a right angle and an outer peripheral portion of which is an inner mold 2 having a circular cross section. The first extruder 3, the heating means 4 arranged on one side of the rear part thereof, the pair of drum-shaped shaping rolls 5 sandwiching the inner mold 2 from both sides, and the first extruder 3 Has a core 6 which is provided on the shaft center of the tip end of the and which protrudes forward of the inner mold 2.

【0029】また、このコア6は、後方から前方に向け
て、先端近くに、逆円錐状に太くなる拡径部を有する基
部6aと、金型端面から突き出されてその前方に設けら
れた小径の支承材6bとさらにその先に一体に設けら
れ、間に三つの小径部を挟んで四つの太径部が設けられ
てなる内コア6cとから形成され、又、基部6aと、内
コア6cの太径部との外径は、熱可塑性樹脂内層の内径
とほぼ同じ寸法になされている。また、これら基部6a
と、支承材6b及び内コア6cとは、ボルトナット結合
により一体的になされている。
Further, the core 6 has a base portion 6a having a diameter-enlarged portion which becomes thicker in an inverted conical shape in the vicinity of the front end from the rear to the front, and a small diameter which is protruded from the end face of the mold and is provided in front thereof. Support member 6b and an inner core 6c which is provided integrally with the support member 6b and which has four large diameter portions sandwiching three small diameter portions therebetween, and also has a base portion 6a and an inner core 6c. The outer diameter of the large-diameter portion is substantially the same as the inner diameter of the thermoplastic resin inner layer. Also, these bases 6a
The support member 6b and the inner core 6c are integrally formed by bolt-nut coupling.

【0030】このコア6の内部は中空であって、この中
を、圧力空気発生装置23から導管を介して内金型2の
後方に送り込まれた圧力空気を、支承材6bに設けられ
た空気噴き出し孔22から噴き出して、熱可塑性樹脂内
層に加わる圧力を一定に保持することにより管径を維持
し、内コア6cへの導入を容易にすることができる。
The inside of the core 6 is hollow, and the compressed air sent from the compressed air generator 23 to the rear of the inner mold 2 through the conduit is supplied to the support member 6b. It is possible to maintain the pipe diameter by ejecting from the ejection hole 22 and maintaining the pressure applied to the inner layer of the thermoplastic resin constant, and to facilitate introduction into the inner core 6c.

【0031】本製造装置は、更に、内金型2の先端近傍
の、外側の位置からその先端面を内金型2と合わせるよ
うにして外金型7が設置されている。8は暖冷風発生装
置であって、やはり、図示しない冷暖房機能を具備した
エネルギー源からの送風により温風、あるいは冷風を噴
き出すようになっており、後方に位置する81、82の
2基は、2層管を軟化温度以上溶融温度未満に維持する
ような温度の風を噴き出し、前方に位置する83、84
の2基は、2層管の第1強化層A3を形成するマトリッ
クス樹脂の温度を、その樹脂の軟化温度未満の温度に冷
却する為の風を噴き出すようになっている。
In the present manufacturing apparatus, an outer die 7 is further installed so that the tip surface of the inner die 2 is aligned with the inner die 2 from an outer position in the vicinity of the tip. Reference numeral 8 denotes a warm / cool air generator, which is also designed to blow out warm air or cold air by blowing air from an energy source having a cooling / heating function (not shown). 83, 84 positioned in front of the two-layer pipe are blown out with a wind having a temperature that maintains the softening temperature and lower than the melting temperature.
The two units are designed to blow air for cooling the temperature of the matrix resin forming the first reinforcing layer A3 of the two-layer pipe to a temperature lower than the softening temperature of the resin.

【0032】9は第2強化層用テープ状繊維複合体C1
を、そのマトリックス樹脂の溶融温度以下の温度に加熱
する為の赤外線発生装置からなる加熱手段、10はテー
プ状繊維複合体C1の巻付機、11は遠赤外線発生装置
を具備した炉からなる加熱手段、12は外層用熱可塑性
樹脂を押し出すための第2の押出機、13はその先端に
設けられた被覆金型、14はその前方に設けられたサイ
ジング装置、15は引取機である。
9 is a tape-shaped fiber composite C1 for the second reinforcing layer
Heating means comprising an infrared generator for heating to a temperature below the melting temperature of the matrix resin, 10 is a winding machine for the tape-shaped fiber composite C1, and 11 is a furnace provided with a far infrared generator. Means, 12 is a second extruder for extruding the outer layer thermoplastic resin, 13 is a coating die provided at the tip thereof, 14 is a sizing device provided in front of it, and 15 is a take-up machine.

【0033】更に、図2にも示すように、内金型2と一
対の鼓状賦形ロール5との間には、第1強化層用シート
状繊維複合体A1の両縁部aを重ね合わせて成形すべき
管状体A2の、厚み分の間隙が設けられている。基部6
aと管状体A2との間には、押出機3から押出されてく
る溶融樹脂B1により形成される熱可塑性樹脂内層B2
の厚み分の間隙が設けられている。即ち、基部6aは熱
可塑性樹脂内層B3の内径とほぼ同一の外径を有してい
ることになる。
Further, as shown in FIG. 2, both edges a of the sheet-shaped fiber composite A1 for the first reinforcing layer are overlapped between the inner mold 2 and the pair of drum-shaped shaping rolls 5. A gap corresponding to the thickness of the tubular bodies A2 to be molded together is provided. Base 6
Between the a and the tubular body A2, the thermoplastic resin inner layer B2 formed by the molten resin B1 extruded from the extruder 3.
A gap corresponding to the thickness of is provided. That is, the base 6a has an outer diameter that is substantially the same as the inner diameter of the thermoplastic resin inner layer B3.

【0034】尚、図3は、シート状繊維複合体A1から
管状体A2を形成するため、一対の賦形ロール5を用い
る代わりに、賦形金型24を該一対の賦形ロール5に対
応する位置に設けた変形例を示す。
Incidentally, in FIG. 3, since the tubular body A2 is formed from the sheet-shaped fiber composite A1, instead of using the pair of shaping rolls 5, the shaping die 24 corresponds to the pair of shaping rolls 5. A modified example provided at a position to be shown is shown.

【0035】上記シート状繊維複合体A1及びテープ状
繊維複合体C1は、図4に示す流動床装置16を用いて
製造する。この流動床装置16の槽底は多孔板17で形
成されており、気体供給路から送られてきた空気や窒素
等の気体Gが、多孔板17の下方からこれの多数の孔を
通って上方に噴出せしめられる。その結果、流動床装置
16の槽内に入れられた粉体状熱可塑性樹脂は、噴出気
体Gによって流動化状態となり流動床Rが形成される。
流動床装置16の槽内及びその前後壁上端には、連続強
化繊維F1を案内するためのガイドロール18が設けら
れている。
The sheet-shaped fiber composite A1 and the tape-shaped fiber composite C1 are manufactured using the fluidized bed apparatus 16 shown in FIG. The bottom of the fluidized bed apparatus 16 is formed of a perforated plate 17, and a gas G such as air or nitrogen sent from a gas supply passage is passed upward from below the perforated plate 17 through many holes thereof. Is made to squirt. As a result, the powdered thermoplastic resin put in the tank of the fluidized bed apparatus 16 is fluidized by the jetted gas G, and the fluidized bed R is formed.
A guide roll 18 for guiding the continuous reinforcing fibers F1 is provided in the tank of the fluidized bed apparatus 16 and at the upper ends of the front and rear walls thereof.

【0036】上記流動床装置16を用い、巻き戻しロー
ル19から多数の連続フィラメントよりなる束状の連続
強化繊維F1の10本を、巻取りロール20によりひね
りが生じないようにしながら巻戻し、粉体状熱可塑性樹
脂の流動床R中を通過させ、束状強化繊維F1の各フィ
ラメントに、粉体状熱可塑性樹脂を付着させる。この実
施例の場合、粉体状熱可塑性樹脂としては、酢酸ビニル
−塩化ビニル共重合体(酢酸ビニル量8%、平均粒径=
250μm)を用い、強化繊維としては、直径23μm
のフィラメントよりなるロービング状ガラス繊維(44
00tex)を用いた。
Using the fluidized bed apparatus 16 described above, 10 bundles of continuous reinforcing fibers F1 composed of a large number of continuous filaments were unwound from a rewinding roll 19 by a winding roll 20 while preventing twisting, and powdered. The fluidized bed R of the body-like thermoplastic resin is passed through to adhere the powdery thermoplastic resin to each filament of the bundle-like reinforcing fibers F1. In the case of this example, as the powdery thermoplastic resin, a vinyl acetate-vinyl chloride copolymer (vinyl acetate amount 8%, average particle size =
250 μm) and the reinforcing fiber has a diameter of 23 μm.
Roving glass fiber (44
00tex) was used.

【0037】さらに、この粉体状熱可塑性樹脂付着強化
繊維F2を、約180℃に加熱された一対の加熱ロール
21を通過させて、加熱・加圧し、熱可塑性樹脂を溶融
させてこれを強化繊維と一体化せしめ、厚み0.6mmの
シート状繊維複合体F3を得、これを巻取りロール20
に巻き取った。このシート状繊維複合体F3の熱可塑性
樹脂と強化繊維との容量割合は、熱可塑性樹脂75%、
強化繊維25%であった。
Further, the powdery thermoplastic resin adhesion reinforcing fiber F2 is passed through a pair of heating rolls 21 heated to about 180 ° C., heated and pressed to melt the thermoplastic resin and strengthen it. A sheet-shaped fiber composite body F3 having a thickness of 0.6 mm was obtained by integrating it with the fiber, and this was taken up as a winding roll 20.
Rolled up. The volume ratio of the thermoplastic resin and the reinforcing fiber of the sheet-shaped fiber composite F3 is 75% of the thermoplastic resin,
The reinforcing fiber was 25%.

【0038】上記シート状繊維複合体F3を切断し、連
続強化繊維が長手方向に配された幅91mm、厚み0.6
mmのシート状繊維複合体A1を、また連続強化繊維が長
さ方向に配された幅23.5mm、厚み0.6mmのテープ
状繊維複合体C1をそれぞれ得た。
The above-mentioned sheet-shaped fiber composite F3 was cut, and the continuous reinforcing fibers were arranged in the longitudinal direction to have a width of 91 mm and a thickness of 0.6.
A sheet-shaped fiber composite A1 having a width of 23.5 mm and a thickness of 0.6 mm in which continuous reinforcing fibers were arranged in the lengthwise direction were obtained.

【0039】上記のようにして製造された第1強化層用
シート状繊維複合体A1を図1の巻戻しロール1に移
し、これを巻戻しつつ熱風発生機からなる加熱手段4に
より熱風を吹き付けて加熱し、つぎに、シート状繊維複
合体A1の両縁部aを重ね合わせて、賦形ロール5と内
金型2とにより外径29mm、厚み0.6mmの管状体A2
に連続成形した。
The sheet-like fiber composite A1 for the first reinforcing layer produced as described above is transferred to the rewinding roll 1 shown in FIG. 1, and while being rewound, hot air is blown by the heating means 4 consisting of a hot air generator. Then, both edges a of the sheet-shaped fiber composite A1 are overlapped with each other, and a tubular body A2 having an outer diameter of 29 mm and a thickness of 0.6 mm is formed by the shaping roll 5 and the inner mold 2.
Was continuously molded.

【0040】次に、成形された管状体A2を、内金型2
及び基部6aと、外金型7との間の環状間隙に導き入れ
る。この場合、内金型2、基部6a及び外金型7は20
0℃に加熱されており、ここで重合両縁部a、aは融着
された。
Next, the formed tubular body A2 is transferred to the inner die 2
And, it is introduced into the annular gap between the base 6a and the outer mold 7. In this case, the inner mold 2, the base 6a and the outer mold 7 are 20
It was heated to 0 ° C., where the polymerized edges a, a were fused.

【0041】重合両縁部aが重合された管状体A2を前
進させつつ、その内面に沿って、内層用熱可塑性樹脂B
1を溶融状態で押し出して、溶融樹脂層B2を積層し、
強化繊維が管の長手方向に配された第1強化層A3を有
する厚み1.5mmの熱可塑性樹脂内層B3を形成するこ
とにより、外径29mmの2層管となす。内層用熱可塑性
樹脂B1としては、ポリ塩化ビニル樹脂( 重合度=10
00)を用いた。
While advancing the tubular body A2 having polymerized both edges a, the thermoplastic resin B for the inner layer is advanced along the inner surface of the tubular body A2.
1 is extruded in a molten state to laminate a molten resin layer B2,
By forming a thermoplastic resin inner layer B3 having a thickness of 1.5 mm and having a first reinforcing layer A3 in which reinforcing fibers are arranged in the longitudinal direction of the pipe, a two-layer pipe having an outer diameter of 29 mm is formed. As the thermoplastic resin B1 for the inner layer, a polyvinyl chloride resin (degree of polymerization = 10
00) was used.

【0042】2層管をそのまま前進させつつ、その内部
にこれとほぼ同一の外径(太径部=25.0mm)を有
する内コア6Cに導くのであるが、この間、2層管は、
内コア6Cに到達する迄の間に、暖冷風発生装置81、
82により、該2層管の第1強化層A3を構成するマト
リックス樹脂の軟化温度以上溶融温度以下に樹脂温度を
調整した。この場合、軟化温度以上にしておくことによ
り、第1強化層A3と熱可塑性樹脂内層B3とが強固に
融着一体化され、更に、この強化繊維の抗張力が高いこ
とと相まって、管軸方向に延伸されることもなく、引取
機15により強い引き取り力が働いても、連続的に2層
管を、内コア6C上に引き取ることができる。一方、軟
化温度以下では、2層管を外径25.0mmの内コア6
Cに導入することが難しく、溶融温度以上では、熱可塑
性樹脂内層B3が内コア6Cに密着して引き取りが難し
くなる。
While advancing the two-layer pipe as it is, the two-layer pipe is guided to the inner core 6C having substantially the same outside diameter (large diameter part = 25.0 mm) as the inside, while the two-layer pipe is
Before reaching the inner core 6C, the warm / cool air generator 81,
82, the resin temperature was adjusted to a temperature not lower than the softening temperature and not higher than the melting temperature of the matrix resin constituting the first reinforcing layer A3 of the two-layer pipe. In this case, by setting the softening temperature or higher, the first reinforcing layer A3 and the thermoplastic resin inner layer B3 are firmly fused and integrated, and further, in combination with the high tensile strength of the reinforcing fiber, The two-layer pipe can be continuously drawn onto the inner core 6C without being stretched and even when a strong drawing force is exerted by the drawing machine 15. On the other hand, at the softening temperature or lower, the two-layer pipe is made into the inner core 6 having an outer diameter of 25.0 mm.
It is difficult to introduce it into C, and above the melting temperature, the thermoplastic resin inner layer B3 adheres to the inner core 6C, making it difficult to take it back.

【0043】2層管は、内コア6cの上でその内面を規
制しつつサイジングされた。また、2層管は、この内コ
ア6cを通過する間に、圧力空気発生装置23により発
生し支承材6b及び内コア6cの内部に設けられた内管
(図示せず)から噴出する冷却空気及び冷風発生装置8
3、84からの冷風により軟化温度未満にその樹脂温度
が調整された。
The two-layer pipe was sized on the inner core 6c while controlling the inner surface thereof. The two-layer pipe is cooling air generated by the pressure air generator 23 while passing through the inner core 6c and ejected from an inner pipe (not shown) provided inside the support member 6b and the inner core 6c. And cold air generator 8
The resin temperature was adjusted below the softening temperature by cold air from 3,84.

【0044】このように、内コアの内部を冷媒により冷
却し、2層管を第1強化層のマトリックス樹脂の軟化温
度未満の温度にすると、熱可塑性樹脂内層の内コアにお
ける密着防止や、2層管の変形等をより確実に防止する
ことができ、また、次工程である3層管の再加熱をより
容易にすることができる点で好ましい。
As described above, when the inside of the inner core is cooled by the refrigerant and the temperature of the two-layer pipe is lower than the softening temperature of the matrix resin of the first reinforcing layer, the inner layer of the thermoplastic resin is prevented from adhering to the inner core, and This is preferable in that it is possible to more reliably prevent deformation of the layered tube and to facilitate reheating of the three-layered tube in the next step.

【0045】更に、コア6c上で2層管の外周に、巻付
け機10により第2強化層用テープ状繊維複合体C1を
巻回する。この際、加熱手段9により、テープ状繊維繊
維複合体C1のマトリックス樹脂の軟化温度以上(例え
ば160℃)に加熱しながら、軸方向に対して75℃の
角度でスパイラル状に巻き付けるとともに、これを第1
強化層A3に密着させて、第1強化層A3の外面に強化
繊維がほぼ周方向に配された第2強化層C2を形成する
ことにより3層管を得た。
Furthermore, the tape-shaped fiber composite C1 for the second reinforcing layer is wound around the outer periphery of the two-layer pipe on the core 6c by the winding machine 10. At this time, while being heated by the heating means 9 to the softening temperature of the matrix resin of the tape-shaped fiber-fiber composite C1 or higher (for example, 160 ° C.), the tape-shaped fiber-fiber composite C1 is spirally wound at an angle of 75 ° C. with respect to the axial direction. First
A three-layer pipe was obtained by closely contacting the reinforcing layer A3 and forming the second reinforcing layer C2 in which the reinforcing fibers were arranged in the circumferential direction on the outer surface of the first reinforcing layer A3.

【0046】次に、この3層管を、遠赤外線ヒーターを
配した加熱炉からなる加熱手段11内に導き、3層管
を、少なくとも、第1強化層A3と第2強化層C2との
界面の樹脂温度が溶融温度(200℃)になるまで加熱
し、両強化層同士を融着一体化させた。この実施例で
は、遠赤外線ヒーターにより3層管を加熱したが、加熱
手段はこれに限られるものではなく、前述の通り、所期
の加熱目的を達成できる加熱手段であればよい。
Next, the three-layer tube is introduced into the heating means 11 consisting of a heating furnace provided with a far infrared heater, and the three-layer tube is at least the interface between the first reinforced layer A3 and the second reinforced layer C2. The resin was heated until the resin temperature reached the melting temperature (200 ° C.), and both reinforcing layers were fused and integrated. In this embodiment, the far-infrared heater heats the three-layer tube, but the heating means is not limited to this, and any heating means capable of achieving the intended heating purpose may be used as described above.

【0047】引き続き、3層管を被覆金型13内に導
き、第2押出機12により溶融可塑化された外層用熱可
塑性樹脂を第2強化層C2の外周に押し出してこれを被
覆し、厚み1mmの熱可塑性樹脂外層Dを成形した後、
サイジング装置14で冷却サイジングを施し、4層管と
なす。外層用熱可塑性樹脂としては、ポリ塩化ビニル樹
脂(平均重合度=1000)を用いた。
Subsequently, the three-layer pipe is introduced into the coating mold 13, and the thermoplastic resin for the outer layer melt-plasticized by the second extruder 12 is extruded onto the outer periphery of the second reinforced layer C2 to coat it, and the thickness After molding a 1 mm thermoplastic resin outer layer D,
Cooling sizing is performed by the sizing device 14 to form a four-layer pipe. Polyvinyl chloride resin (average degree of polymerization = 1000) was used as the thermoplastic resin for the outer layer.

【0048】上記一連の工程を、引取機15で引き取り
つつ行い、図5に示すような4層の複合管よりなる内径
25.0mm、外径32.2mmの繊維強化熱可塑性樹
脂管Eを連続的に成形した。
The above series of steps are carried out while being taken by the take-up machine 15, and a fiber-reinforced thermoplastic resin pipe E having an inner diameter of 25.0 mm and an outer diameter of 32.2 mm made of a four-layer composite pipe as shown in FIG. 5 is continuously formed. Molded into a

【0049】また、加熱手段4を配する代わりに、一対
の賦形ロール5にヒーターを内蔵せしめ、これをシート
状繊維複合体A1の軟化温度以上に加熱するようにして
もよい。尚、加熱手段4の位置は図示の場所に限定され
ないし、場合によってはこれを省くこともできる。
Instead of providing the heating means 4, a heater may be incorporated in the pair of shaping rolls 5 and the heating may be performed at a temperature higher than the softening temperature of the sheet-shaped fiber composite A1. The position of the heating means 4 is not limited to the illustrated position, and it may be omitted in some cases.

【0050】また、第1強化層A3に第2強化層用テー
プ状繊維複合体C1を巻回し、密着させる際に、一定の
張力を維持して巻回する方法の他に、ロールや板バネな
どによって、加圧しながら巻回してもよい。
In addition, when the tape-shaped fiber composite C1 for the second reinforcing layer is wound around the first reinforcing layer A3 and tightly adhered thereto, a roll or a leaf spring can be used in addition to the method of winding while maintaining a constant tension. For example, it may be wound under pressure.

【0051】冷却サイジングを行う冷却装置14として
は、水槽が一般的であるが、これに限られるものではな
い。
A water tank is generally used as the cooling device 14 for cooling sizing, but the cooling device is not limited to this.

【0052】[0052]

【発明の効果】請求項1記載の発明は、熱可塑性樹脂内
層を最内層とし、その外側に連続繊維が管の長手方向に
配された第1強化層を形成し、更にその外側に、連続繊
維が管の周方向に巻回配置された第2強化層を形成して
なる複合管の製造方法において、押出機の金型に、該金
型より押し出し方向に向けて内コアを設けるとともに、
2層管の温度を、軟化温度以上溶融温度未満の温度範囲
内に維持した状態で、これに導入するようにしたので、
熱可塑性樹脂内層が内コアへ密着することがなく、また
熱可塑性樹脂内層と第1強化層とが強固に融着する。
According to the invention of claim 1, the innermost layer of the thermoplastic resin is used as the innermost layer, and the first reinforcing layer in which continuous fibers are arranged in the longitudinal direction of the pipe is formed on the outer side of the inner layer. In a method for producing a composite pipe, in which fibers form a second reinforcing layer arranged in the circumferential direction of the pipe, a die of an extruder is provided with an inner core in the extrusion direction from the die,
Since the temperature of the two-layer pipe is introduced into the temperature range maintained above the softening temperature and below the melting temperature,
The inner layer of thermoplastic resin does not adhere to the inner core, and the inner layer of thermoplastic resin and the first reinforcing layer are firmly fused.

【0053】従って、内コアと熱可塑性樹脂内層との摺
動が円滑に行われ、ひいては所期の引き取り速度を維持
することができ、その製造速度を高め、生産性の向上を
図ることができる。
Therefore, the inner core and the thermoplastic resin inner layer slide smoothly, and the desired take-up speed can be maintained, and the production speed can be increased and the productivity can be improved. ..

【0054】更に、第2強化層形成のための繊維複合体
の巻回により、2層管の第1強化層中の繊維が浮き出る
こともない。また、この内コアに対応する位置、即ち内
コアの外側位置で繊維複合体の巻回を行い、且つ繊維複
合体中のマトリックス樹脂の温度がその溶融温度未満の
温度にして巻回するようにしたので、巻回による締めつ
け力が働いても、2層管が変形するのを防止できるばか
りでなく、第1または第2の強化層中の繊維が浮き出し
てくることがない。
Furthermore, the winding of the fiber composite for forming the second reinforcing layer does not cause the fibers in the first reinforcing layer of the two-layer tube to stand out. Further, the fiber composite is wound at a position corresponding to the inner core, that is, at a position outside the inner core, and the matrix resin in the fiber composite is wound at a temperature lower than its melting temperature. Therefore, even if the tightening force by the winding works, not only the deformation of the two-layer tube can be prevented, but also the fibers in the first or second reinforcing layer do not come out.

【0055】従って、内外層を形成する樹脂、及び強化
繊維に保持される樹脂として、全て熱可塑性樹脂を用い
たこととあいまって、第1と第2の強化層の界面強度に
優れたものが得られ、高温水等の過酷な温度条件下で長
期にわたって使用したとしても、界面剥離が発生するこ
とが殆んどなく、配管が長持ちする。
Therefore, as the resin forming the inner and outer layers and the resin held by the reinforcing fibers, all of the thermoplastic resins are used, and there is a resin having excellent interfacial strength between the first and second reinforcing layers. Even if it is obtained and used for a long period of time under severe temperature conditions such as high-temperature water, interfacial peeling hardly occurs and the pipe lasts a long time.

【0056】なお、強化繊維が、第1強化層においては
軸方向に配されているので、連続的に成形される3層管
を引き取る際に、同管に加わる引っ張り力によって生ず
る管変形をも最小限に抑えることができる。
Since the reinforcing fibers are arranged in the axial direction in the first reinforcing layer, when a continuously molded three-layer pipe is drawn, the pipe deformation caused by the tensile force applied to the pipe is also generated. Can be kept to a minimum.

【0057】従って、寸法精度に優れた繊維強化熱可塑
性樹脂管を得ることができる。また、強化繊維が、管の
長手方向と、周方向の両方向に配置されているので、熱
硬化性樹脂を使用した複合管に劣らない耐圧性、耐衝撃
性を具備したものが得られる。
Therefore, it is possible to obtain a fiber-reinforced thermoplastic resin tube having excellent dimensional accuracy. Further, since the reinforcing fibers are arranged in both the longitudinal direction and the circumferential direction of the tube, it is possible to obtain a composite tube having a pressure resistance and an impact resistance comparable to those of the composite tube using the thermosetting resin.

【0058】請求項2記載の発明は、得られた3層管の
少なくとも第1強化層と第2強化層との界面をその溶融
温度以上に加熱するようにしたので、より確実に複合管
の強化繊維層間の融着がなされるため、界面剥離の発生
がより完全に防止され、耐久性に優れた繊維強化熱可塑
性樹脂管を得ることができる。
According to the second aspect of the present invention, at least the interface between the first reinforcing layer and the second reinforcing layer of the obtained three-layer tube is heated to a temperature equal to or higher than its melting temperature, so that the composite tube of the composite tube can be more surely heated. Since fusion between the reinforcing fiber layers is performed, the occurrence of interfacial peeling can be more completely prevented, and a fiber-reinforced thermoplastic resin tube having excellent durability can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施に用いる製造装置の一例を示す一
部切欠平面図である。
FIG. 1 is a partially cutaway plan view showing an example of a manufacturing apparatus used for carrying out the present invention.

【図2】同図(イ)は、図1のII−II線にて切断し、矢
印方向に見た断面図であり、同図(ロ)は、同じく図1
のIII −III 線にて切断し、矢印方向に見た断面図であ
る。
2 is a cross-sectional view taken along the line II-II of FIG. 1 and viewed in the direction of the arrow, and FIG. 2B is also the same as FIG.
FIG. 3 is a sectional view taken along line III-III of FIG.

【図3】管状体成形部分の変形例を示す一部切欠部分平
面図である。
FIG. 3 is a partially cutaway plan view showing a modified example of a tubular body molded portion.

【図4】流動床装置を含むシート状繊維複合体F3を製
造するための装置の一例を示す垂直断面図である。
FIG. 4 is a vertical cross-sectional view showing an example of an apparatus for producing a sheet-shaped fiber composite body F3 including a fluidized bed apparatus.

【図5】本発明の図1に示す装置によって得られた繊維
強化熱可塑性樹脂管の一部切欠斜視図である。
FIG. 5 is a partially cutaway perspective view of a fiber reinforced thermoplastic resin tube obtained by the apparatus shown in FIG. 1 of the present invention.

【符号の説明】[Explanation of symbols]

A1 シート状繊維複合体 A2 管状体 A3 第1強化層 B1 内層用熱可塑性樹脂 B2 溶融樹脂層 B3 熱可塑性樹脂内層 C1 テープ状繊維複合体 C2 第2強化層 D 熱可塑性樹脂外層 F1 連続強化繊維 F2 粉体状熱可塑性樹脂付着強化繊維 F3 シート状繊維複合体 P1 繊維強化熱可塑性樹脂管 P2 繊維強化熱可塑性樹脂管 P3 繊維強化熱可塑性樹脂管 P4 繊維強化熱可塑性樹脂管 R 流動床 2 内金型 3 第一の押出機 4 加熱手段 6 コア 6a 基部 6b 支承材(部) 6c 内コア(突出部) 7 外金型 8 冷却手段 9 加熱手段 10 巻付機 11 加熱手段 A1 sheet-shaped fiber composite A2 tubular body A3 first reinforcing layer B1 thermoplastic resin for inner layer B2 molten resin layer B3 thermoplastic resin inner layer C1 tape-shaped fiber composite C2 second reinforcing layer D thermoplastic resin outer layer F1 continuous reinforcing fiber F2 Powdery thermoplastic resin adhesion reinforcing fiber F3 Sheet fiber composite P1 Fiber reinforced thermoplastic resin tube P2 Fiber reinforced thermoplastic resin tube P3 Fiber reinforced thermoplastic resin tube P4 Fiber reinforced thermoplastic resin tube R Fluidized bed 2 Inner mold 3 First Extruder 4 Heating Means 6 Core 6a Base 6b Support Material (Part) 6c Inner Core (Projection) 7 Outer Mold 8 Cooling Means 9 Heating Means 10 Winding Machine 11 Heating Means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // B29K 105:08 B29L 9:00 4F 23:22 4F ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display area // B29K 105: 08 B29L 9:00 4F 23:22 4F

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 長手方向に配された連続強化繊維に熱可
塑性樹脂が保持されてなるシート状繊維複合体から、管
状体を連続成形する工程と、管状体を前進させつつその
内面に沿って、押出機より内層用熱可塑性樹脂を溶融状
態で押出して積層し、第1強化層を有する熱可塑性樹脂
内層を形成することにより2層管とする工程と、2層管
をそのまま前進させつつその外周に、長手方向に配され
た連続強化繊維に熱可塑性樹脂が保持されてなるテープ
状またはひも状繊維複合体を、第1強化層にスパイラル
状に巻き付け、第1強化層の外面に第2強化層を形成す
ることにより3層管とする工程とを、少なくとも有する
繊維強化熱可塑性樹脂管の製造方法において、押出機の
金型に、金型より押し出し方向に向けて内コアを突設
し、この内コアに、前記2層管を構成する樹脂の温度を
軟化温度以上溶融温度未満の温度範囲内に維持した状態
で、前記2層管を導入し、内コアの外側位置でテープ状
またはひも状繊維複合体を、その繊維複合体に保持され
ている樹脂の溶融温度未満の温度で巻回することを特徴
とする繊維強化熱可塑性樹脂管の製造方法。
1. A step of continuously forming a tubular body from a sheet-shaped fiber composite in which a thermoplastic resin is held by continuous reinforcing fibers arranged in a longitudinal direction, and a step of advancing the tubular body along its inner surface. A step of forming a two-layer pipe by forming a thermoplastic resin inner layer having a first reinforcing layer by laminating a thermoplastic resin for an inner layer in a molten state from an extruder and laminating the two layers while advancing the two-layer pipe as it is. A tape-shaped or string-shaped fiber composite, in which a thermoplastic resin is held by continuous reinforcing fibers arranged in the longitudinal direction, is wound around the outer periphery of the first reinforcing layer in a spiral shape, and the second reinforcing layer is formed on the outer surface of the first reinforcing layer. In a method for producing a fiber-reinforced thermoplastic resin tube, which has at least a step of forming a three-layer tube by forming a reinforced layer, a mold of an extruder is provided with an inner core protruding from a mold in a direction of extrusion. , To the core of this, before The two-layer pipe is introduced while maintaining the temperature of the resin constituting the two-layer pipe within a temperature range from the softening temperature to less than the melting temperature, and a tape-shaped or string-shaped fiber composite is formed at a position outside the inner core. A method for producing a fiber-reinforced thermoplastic resin tube, which comprises winding at a temperature lower than a melting temperature of a resin held in the fiber composite.
【請求項2】 得られた3層管の少なくとも第1強化層
と第2強化層との界面を溶融温度以上に再加熱すること
を特徴とする請求項1記載の繊維強化熱可塑性樹脂管の
製造方法。
2. The fiber-reinforced thermoplastic resin pipe according to claim 1, wherein at least an interface between the first reinforcing layer and the second reinforcing layer of the obtained three-layer pipe is reheated to a melting temperature or higher. Production method.
JP3307771A 1991-11-22 1991-11-22 Production of fiber reinforced thermoplastic resin pipe Pending JPH05138758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3307771A JPH05138758A (en) 1991-11-22 1991-11-22 Production of fiber reinforced thermoplastic resin pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3307771A JPH05138758A (en) 1991-11-22 1991-11-22 Production of fiber reinforced thermoplastic resin pipe

Publications (1)

Publication Number Publication Date
JPH05138758A true JPH05138758A (en) 1993-06-08

Family

ID=17973074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3307771A Pending JPH05138758A (en) 1991-11-22 1991-11-22 Production of fiber reinforced thermoplastic resin pipe

Country Status (1)

Country Link
JP (1) JPH05138758A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010144882A (en) * 2008-12-19 2010-07-01 Kurabe Ind Co Ltd Hose and method for manufacturing of hose
US20210370619A1 (en) * 2020-05-29 2021-12-02 Albany Engineered Composites, Inc. Reinforced Structure Having Continuous Fiber Reinforced Elements and Method of Making Thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010144882A (en) * 2008-12-19 2010-07-01 Kurabe Ind Co Ltd Hose and method for manufacturing of hose
US20210370619A1 (en) * 2020-05-29 2021-12-02 Albany Engineered Composites, Inc. Reinforced Structure Having Continuous Fiber Reinforced Elements and Method of Making Thereof
US11813806B2 (en) * 2020-05-29 2023-11-14 Albany Engineered Composites, Inc. Reinforced structure having continuous fiber reinforced elements and method of making thereof

Similar Documents

Publication Publication Date Title
JP3117492B2 (en) Method for producing fiber reinforced thermoplastic resin tube
JPH0911355A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH05138758A (en) Production of fiber reinforced thermoplastic resin pipe
JPH0584847A (en) Production of fiber reinforced thermoplastic resin pipe
JPH07117178B2 (en) Composite pipe
JPH0531782A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH05154936A (en) Method and apparatus for manufacturing fiber reinforced thermoplastic resin pipe
JPH07256779A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH044132A (en) Manufacture of fiber-reinforced thermoplastic resin pipe
JP2674844B2 (en) Manufacturing method of fiber reinforced resin pipe
JPH074877B2 (en) Method for manufacturing fiber-reinforced resin pipe
JPH07132565A (en) Preparation of fiber-reinforced thermoplastic resin composite pipe
JPH03157591A (en) Composite tube and manufacture thereof
JP3214892B2 (en) Method for producing hollow cross-section shaped body
JPH07290591A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH0460292A (en) Manufacture of fiber reinforced resin pipe
JPH03243333A (en) Manufacture of fiber-reinforced thermoplastic resin pipe
JPH0516262A (en) Manufacture of fiber-reinforced thermoplastic resin tube
JP2726123B2 (en) Manufacturing method of fiber reinforced resin pipe
JPH07117146A (en) Method for producing fiber-reinforced thermoplastic resin composite pipe
JPH0692127B2 (en) Method for producing fiber reinforced thermoplastic resin pipe
JPH07144372A (en) Manufacture of fiber reinforced thermoplastic resin composite pipe
JPH04201549A (en) Manufacture of fiber reinforced resin pipe
JPH08174704A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH04201548A (en) Manufacture of fiber reinforced resin pipe