JPH0513287B2 - - Google Patents
Info
- Publication number
- JPH0513287B2 JPH0513287B2 JP58126742A JP12674283A JPH0513287B2 JP H0513287 B2 JPH0513287 B2 JP H0513287B2 JP 58126742 A JP58126742 A JP 58126742A JP 12674283 A JP12674283 A JP 12674283A JP H0513287 B2 JPH0513287 B2 JP H0513287B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- liquid crystal
- semiconductor layer
- insulating layer
- alignment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/133345—Insulating layers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/1368—Active matrix addressed cells in which the switching element is a three-electrode device
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133509—Filters, e.g. light shielding masks
- G02F1/133512—Light shielding layers, e.g. black matrix
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Liquid Crystal (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
Description
【発明の詳細な説明】
[技術分野]
本発明の液晶表示装置、特に各画素毎にスイツ
チングを行うための、薄膜トランジスタ(TFT)
アレイを有する液晶表示装置に関する。[Detailed Description of the Invention] [Technical Field] A liquid crystal display device of the present invention, particularly a thin film transistor (TFT) for performing switching for each pixel.
The present invention relates to a liquid crystal display device having an array.
[従来技術]
液晶表示装置は一般に2枚の基板により液晶を
はさみ込んだ構造を有する。この基板の液晶側に
は電極その他の素子が形成されており、該素子に
より液晶の状態を制御することにより表示が行な
われる。2枚の基板のうちの一方にはその表面上
に一様に電極が形成され、他方にはその表面上に
適宜の形状をもつ小ブロツクパターン(画素)の
電極が複数固形成される。近年、画素電極側の基
板表面上に各画素毎のスイツチングのための
TFTアレイを付属せしめることが行なわれる。
第1図はこの様なTFTアレイを有する液晶表示
装置の断面概略図であり、ここでS及びS′はガラ
ス等の透明基板であり、1及び1′はゲート電極
であり、2及び2′は絶縁層であり、3及び3′は
半導体層であり、4及び4′はソース電極であり、
5及び5′はドレイン電極であり、6は絶縁及び
配向層であり、7は液晶であり、8は透明電極で
ある。[Prior Art] A liquid crystal display device generally has a structure in which a liquid crystal is sandwiched between two substrates. Electrodes and other elements are formed on the liquid crystal side of this substrate, and display is performed by controlling the state of the liquid crystal with these elements. Electrodes are uniformly formed on the surface of one of the two substrates, and a plurality of electrodes in a small block pattern (pixel) having an appropriate shape are solidly formed on the surface of the other substrate. In recent years, on the surface of the substrate on the pixel electrode side, a switch for switching for each pixel has been installed.
Attachment of a TFT array is performed.
FIG. 1 is a schematic cross-sectional view of a liquid crystal display device having such a TFT array, where S and S' are transparent substrates such as glass, 1 and 1' are gate electrodes, and 2 and 2' are transparent substrates such as glass. is an insulating layer, 3 and 3' are semiconductor layers, 4 and 4' are source electrodes,
5 and 5' are drain electrodes, 6 is an insulating and alignment layer, 7 is a liquid crystal, and 8 is a transparent electrode.
半導体として光導電性を有するものが用いられ
る場合には、できるだけ光をあてない様にしてス
イツチング特性の安定化をはかるのが好ましい。
このため、第2図に断面概略図で示される様な液
晶表示装置が用いられる。即ち、ここでは、第1
図に示される装置においてTFTアレイを覆つて
いる絶縁及び配向層6の上に更に半導体層に対応
する位置に遮光層9及び9′が形成されている。
遮光層には一般に金属が用いられる。 When a photoconductive semiconductor is used, it is preferable to avoid exposing it to light as much as possible in order to stabilize the switching characteristics.
For this purpose, a liquid crystal display device as shown in a schematic cross-sectional view in FIG. 2 is used. That is, here, the first
In the device shown in the figure, light shielding layers 9 and 9' are further formed on the insulating and alignment layer 6 covering the TFT array at positions corresponding to the semiconductor layers.
Metal is generally used for the light shielding layer.
以上の如き液晶表示装置において、絶縁層とし
ては従来無機材料たとえばアルミナ、酸化チタン
等の金属酸化物、窒化シリコン、二酸化シリコン
等のシリコン化合物が用いられていた。しかしな
がら、TFTを覆うためにはある程度以上の膜厚
が必要であり、これら無機材料の薄膜は薄膜が厚
くなると膜歪みが大きくなつてクラツク等が入り
易いという欠点があつた。この様なクラツクが生
ずると、同時にTFTも破壊されてしまうため
TFTの保護が行われず、特性の悪化をまねいて
しまう。そこで無機材料の代わりにクラツクの生
じない有機材料たとえばシリコン樹脂、アクリル
樹脂、環化ポリイソプレン等を絶縁層として用い
ることが提案されている。ところが、これら有機
材料の薄膜からなる絶縁層は保護層としての性能
が十分ではなくTFT特性が不安定になるという
欠点があつた。 In the above liquid crystal display devices, inorganic materials such as alumina, metal oxides such as titanium oxide, and silicon compounds such as silicon nitride and silicon dioxide have conventionally been used as the insulating layer. However, in order to cover the TFT, the film needs to be thicker than a certain level, and these thin films of inorganic materials have the disadvantage that the thicker the film, the greater the film distortion and the tendency for cracks to occur. When such a crack occurs, the TFT is also destroyed at the same time.
The TFT is not protected, leading to deterioration of its characteristics. Therefore, it has been proposed to use organic materials that do not cause cracks, such as silicone resin, acrylic resin, cyclized polyisoprene, etc., as the insulating layer instead of inorganic materials. However, the insulating layer made of a thin film of these organic materials does not have sufficient performance as a protective layer and has the disadvantage that the TFT characteristics become unstable.
更に、以上の如き液晶表示装置においては絶縁
層に配向が施されて配向層をも兼ねているが、遮
光層を形成する場合には配向処理はその後行わざ
るを得ず、この配向処理においては遮光層部分は
その材料によつて配向が施されないか又は絶縁層
上とは極めて異なる配向状態となるため遮光層部
分の近辺において液晶の配向が乱れ、表示に悪影
響を及ぼすことがある。 Furthermore, in the above-mentioned liquid crystal display device, the insulating layer is oriented and also serves as an alignment layer, but when forming a light-shielding layer, alignment treatment must be performed afterward, and in this alignment treatment, Depending on the material of the light-shielding layer, the alignment may not be applied or the alignment state may be extremely different from that on the insulating layer, so that the alignment of liquid crystals may be disturbed in the vicinity of the light-shielding layer, which may adversely affect the display.
[本発明の目的]
本発明は、以上の如き従来技術に鑑み、TFT
の絶縁層が長期にわたつて十分満足できる性能を
発揮し得、且つ遮光層部分の近辺においても液晶
の配向が乱されることのない、改良された液晶表
示装置を提供することを目的とする。[Object of the present invention] In view of the above-mentioned prior art, the present invention provides a TFT
An object of the present invention is to provide an improved liquid crystal display device in which the insulating layer of the invention can exhibit sufficiently satisfactory performance over a long period of time, and the alignment of the liquid crystal is not disturbed even in the vicinity of the light-shielding layer. .
[本発明の概要]
本発明は、
半導体層及び該半導体層への入射光の入射を遮
る金属遮光層を備えた薄膜トランジスタアレイ基
板、該薄膜トランジスタアレイ基板に対して対向
配置した対向基板、並びに該一対の基板間に配置
した液晶を有する液晶装置において、
前記半導体層の上に、該半導体層を直接接触さ
せて覆う無機絶縁物質で形成した第1の被膜を設
け、該第1の被膜の上に、該第1の被膜を覆う有
機絶縁物質で形成した第2の被膜を設け、該第2
の被膜の上に前記金属遮光層を設け、さらに前記
第2の被膜と前記金属遮光層とを覆う配向層を設
けてなることを特徴とする液晶装置である。[Summary of the present invention] The present invention provides: a thin film transistor array substrate including a semiconductor layer and a metal light shielding layer that blocks incident light from entering the semiconductor layer; a counter substrate disposed opposite to the thin film transistor array substrate; In a liquid crystal device having a liquid crystal disposed between two substrates, a first coating formed of an inorganic insulating material is provided on the semiconductor layer and covers the semiconductor layer in direct contact with the semiconductor layer, and a first coating is provided on the first coating. , a second coating formed of an organic insulating material covering the first coating is provided;
The liquid crystal device is characterized in that the metal light-shielding layer is provided on the coating, and an alignment layer is further provided to cover the second coating and the metal light-shielding layer.
[本発明の実施例]
第3図は本発明液晶表示装置の好適な一実施例
を示す断面概略図である。[Embodiment of the Present Invention] FIG. 3 is a schematic cross-sectional view showing a preferred embodiment of the liquid crystal display device of the present invention.
TFTを構成する半導体層3及び3′としてはた
とえばSi、CdS、CdSe、CdTe、Te等が用いら
れ、特に非晶質又は多結晶のSiが好適に用いられ
る。非晶質SiはH原子又はハロゲン原子(特にF
原子)を含むことができる。H原子又はハロゲン
原子はそれぞれ単独で含まれてもよいし双方が含
まれてもよい。その含有量は好ましくは全体0.01
〜40原子%、より好ましくは0.01〜30原子%であ
る。 For example, Si, CdS, CdSe, CdTe, Te, etc. are used as the semiconductor layers 3 and 3' constituting the TFT, and amorphous or polycrystalline Si is particularly preferably used. Amorphous Si contains H atoms or halogen atoms (especially F
atoms). Each of the H atom and the halogen atom may be contained alone or both may be contained. Its content is preferably 0.01 total
~40 at%, more preferably 0.01 to 30 at%.
この実施例においては、TFTアレイを覆つて
いる絶縁層が2層(即ち6a及び6b)からな
る。 In this embodiment, the insulating layer covering the TFT array consists of two layers (ie 6a and 6b).
6aは無機絶縁層であり、金属酸化物たとえば
酸化チタン、アルミナ、又はシリコン化合物たと
えば二酸化シリコン、窒化シリコン等の無機材料
を用いて蒸着法、スパツタ法、CVD法等により
形成することができる。無機絶縁層の層厚はすく
なくともTFTのチヤネル部分を保護する程度で
あるのが良く、好ましくは500〜3000Å程度であ
る。 Reference numeral 6a is an inorganic insulating layer, which can be formed using an inorganic material such as a metal oxide such as titanium oxide, alumina, or a silicon compound such as silicon dioxide or silicon nitride by a vapor deposition method, a sputtering method, a CVD method, or the like. The thickness of the inorganic insulating layer is preferably at least enough to protect the channel portion of the TFT, and is preferably about 500 to 3000 Å.
6bは有機絶縁層である。有機絶縁層を形成す
る材料としては熱硬化性樹脂、熱可塑姓樹脂ある
いは合成ゴム系樹脂が好適に用いられるが、実質
的に完全硬化させることが可能であり、その状態
において実質的に可視光に対して透明な材料で且
つ配向処理が可能である材料であればよい。熱硬
化性樹脂としてはたとえばフエノール樹脂、ポリ
エステル樹脂、シリコン樹脂、アクリル樹脂、ウ
レタン樹脂等をあげることができる。これらの熱
硬化性樹脂中には必要に応じて架橋剤、重合剤、
増感剤等を添加してもよい。熱可塑性樹脂として
はたとえばポリカーボネート、ポリエチレン、ポ
リスチレン等をあげることができる。この場合も
必要に応じて安定剤等を添加してもよい。合成ゴ
ム系樹脂としてはたとえば環化ポリイソプレン、
環化ポリブタジエン等をあげることができる。こ
の場合も必要に応じて架橋剤、増感剤等を添加し
てもよい。 6b is an organic insulating layer. Thermosetting resins, thermoplastic resins, or synthetic rubber-based resins are preferably used as materials for forming the organic insulating layer, but they can be substantially completely cured, and in that state they are substantially transparent to visible light. Any material may be used as long as it is transparent and can be subjected to alignment treatment. Examples of the thermosetting resin include phenolic resin, polyester resin, silicone resin, acrylic resin, and urethane resin. These thermosetting resins contain crosslinking agents, polymerization agents,
A sensitizer or the like may be added. Examples of thermoplastic resins include polycarbonate, polyethylene, and polystyrene. Also in this case, a stabilizer or the like may be added if necessary. Examples of synthetic rubber resins include cyclized polyisoprene,
Examples include cyclized polybutadiene. Also in this case, a crosslinking agent, sensitizer, etc. may be added as necessary.
有機絶縁層はたとえば熱硬化性樹脂あるいは合
成ゴム系樹脂を溶剤に溶解した後に前記の無機絶
縁層上に塗布し、加熱や紫外線、放射線等の電磁
波の照射を単独で又はこれらを併用して樹脂を架
橋、重合、硬化させることにより形成される。熱
可塑性樹脂を用いた場合には、たとえば該樹脂に
熱を加えて溶融して前記無機絶縁層上に塗布した
後に冷却、硬化させることにより有機絶縁層が形
成される。有機絶縁層の層厚は、無機絶縁層の層
厚とも関係するが、好ましくは500〜3000Åとさ
れる。尚、無機絶縁層と有機絶縁層の層厚の和は
あまり大きな値であると表示に悪影響を及ぼすこ
ともあるので適当な層厚みに決定される。加熱温
度はTFTを構成する半導体層に非晶質Siを用い
た場合には300℃以下の温度とすることが好まし
い。これは、300℃以上の温度になると非晶質Si
層が熱的な影響を受けてTFTの特性が変化した
り悪化したりする場合もあり得るからである。 The organic insulating layer is formed by dissolving a thermosetting resin or a synthetic rubber resin in a solvent and then coating it on the inorganic insulating layer, and applying heat or irradiation of electromagnetic waves such as ultraviolet rays or radiation to the resin either alone or in combination. It is formed by crosslinking, polymerizing, and curing. When a thermoplastic resin is used, the organic insulating layer is formed by applying heat to the resin, melting the resin, coating the resin on the inorganic insulating layer, and then cooling and hardening the resin. The thickness of the organic insulating layer is related to the thickness of the inorganic insulating layer, but is preferably 500 to 3000 Å. Note that if the sum of the layer thicknesses of the inorganic insulating layer and the organic insulating layer is too large, it may adversely affect the display, so the layer thickness is determined to be an appropriate layer thickness. The heating temperature is preferably 300° C. or lower when amorphous Si is used for the semiconductor layer constituting the TFT. This means that at temperatures above 300°C, amorphous Si
This is because the characteristics of the TFT may change or deteriorate due to thermal effects on the layer.
遮光層9及び9′はAl等の金属を蒸着法等によ
つて有機絶縁層上に形成した後に、その金属層を
フオトリソエツチング等により所望の形状及び大
きさに残すことにより形成される。 The light shielding layers 9 and 9' are formed by forming a metal such as Al on the organic insulating layer by vapor deposition or the like, and then leaving the metal layer in a desired shape and size by photolithography or the like.
10は配向層であり、有機絶縁層6b及び遮光
層9を覆う如くに形成される。配向層10の材料
は通常この種の装置において使用されるものであ
れば全て使用することができる。たとえば、ポリ
パラキシリレンをCVD法により成膜させたり又
はポリビニルアルコールをスピンナー塗布したり
して、しかる後に一定方向へ直接表面研磨して配
向せしめることにより有機配向層が形成される。
また、無機材料を斜方蒸着せしめることにより無
機配向層が形成される。 Reference numeral 10 denotes an alignment layer, which is formed to cover the organic insulating layer 6b and the light shielding layer 9. The material for the alignment layer 10 can be any of those normally used in this type of device. For example, an organic alignment layer is formed by forming a film of polyparaxylylene by a CVD method or by coating polyvinyl alcohol with a spinner, and then directly polishing the surface in a certain direction for alignment.
Further, an inorganic alignment layer is formed by obliquely depositing an inorganic material.
以下に本発明の実施例を示す。 Examples of the present invention are shown below.
実施例 1:
TFTアレイを形成した基板表面上に更にプラ
ズマCVD法を用いて窒化シリコン層(2000Å厚)
を形成した。次に、この窒化シリコン層上にキシ
レンに溶解した環化ポリイソプレン系レジスト
(東京応化社製 ODUR−11OWR:18cp)を
3000rpmでスピンナー塗布し高圧水銀灯で2秒間
硬化させ更に150℃で20分間ベーキングを行つた。
その結果、約1μm厚の無色透明な有機絶縁層が形
成された。更にその上に金属アルミニウムを蒸着
し所要部分以外をエツチングにより除去して遮光
層を形成した。その上に減圧CVD法によりポリ
パラキシリレンを約2000Å厚に堆積させてその表
面に配向処理を行つた。かくして得られた表示基
板を用いて、通常の工程を経て液晶表示装置を作
製した。Example 1: A silicon nitride layer (2000 Å thick) was further deposited on the surface of the substrate on which the TFT array was formed using the plasma CVD method.
was formed. Next, a cyclized polyisoprene resist (ODUR-11OWR: 18cp manufactured by Tokyo Ohka Co., Ltd.) dissolved in xylene was applied on this silicon nitride layer.
The coating was applied using a spinner at 3000 rpm, cured for 2 seconds using a high-pressure mercury lamp, and then baked at 150°C for 20 minutes.
As a result, a colorless and transparent organic insulating layer with a thickness of approximately 1 μm was formed. Furthermore, metallic aluminum was deposited on top of the layer and removed by etching other than the required portions to form a light-shielding layer. Polyparaxylylene was deposited on it to a thickness of about 2000 Å by low-pressure CVD, and the surface was subjected to orientation treatment. Using the thus obtained display substrate, a liquid crystal display device was manufactured through normal steps.
かくして得られた液晶表示装置を高温多湿雰囲
気(90℃、90%RH)中で1000時間連続動作させ
たところ、動作中良好な表示特性を示した。 When the thus obtained liquid crystal display device was operated continuously for 1000 hours in a high temperature and humid atmosphere (90° C., 90% RH), it exhibited good display characteristics during operation.
実施例 2
TFTアレイを形成した基板表面上に更にプラ
ズマCVD法を用いて窒化シリコン層(2000Å厚)
を形成した。次に、この窒化シリコン層上にキシ
レンに溶解した環化ポリイソプレン系レジスト
(東京応化社製 ODUR−11OWR:18cp)を
3000rpmでスピンナー塗布し高圧水銀灯で2秒間
硬化させ更に150℃で20分間ベーキングを行つた。
その結果、約1μm厚の無色透明な有機絶縁層が形
成された。更にその上に金属アルミニウムを蒸着
し所要部分以外をエツチングにより除去して遮光
層を形成した。その上にポリビニルアルコールの
5%水溶液を3000rpmでスピンナー塗布し乾燥さ
せてその表面に配向処理を行い、約2000Å厚の配
向層を形成した。かくして得られた表示基板を用
いて、通常の工程を経て液晶表示装置を作製し
た。かくして得られた液晶表示装置を高温多湿雰
囲気(90℃、90%RH)中で1000時間連続動作さ
せたところ、動作中良好な表示特性を示した。Example 2 A silicon nitride layer (2000 Å thick) was further formed using plasma CVD on the surface of the substrate on which the TFT array was formed.
was formed. Next, a cyclized polyisoprene resist (ODUR-11OWR: 18cp manufactured by Tokyo Ohka Co., Ltd.) dissolved in xylene was applied on this silicon nitride layer.
The coating was applied with a spinner at 3000 rpm, cured for 2 seconds using a high-pressure mercury lamp, and then baked at 150°C for 20 minutes.
As a result, a colorless and transparent organic insulating layer with a thickness of approximately 1 μm was formed. Furthermore, metallic aluminum was deposited on top of the layer and removed by etching other than the required portions to form a light-shielding layer. A 5% aqueous solution of polyvinyl alcohol was applied thereon using a spinner at 3000 rpm, dried, and the surface was subjected to orientation treatment to form an orientation layer with a thickness of about 2000 Å. Using the display substrate thus obtained, a liquid crystal display device was manufactured through normal steps. When the thus obtained liquid crystal display device was operated continuously for 1000 hours in a high temperature and humid atmosphere (90° C., 90% RH), it exhibited good display characteristics during operation.
[本発明の効果]
以上の如き本発明によれば、無機絶縁層上に更
に有機絶縁層を形成することによつて、無機絶縁
層によりTFTの保護及び特性の安定化が実現さ
れるとともに、従来の無機絶縁層が有していた欠
点であるクラツチの発生が生じても、有機絶縁層
があるために、装置に与えられる悪影響が防止さ
れピンホールの発生はほぼ完全に防止でき、長期
にわたつて安定した性能を有する液晶表示装置が
提供される。また、本発明によれば配向層は遮光
層をも覆つて全面均一に形成され配向処理も遮光
層上をも含め全面均一に施されるので、遮光層部
分の近辺においても液晶配向の乱れを生ずること
なく全面均一な良好な表示特性が得られる。更
に、本発明によれば配向層は遮光層をも覆つて表
面が平滑に形成されるので均一な配向処理が容易
しに達成できる。また凹凸の多いTFT形成基板
に全面に配向層を形成することにより基板の平滑
化が促進され、凹凸により液晶厚が変動して配向
が乱れる現象を緩和する効果もある。[Effects of the present invention] According to the present invention as described above, by further forming an organic insulating layer on the inorganic insulating layer, the inorganic insulating layer protects the TFT and stabilizes the characteristics, and Even if clutching occurs, which is a drawback of conventional inorganic insulating layers, the presence of an organic insulating layer prevents any negative effects on the device and almost completely prevents the occurrence of pinholes. A liquid crystal display device having stable performance over time is provided. Furthermore, according to the present invention, the alignment layer is formed uniformly over the entire surface, covering the light-shielding layer, and the alignment treatment is applied uniformly over the entire surface, including on the light-shielding layer, so that disturbances in liquid crystal alignment can be prevented even near the light-shielding layer. It is possible to obtain uniform and good display characteristics over the entire surface without causing any distortion. Further, according to the present invention, since the alignment layer is formed to have a smooth surface by covering the light-shielding layer, a uniform alignment process can be easily achieved. Furthermore, by forming an alignment layer over the entire surface of a TFT-forming substrate with many irregularities, the smoothing of the substrate is promoted, and there is also the effect of alleviating the phenomenon in which the liquid crystal thickness changes due to irregularities and the alignment is disturbed.
第1図及び第2図は従来の液晶表示装置の断面
図であり、第3図は本発明による液晶表示装置の
断面図である。
1……ゲート電極、2……絶縁層、3……半導
体層、4……ソース電極、5……ドレイン電極、
6……絶縁層、6a……無機絶縁層、6b……有
機絶縁層、7……液晶、8……透明電極、9……
遮光層、10……配向層、S……基板。
1 and 2 are cross-sectional views of a conventional liquid crystal display device, and FIG. 3 is a cross-sectional view of a liquid crystal display device according to the present invention. 1... Gate electrode, 2... Insulating layer, 3... Semiconductor layer, 4... Source electrode, 5... Drain electrode,
6... Insulating layer, 6a... Inorganic insulating layer, 6b... Organic insulating layer, 7... Liquid crystal, 8... Transparent electrode, 9...
Light-shielding layer, 10...Alignment layer, S...Substrate.
Claims (1)
遮る金属遮光層を備えた薄膜トランジスタアレイ
基板、該薄膜トランジスタアレイ基板に対して対
向配置した対向基板、並びに該一対の基板間に配
置した液晶を有する液晶装置において、 前記半導体層の上に、該半導体層を直接接触さ
せて覆う無機絶縁物質で形成した第1の被膜を設
け、該第1の被膜の上に、該第1の被膜を覆う有
機絶縁物質で形成した第2の皮膜を設け、該第2
の被膜の上に前記金属遮光層を設け、さらに前記
第2の被膜と前記金属遮光層とを覆う配向層を設
けてなることを特徴とする液晶装置。 2 前記半導体層が非晶質シリコンで形成した層
である特許請求の範囲第1項記載の液晶装置。 3 前記半導体層が多結晶シリコンで形成した層
である特許請求の範囲第1項記載の液晶装置。[Scope of Claims] 1. A thin film transistor array substrate including a semiconductor layer and a metal light shielding layer that blocks incident light from entering the semiconductor layer, a counter substrate disposed opposite to the thin film transistor array substrate, and between the pair of substrates. In a liquid crystal device having a liquid crystal disposed in a liquid crystal device, a first coating formed of an inorganic insulating material is provided on the semiconductor layer and covers the semiconductor layer in direct contact with the semiconductor layer, and the first coating is provided on the first coating. A second film made of an organic insulating material is provided to cover the first film.
A liquid crystal device comprising: the metal light-shielding layer provided on the second film; and an alignment layer covering the second film and the metal light-shielding layer. 2. The liquid crystal device according to claim 1, wherein the semiconductor layer is a layer formed of amorphous silicon. 3. The liquid crystal device according to claim 1, wherein the semiconductor layer is a layer formed of polycrystalline silicon.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58126742A JPS6017720A (en) | 1983-07-12 | 1983-07-12 | Liquid crystal display device |
US06/628,276 US4636038A (en) | 1983-07-09 | 1984-07-06 | Electric circuit member and liquid crystal display device using said member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58126742A JPS6017720A (en) | 1983-07-12 | 1983-07-12 | Liquid crystal display device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6017720A JPS6017720A (en) | 1985-01-29 |
JPH0513287B2 true JPH0513287B2 (en) | 1993-02-22 |
Family
ID=14942778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58126742A Granted JPS6017720A (en) | 1983-07-09 | 1983-07-12 | Liquid crystal display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6017720A (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3688700T2 (en) * | 1985-12-18 | 1993-11-11 | Canon Kk | Liquid crystal device. |
DE68915524T2 (en) * | 1988-12-26 | 1994-12-08 | Sharp Kk | Liquid crystal display device. |
JP2600929B2 (en) * | 1989-01-27 | 1997-04-16 | 松下電器産業株式会社 | Liquid crystal image display device and method of manufacturing the same |
JPH03103830A (en) * | 1989-09-19 | 1991-04-30 | Toppan Printing Co Ltd | Active matrix type liquid crystal display device |
JP2001053283A (en) | 1999-08-12 | 2001-02-23 | Semiconductor Energy Lab Co Ltd | Semiconductor device and manufacturing method thereof |
KR20240034876A (en) | 2012-07-20 | 2024-03-14 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Display device |
JP6127168B2 (en) * | 2016-02-05 | 2017-05-10 | 株式会社半導体エネルギー研究所 | Liquid crystal display |
JP6826522B2 (en) | 2017-11-27 | 2021-02-03 | 本田技研工業株式会社 | Clutch control device |
-
1983
- 1983-07-12 JP JP58126742A patent/JPS6017720A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6017720A (en) | 1985-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4636038A (en) | Electric circuit member and liquid crystal display device using said member | |
CN101114119B (en) | Multi-tone optical mask, method of manufacturing the same and method of manufacturing thin-film transistor substrate by using the same | |
TW525027B (en) | Color liquid-crystal panel and manufacturing process therefor | |
JP2001311963A (en) | Liquid crystal display device and manufacturing method therefor | |
JPH0513287B2 (en) | ||
JPH0743735A (en) | Electrode substrate for display element and its production | |
JPS6017479A (en) | Electric circuit substrate | |
JPH06258661A (en) | Liquid crystal display | |
JPH1039334A (en) | Array substrate and liquid crystal display device | |
CN101976671B (en) | Substrate including deformation preventing layer | |
KR101272488B1 (en) | Thin Transistor Substrate, Method Of Fabricating The Same, Liquid Crystal Display Having The Same And Method Of Fabricating Liquid Crystal Display Having The Same | |
CN101419944A (en) | Method for manufacturing flat panel display | |
JPH11112003A (en) | Thin film transistor | |
JP2659039B2 (en) | Electric circuit board | |
JPS5845028B2 (en) | Matrix type liquid crystal display device | |
JP2622484B2 (en) | Electric circuit board and liquid crystal device using the same | |
JPH10161151A (en) | Active matrix type liquid crystal display device and its production | |
JP3218861B2 (en) | Manufacturing method of liquid crystal display device | |
JPH034214A (en) | Liquid crystal display device | |
JPS61191072A (en) | Thin film transistor and manufacture thereof | |
JPH04132263A (en) | Thin film transistor and its manufacturing method | |
JPS6226858A (en) | Thin film transistor assembly with light shielding layer | |
JPS58172621A (en) | Liquid crystal display element | |
JPH0588199A (en) | Liquid crystal display device | |
JPH0475025A (en) | Lcd panel |