JPH05129681A - Optical loss compensation circuit - Google Patents
Optical loss compensation circuitInfo
- Publication number
- JPH05129681A JPH05129681A JP28486091A JP28486091A JPH05129681A JP H05129681 A JPH05129681 A JP H05129681A JP 28486091 A JP28486091 A JP 28486091A JP 28486091 A JP28486091 A JP 28486091A JP H05129681 A JPH05129681 A JP H05129681A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- loss
- source
- feedback
- optical loss
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Lasers (AREA)
- Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
- Optical Communication System (AREA)
- Light Guides In General And Applications Therefor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、光伝送路に局在する変
動的光損失源の影響を自動的に排除するための光損失補
償回路に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical loss compensating circuit for automatically eliminating the influence of a variable optical loss source localized in an optical transmission line.
【0002】[0002]
【従来の技術】光伝送路、特に光ファイバ光路には温度
変化、機械的変形、振動、曲げその他の原因で時間的に
変動する局部的な光損失が生じることがある。光増幅器
を用いてこのように時間的に変動する光損失の影響を自
動的に除去するには、損失変動による信号パワの変動を
電気的に検出し、この検出信号に基づいて光増幅器の励
起電力または励起光を制御し、これによって光増幅器の
利得を制御して光損失の影響を補償することが考えられ
る。2. Description of the Related Art A local optical loss which fluctuates with time may occur in an optical transmission line, particularly an optical fiber optical line, due to temperature change, mechanical deformation, vibration, bending and other causes. In order to automatically eliminate the effect of such time-varying optical loss using an optical amplifier, the fluctuation of the signal power due to the loss fluctuation is electrically detected, and the optical amplifier is excited based on this detected signal. It is conceivable to control the power or the pumping light, thereby controlling the gain of the optical amplifier and compensating the influence of optical loss.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記し
たような機能を具体的に実証した例は未だ見当らない。
また、実際に上記した回路を構成するためには、光検出
器のほか電気的な回路と部品が必要となり構成が複雑で
高価であるという欠点がある。しかも、電気回路の速度
制限から制御系の応答速度にも限界がある。However, there is still no example in which the above-described function is specifically verified.
In addition, in order to actually construct the above-mentioned circuit, there is a drawback that a photodetector and electric circuits and parts are required, and the configuration is complicated and expensive. Moreover, the response speed of the control system is limited due to the speed limitation of the electric circuit.
【0004】本発明は、かかる事情に鑑みてなされたも
のであり、その目的は、広い周波数領域に亘って簡単な
構成で光損失の影響を除去し得る光損失補償回路を提供
することにある。The present invention has been made in view of such circumstances, and an object thereof is to provide an optical loss compensating circuit capable of eliminating the influence of optical loss with a simple structure over a wide frequency range. ..
【0005】[0005]
【課題を解決するための手段】上記目的を達成するた
め、請求項1では、光伝送路上にある光損失源の出力側
に接続した増幅媒質及び励起源と、前記増幅媒質の出力
の一部を前記光損失源に対する入力側の光伝送路上に帰
還させる帰還光路とを有し、前記光損失源、増幅媒質及
び励起源を含む帰還光路で構成される光リング共振器を
レ−ザ発振した。To achieve the above object, in claim 1, an amplifying medium and a pumping source connected to an output side of an optical loss source on an optical transmission line, and a part of an output of the amplifying medium. And a feedback optical path for returning the light to the optical transmission path on the input side with respect to the optical loss source, and oscillating the optical ring resonator constituted by the feedback optical path including the optical loss source, the amplification medium, and the pump source. ..
【0006】また、請求項2では、請求項1記載の光損
失補償回路において、帰還光路上に光減衰器を配置し
た。According to a second aspect of the present invention, in the optical loss compensation circuit according to the first aspect, an optical attenuator is arranged on the feedback optical path.
【0007】[0007]
【作用】請求項1によれば、光伝送路を伝搬された光
は、光損失源において損失を受ける。この損失を受けた
光は、増幅媒質を経、その一部が取り出されて帰還光路
に導かれ、再び光伝送路に結合される。ここで光損失
源、増幅媒質及び励起源を含む帰還光路で構成される光
リング共振器がレ−ザ発振される。このとき、増幅媒質
は励起源により励起される。According to the first aspect of the present invention, the light propagated through the optical transmission line is lost in the optical loss source. The light that has received this loss passes through the amplification medium, a part of the light is taken out, is guided to the return optical path, and is again coupled to the optical transmission path. Here, an optical ring resonator constituted by a feedback optical path including an optical loss source, an amplification medium and a pumping source is lased. At this time, the amplification medium is excited by the excitation source.
【0008】このようにレ−ザ発振している光リングに
おいては、レ−ザ発振波長に一致する光に対して増幅媒
質が発生する利得は、当該光リング内の全周回光損失を
丁度補償する値に固定され、増幅媒質の利得もその値と
なる。従って、その利得をもって光伝送路の伝搬光は増
幅される。In the optical ring that is lasing as described above, the gain generated by the amplifying medium with respect to the light that matches the laser oscillation wavelength is just compensated for the optical loss in all rounds in the optical ring. The gain of the amplification medium is also fixed at that value. Therefore, the propagation light of the optical transmission line is amplified with the gain.
【0009】また、請求項2によれば、光減衰器により
損失値が調整され、信号光に対する増幅利得が制御され
る。According to the second aspect, the loss value is adjusted by the optical attenuator and the amplification gain for the signal light is controlled.
【0010】[0010]
【実施例】図1は、光ファイバ伝送路に挿入された本発
明に係る光損失補償回路の一実施例を示す構成図であ
る。図1において、1は光入力、2は第1の光ファイバ
カップラで、一の入力ポ−トを光入力1とし、他のポ−
トから入力した後記する光帰還回路8を介した帰還光を
合波する。3は光損失源で、光ファイバ伝送路上におけ
る第1の光ファイバカップラ2の出力側に位置し、外乱
4によって時間的な変動を受ける。5は増幅媒質及び励
起源としての光増幅器で、光損失源3の出力に接続さ
れ、例えば希土類元素(エルビウム、ネオジウム等)を
ド−プしたファイバを用いた光増幅器あるいは半導体光
増幅器などから構成される。6は光アイソレ−タで、光
増幅器5の出力側に接続されている。7は第2の光ファ
イバカップラで、光アイソレ−タ6の出力側に接続さ
れ、一の出力ポ−トを光出力11とする。8は光帰還回
路で、第2の光ファイバカップラ7の他の出力ポ−トと
第1の光ファイバカップラ2の他の入力ポ−トとを光フ
ァイバにより接続してなり、光増幅器5の出力の一部を
光損失源3の入力側に帰還させる。9は光フィルタで、
光帰還回路8上に配置されている。10は可変光減衰器
で、光帰還回路8上で光フィルタ9の出力側に配置さ
れ、光帰還回路8を帰還する光を任意量だけ減衰させ
る。1 is a block diagram showing an embodiment of an optical loss compensation circuit according to the present invention inserted in an optical fiber transmission line. In FIG. 1, 1 is an optical input, 2 is a first optical fiber coupler, and one input port is an optical input 1 and the other port is
From the optical feedback circuit 8 which will be described later. Reference numeral 3 denotes an optical loss source, which is located on the output side of the first optical fiber coupler 2 on the optical fiber transmission line and is subject to temporal fluctuation due to the disturbance 4. Reference numeral 5 denotes an optical amplifier as an amplification medium and a pumping source, which is connected to the output of the optical loss source 3 and is composed of, for example, an optical amplifier using a fiber doped with a rare earth element (erbium, neodymium, etc.) or a semiconductor optical amplifier. To be done. An optical isolator 6 is connected to the output side of the optical amplifier 5. A second optical fiber coupler 7 is connected to the output side of the optical isolator 6 and has one output port as an optical output 11. Reference numeral 8 denotes an optical feedback circuit, which is formed by connecting another output port of the second optical fiber coupler 7 and another input port of the first optical fiber coupler 2 with an optical fiber. A part of the output is fed back to the input side of the optical loss source 3. 9 is an optical filter,
It is arranged on the optical feedback circuit 8. Reference numeral 10 denotes a variable optical attenuator, which is arranged on the output side of the optical filter 9 on the optical feedback circuit 8 and attenuates the light returning from the optical feedback circuit 8 by an arbitrary amount.
【0011】次に、上記構成による動作を説明する。Next, the operation of the above configuration will be described.
【0012】光入力1は、第1の光ファイバカップラ2
を経て光損失源3に至り、ここで外乱4によって時間的
に変動する損失を受ける。この損失変動を受けた光は、
光増幅器5から光アイソレ−タ6を経て第2の光ファイ
バカップラ7で光の一部が取り出されて光フィルタ9、
光減衰器10を含む光帰還回路8に導かれ、第1の光フ
ァイバカップラ2で再び光入力1の経路に結合される。
ここで光損失源3、光増幅器5及び可変光減衰器9等を
含む帰還光路で構成される光リングをレ−ザ発振する。
このためには光増幅器5を充分に励起する必要がある。The optical input 1 is a first optical fiber coupler 2
To the optical loss source 3, where it is subject to a time-varying loss due to the disturbance 4. The light that has received this loss fluctuation is
A part of the light is extracted from the optical amplifier 5 through the optical isolator 6 and the second optical fiber coupler 7, and the optical filter 9,
It is guided to the optical feedback circuit 8 including the optical attenuator 10 and is coupled again to the path of the optical input 1 by the first optical fiber coupler 2.
Here, the optical ring constituted by the feedback optical path including the optical loss source 3, the optical amplifier 5, the variable optical attenuator 9, etc. is lased.
For this purpose, it is necessary to sufficiently excite the optical amplifier 5.
【0013】このようにレ−ザ発振している光リングに
おいては、レ−ザ発振波長に一致する信号光に対して光
増幅器5が発生する利得は、当該光リング内の全周回光
損失を丁度補償する値に固定されることがよく知られて
いる。従って、光リング内の全周回光損失をTdBとすれ
ば光増幅器5の利得もTdBとなる。ここで、光リング内
の全周回光損失TdBを、光信号を伝送する光路上に局在
する光損失部分Tp dBと伝送光路以外の帰還光路上にあ
る部分Tfb dB とに分けて考えれば、この系全体が信号
に対して発揮する実効的利得は、常にTfb dB であって
Tp の値によらない。従って、Tpが変動してもその影
響は信号に現われない。以上が損失保証回路の基本動作
である。当該損失保証回路は勿論損失を保証するばかり
でなく、Tfb利得を発揮する増幅回路としても機能す
る。In the optical ring that is lasing as described above, the gain generated by the optical amplifier 5 with respect to the signal light having the same wavelength as the laser oscillation wavelength is equal to the optical loss of all the rounds in the optical ring. It is well known that the value is just fixed to compensate. Therefore, if the total loop optical loss in the optical ring is TdB, the gain of the optical amplifier 5 is also TdB. Here, if the total round optical loss TdB in the optical ring is divided into an optical loss portion Tp dB localized on the optical path for transmitting an optical signal and a portion Tfb dB on the feedback optical path other than the transmission optical path, The effective gain exerted on the signal by the entire system is always Tfb dB and does not depend on the value of Tp. Therefore, even if Tp fluctuates, its influence does not appear in the signal. The above is the basic operation of the loss guarantee circuit. The loss guarantee circuit of course not only guarantees the loss, but also functions as an amplifier circuit that exhibits Tfb gain.
【0014】また、光帰還回路8上に配置した可変光減
衰器9により、帰還光路中の損失が任意に設定される。
これにより、例えば信号伝送光路上の光損失部分が一定
であれば、帰還光路中の損失値を設定することによって
信号増幅の利得を制御できる。これは、従来高強度の信
号光の増幅では光増幅器の利得が飽和して利得が低下す
るのに対して、本発明の系は、帰還光路がレ−ザ発振を
続けている条件下では、利得は帰還光路中の損失値だけ
で決定される。すなわち、利得が信号光強度の影響を受
けない。従って、光減衰器9により帰還光路の損失を任
意の値に設定し、意識的に損失を与えることにより、大
きな利得が得られる。また、この実効的利得は、励起源
の励起パワの変動の影響を受けることもない。Further, the variable optical attenuator 9 arranged on the optical feedback circuit 8 arbitrarily sets the loss in the feedback optical path.
Thus, for example, if the optical loss portion on the signal transmission optical path is constant, the gain of signal amplification can be controlled by setting the loss value on the feedback optical path. This is because in the conventional amplification of the high-intensity signal light, the gain of the optical amplifier is saturated and the gain is lowered, whereas the system of the present invention, under the condition that the feedback optical path continues the laser oscillation, The gain is determined only by the loss value in the return optical path. That is, the gain is not affected by the signal light intensity. Therefore, a large gain can be obtained by setting the loss of the return optical path to an arbitrary value by the optical attenuator 9 and intentionally giving the loss. Further, this effective gain is not affected by the fluctuation of the pump power of the pump source.
【0015】次に、本発明の回路で損失を補償すること
のできる光信号の波長帯域を考察する。Next, the wavelength band of the optical signal which can compensate the loss in the circuit of the present invention will be considered.
【0016】帰還光路のレ−ザ発振波長と一致する波長
の光信号に対しては、本発明の回路が損失を補償できる
ことは当然である。しかし、これと異なるある範囲の波
長の信号に対しても本発明の回路は有効である。光増幅
器の利得の周波数軸上での広がりが均一(Homogeneous)
とみなせる範囲においては、信号に対する光増幅器の利
得飽和はその波長範囲の入力信号のパワの総和で決定さ
れると考えられる。従って、均一範囲のどこかの波長で
帰還光路がレ−ザ発振すれば、この均一範囲の他の波長
の信号に対して本発明の光損失補償が可能となる。It is natural that the circuit of the present invention can compensate the loss for an optical signal having a wavelength that matches the laser oscillation wavelength of the feedback optical path. However, the circuit of the present invention is also effective for a signal having a wavelength in a range different from this. The spread of the gain of the optical amplifier on the frequency axis is uniform (Homogeneous)
In such a range, the gain saturation of the optical amplifier with respect to the signal is considered to be determined by the total power of the input signals in the wavelength range. Therefore, if the feedback optical path oscillates at some wavelength within the uniform range, the optical loss compensation according to the present invention can be performed on the signal having another wavelength within the uniform range.
【0017】エルビウムド−プファイバ光増幅器を例に
とってこのような均一波長範囲を調べた結果、エルビウ
ムド−プファイバ光増幅器の長波長側のゲインピ−ク付
近に広い均一範囲があり、この領域内の1540nmから1553
nmの広い範囲で本発明の光損失補償が可能であることが
わかった。As a result of examining such a uniform wavelength range using an erbium-doped fiber optical amplifier as an example, there is a wide uniform range near the gain peak on the long wavelength side of the erbium-doped fiber optical amplifier, which is 1540 nm within this region. From 1553
It was found that the optical loss compensation of the present invention is possible in a wide range of nm.
【0018】図2は、本発明の効果をエルビウムド−プ
ファイバ光増幅器を用いて実験的に確認した例を示す図
で、横軸は信号伝送光路(信号路)上の光損失を、縦軸
は信号パワ相対値をそれぞれ示している。また、発振波
長、信号波長はそれぞれ1553nm及び1548.5nmと、上記の
均一範囲で選択した。FIG. 2 is a diagram showing an example in which the effect of the present invention is experimentally confirmed using an erbium-doped fiber optical amplifier. The horizontal axis represents the optical loss on the signal transmission optical path (signal path), and the vertical axis. Indicates the relative value of signal power. The oscillation wavelength and the signal wavelength were selected to be 1553 nm and 1548.5 nm, respectively, within the above uniform range.
【0019】図2から、光帰還をかけない場合(図中の
白丸)、信号伝送光路上の光損失の増加に応じて信号強
度が低下するのに対して、光帰還をかけた場合(図中の
黒丸)、帰還光路がレ−ザ発振中は信号出力は一定を保
つことが確認できる。但し、光帰還をかけた場合(図中
の黒丸)でも、光損失が大きくなりレ−ザ発振が止まる
と、その後信号出力は損失の増加に伴って低下する。From FIG. 2, when the optical feedback is not applied (white circles in the figure), the signal strength is reduced in accordance with the increase of the optical loss on the signal transmission optical path, while the optical feedback is applied (the figure). It can be confirmed that the signal output is kept constant during the laser oscillation of the feedback optical path. However, even when optical feedback is applied (black circles in the figure), when the optical loss becomes large and the laser oscillation stops, the signal output decreases thereafter as the loss increases.
【0020】また、本発明の応用の例として、光干渉を
用いたファイバセンサへの応用が考えられる。光干渉を
用いたファイバセンサでは、センシングヘッド部分で測
定対象となる何等かの物理量による僅かな位相変化を検
出するが、センシングファイバに加わる物理量の影響に
よって目的とする位相変化とあわせて光損失も変動して
しまうことがしばしばあった。センサヘッド部分の光損
失が変動すると光干渉を起こす2つの光の強度の関係を
変動させるので干渉のスケ−ルファクタが変動し、結局
測定精度の変動の原因となっていた。本発明ではこのよ
うな位相変化とあわせて起きる光損失は補償するが、位
相変化の情報には影響を与えないので測定精度の変動を
回避できる。Further, as an example of application of the present invention, application to a fiber sensor using optical interference can be considered. A fiber sensor using optical interference detects a slight phase change due to some physical quantity to be measured in the sensing head part, but due to the influence of the physical quantity applied to the sensing fiber, there is also an optical loss together with the target phase change. It often fluctuated. When the optical loss of the sensor head portion fluctuates, the relationship between the intensities of two lights that cause optical interference fluctuates, so that the scale factor of the interference fluctuates, which eventually causes the fluctuation of the measurement accuracy. In the present invention, the optical loss that occurs together with such a phase change is compensated, but since the information of the phase change is not affected, fluctuations in measurement accuracy can be avoided.
【0021】[0021]
【発明の効果】以上説明したように、請求項1によれ
ば、増幅媒質及び励起源を含む帰還光路を用いて、時間
的に変動する光損失の影響を広い周波数領域に亘って自
動的に除去することが可能である。As described above, according to the first aspect of the present invention, by using the feedback optical path including the amplification medium and the pumping source, the influence of the optical loss which fluctuates with time is automatically applied over a wide frequency range. It can be removed.
【0022】また、請求項2によれば、光減衰器を用い
て損失値を調整することで信号光に対する増幅利得を制
御することができる。この利得はレ−ザ発振が係属して
いる条件下では、信号光強度の影響を受けず、励起源の
励起パワの変動の影響を受けることもない。According to the second aspect, the amplification gain for the signal light can be controlled by adjusting the loss value using the optical attenuator. This gain is not affected by the signal light intensity and is not affected by the fluctuation of the pump power of the pump source under the condition that the laser oscillation is involved.
【図1】本発明に係る光損失補償回路の一実施例を示す
構成図FIG. 1 is a configuration diagram showing an embodiment of an optical loss compensation circuit according to the present invention.
【図2】本発明の実験例を示す図FIG. 2 is a diagram showing an experimental example of the present invention.
1…光入力、2…第1の光ファイバカップラ、3…光損
失源、4…外乱、5…光増幅器、6…光アイソレ−タ、
7…第2の光ファイバカップラ、8…光帰還回路、9…
光フィルタ、10…光減衰器、11…光出力。1 ... Optical input, 2 ... 1st optical fiber coupler, 3 ... Optical loss source, 4 ... Disturbance, 5 ... Optical amplifier, 6 ... Optical isolator,
7 ... Second optical fiber coupler, 8 ... Optical feedback circuit, 9 ...
Optical filter, 10 ... Optical attenuator, 11 ... Optical output.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01S 3/07 8934−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01S 3/07 8934-4M
Claims (2)
続した増幅媒質及び励起源と、 前記増幅媒質の出力の一部を前記光損失源に対する入力
側の光伝送路上に帰還させる帰還光路とを有し、 前記光損失源、増幅媒質及び励起源を含む帰還光路で構
成される光リング共振器をレ−ザ発振したことを特徴と
する光損失補償回路。1. An amplification medium and a pumping source connected to the output side of an optical loss source on an optical transmission line, and a feedback for returning a part of the output of the amplification medium to the optical transmission line on the input side to the optical loss source. And an optical path, wherein an optical ring resonator constituted by a feedback optical path including the optical loss source, the amplification medium and the pumping source is laser-oscillated.
求項1記載の光損失補償回路。2. The optical loss compensating circuit according to claim 1, wherein an optical attenuator is arranged on the return optical path.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28486091A JP2567533B2 (en) | 1991-10-30 | 1991-10-30 | Optical loss compensation circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28486091A JP2567533B2 (en) | 1991-10-30 | 1991-10-30 | Optical loss compensation circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05129681A true JPH05129681A (en) | 1993-05-25 |
JP2567533B2 JP2567533B2 (en) | 1996-12-25 |
Family
ID=17683967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28486091A Expired - Fee Related JP2567533B2 (en) | 1991-10-30 | 1991-10-30 | Optical loss compensation circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2567533B2 (en) |
-
1991
- 1991-10-30 JP JP28486091A patent/JP2567533B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2567533B2 (en) | 1996-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100199031B1 (en) | Passive mode locking optical fiber laser structure | |
US11509109B2 (en) | Broadband Tm-doped optical fiber amplifier | |
JP3295533B2 (en) | Optical amplifier | |
US20020003655A1 (en) | L-band optical fiber amplifier | |
JPH06152034A (en) | Dummy light input controlled optical fiber amplification | |
JP3317834B2 (en) | Optical transmission circuit | |
US5894488A (en) | Light source with stabilized broadband and associated optical fiber gyroscope | |
US6137932A (en) | Apparatus for controlling gain of an optical fiber amplifier and method thereof | |
US7511881B2 (en) | Amplified spontaneous emission reflector-based gain-clamped fiber amplifier | |
JP3065980B2 (en) | Optical amplifier | |
JPH05107573A (en) | Optical amplifier | |
JP2567533B2 (en) | Optical loss compensation circuit | |
US20030063848A1 (en) | High power, low noise, superflourescent device and methods related thereto | |
JPH05206557A (en) | Light amplification system | |
JP2742133B2 (en) | Optical amplifier | |
JP2000261078A (en) | Optical amplifier | |
JPH03212984A (en) | Fiber-type optical amplifier | |
JPH03219686A (en) | Fiber-type light amplifier | |
US6542288B1 (en) | Optical amplifier utilizing rare earth element-doped optical fibers for temperature compensation | |
JPH07249811A (en) | Direct light amplifier | |
JP2760305B2 (en) | Optical direct amplifier | |
JP2769186B2 (en) | Optical receiving circuit | |
JP2000223762A (en) | Optical amplifier | |
JP2000261079A (en) | Optical amplifier | |
JPH06169122A (en) | Optical fiber amplifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |