JPH05128142A - Quasi-optimum solution searching system - Google Patents
Quasi-optimum solution searching systemInfo
- Publication number
- JPH05128142A JPH05128142A JP29285391A JP29285391A JPH05128142A JP H05128142 A JPH05128142 A JP H05128142A JP 29285391 A JP29285391 A JP 29285391A JP 29285391 A JP29285391 A JP 29285391A JP H05128142 A JPH05128142 A JP H05128142A
- Authority
- JP
- Japan
- Prior art keywords
- solution
- search
- quasi
- constraint
- simultaneous equations
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Complex Calculations (AREA)
Abstract
(57)【要約】
【目的】 計画者が満足できる解即ち準最適解高速に探
索し短時間で処理できるようにした準最適解の探索方法
を得る。
【構成】 線形計画問題の制約条件を多元連立方程式で
表現し、この連立方程式の未知数のいくつかに適当な定
数を与えて得られる多くの多元連立方程式を、複数の高
速演算プロセッサに振分けて並列演算処理を行ない、求
めた解を評価する際に、探索空間内で最適解と思われる
値の近傍から制約の端の方へ探索を進めることにより準
最適解を探索する。
(57) [Summary] [Purpose] To obtain a method of searching for a quasi-optimal solution that enables the planner to search for a solution that is satisfactory, that is, a quasi-optimal solution at high speed and process it in a short time. [Structure] The constraint conditions of the linear programming problem are expressed by multi-system simultaneous equations, and many multi-system simultaneous equations obtained by giving appropriate constants to some unknowns of the simultaneous equations are distributed to multiple high-speed arithmetic processors and parallelized. When performing the arithmetic processing and evaluating the obtained solution, the suboptimal solution is searched by advancing the search in the search space from the vicinity of the value considered to be the optimum solution toward the end of the constraint.
Description
【0001】[0001]
【産業上の利用分野】本発明は、ヒッチコック型の輸送
問題や資源の組合せ問題などのいわゆる線形計画問題の
準最適解の探索方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for searching a suboptimal solution of a so-called linear programming problem such as Hitchcock type transportation problem or resource combination problem.
【0002】[0002]
【従来の技術】従来、線形計画問題の最適解を求める方
法としては、シンプレックス法などによる数値計算方法
や、また最近ではAI技術を用いて制約条件や評価関数
をルールで表現し、そのルールに従いながら最適な解を
導きだす方法が試みられている。2. Description of the Related Art Conventionally, as a method for obtaining an optimum solution of a linear programming problem, a numerical calculation method such as a simplex method or, recently, AI technique is used to express a constraint condition or an evaluation function by a rule and follow the rule. However, a method of deriving an optimal solution is being tried.
【0003】[0003]
【発明が解決しようとする課題】上記のシンプレックス
法及びAIのいずれの方法も、ある制約条件下で評価関
数を最大とすべく解の改善を計りながら最適解を導き出
す方法であり、評価の低い解から順々に探索を始め、最
終的に最適解に辿り着こうとするシリアル処理であり、
このため、特に大型の線形計画問題では大型計算機を用
いても処理に長時間を要していた。本発明は、計画者が
満足できる解即ち準最適解を高速に探索し短時間で処理
できるようにした準最適解の探索方法を提供することを
目的とする。Both the simplex method and the AI method described above are methods for deriving an optimum solution while improving the solution so as to maximize the evaluation function under a certain constraint condition, and the evaluation is low. It is a serial process that starts search from the solution in order and finally tries to reach the optimal solution.
Therefore, especially for a large linear programming problem, it took a long time to process even if a large computer was used. An object of the present invention is to provide a method of searching for a quasi-optimal solution that enables a planner to search a solution that is satisfactory, that is, a quasi-optimal solution at high speed and process the solution in a short time.
【0004】[0004]
【課題を解決するための手段及び作用】本発明の準最適
解の探索方法は、線形計画問題の制約条件を多元連立方
程式で表現し、この連立方程式の未知数のいくつかに適
当な定数を与えて得られる多くの多元連立方程式を、複
数の高速演算プロセッサに振分けて並列演算処理を行な
い、そして求められた解を評価する際に、探索空間内で
最適解と思われる値の近傍から制約の端の方へ探索を進
めることにより準最適解を探索する。The method for searching for a sub-optimal solution according to the present invention expresses the constraint condition of a linear programming problem by a multi-dimensional simultaneous equation and gives appropriate constants to some unknowns of this simultaneous equation. Many parallel simultaneous equations obtained by allocating to multiple high-speed arithmetic processors and performing parallel arithmetic processing, and when evaluating the obtained solution, constraints from the neighborhood of the value that seems to be the optimal solution in the search space A quasi-optimal solution is searched by advancing the search toward the end.
【0005】[0005]
【実施例】図1は本発明の一実施例に係る準最適解の探
索方法を実施する演算装置の構成を示したブロック図で
ある。図において、1は計画作成用計算機であり、2は
計画作成用計算機のマンマシンインタフェースである。
3は統轄装置であり、4は統轄装置3によりコントロー
ルされてそれぞれ並列演算処理をする複数台の高速演算
プロセッサである。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing the configuration of an arithmetic unit for carrying out a suboptimal solution search method according to an embodiment of the present invention. In the figure, 1 is a plan making computer, and 2 is a man-machine interface of the plan making computer.
Reference numeral 3 is a governing device, and 4 is a plurality of high-speed arithmetic processors controlled by the governing device 3 and performing parallel arithmetic processing respectively.
【0006】例えば一般的な線形計画問題において 制約条件 di min ≦Σaij*xj ≦di max i=1,2,…,m j=1,2,…,n ej min ≦xj ≦ej max 評価関数 Z=ΣCj *xj +Co において、制約条件を以下の多元連立方程式で記述す
る。 Σa1j*xj =y1 …(1) Σa2j*xj =y2 …(2) Σa3j*xj =y3 …(3) … … Σamj*xj =ym …(m) n≧m ここで、ym は目標値とし、dm min ≦ym ≦dm max
である。また、Σはjについて1からnまでの総和を表
わす。For example, in a general linear programming problem, the constraint condition di min ≤Σaij * xj ≤di max i = 1,2, ..., m j = 1,2, ..., n ej min ≤xj ≤ej max evaluation function Z = ΣCj * xj + Co, the constraint conditions are described by the following multi-dimensional simultaneous equations. Σa1j * xj = y1 (1) Σa2j * xj = y2 (2) Σa3j * xj = y3 (3) ... Σamj * xj = ym (m) n ≧ m where ym is a target value dm min ≤ ym ≤ dm max
Is. Further, Σ represents the total sum of 1 to n for j.
【0007】この連立方程式を解くために、(n−m)
個のxj に適当な定数を与える。この定数は(n−m)
個のxj のej min からej max の間の細かい刻みで設
定し、(n−m)個のxj の各定数値の全組合せについ
て多くのm元連立方程式を得る。この連立方程式をパラ
レル演算処理して解く際には、図1の複数の高速演算プ
ロセッサ4に初期パラメータ(*)を与え、そして、定
数として与えるxj をej min ≦xj ≦ej max の最適
解と思われる値(例えば中心値)の近傍から与えて、制
約の端の方へ向かって探索を進める。そして、得られた
解を評価して基準以上のものを満足解即ち準最適解とし
て採用する。In order to solve this simultaneous equation, (nm)
An appropriate constant is given to each xj. This constant is (nm)
The number of simultaneous x-j equations is set for each combination of the constant values of (nm) xj to obtain many m-element simultaneous equations. When this simultaneous equation is solved by parallel arithmetic processing, an initial parameter (*) is given to a plurality of high-speed arithmetic processors 4 in FIG. 1, and xj given as a constant is taken as an optimum solution of ej min ≤xj ≤ej max. Proceed toward the end of the constraint, given near the likely value (eg, center value). Then, the obtained solution is evaluated, and a solution which is equal to or higher than the criterion is adopted as a satisfactory solution, that is, a suboptimal solution.
【0008】なお、初期値は全プロセッサに共通して与
えるパラメータと各プロセッサ個別に与えるパラメータ
とがあり、それぞれ次のとおりである。 A)全プロセッサに共通して与えるパラメータ: 1)解xj の上下限値 ej max,ej min 2)多元連立方程式の係数 aij 3)多元連立法廷式の上下限値 dm max,dm min 4)多元連立法廷式の目標値 ym 5)定数扱いのxj と変更幅 6)評価基準値 B)各プロセッサ個別に与えるパラメータ 1)各々の探索空間The initial value includes a parameter commonly given to all processors and a parameter individually given to each processor, and they are as follows. A) Parameters common to all processors: 1) Upper and lower limit values of solution xj ej max, ej min 2) Coefficients of simultaneous equations aij 3) Upper and lower limits of simultaneous simultaneous court dm max, dm min 4) Multiple Target value of simultaneous court ym 5) xj of constant treatment and change range 6) Evaluation standard value B) Parameter given to each processor 1) Search space of each
【0009】次にこの解き方に一例について説明する。
未知数5個の3元連立方程式を次のとおり記述する。 δ11 x1 +δ12 x2 +δ13 x3 +δ14 x4 +δ15 x5 =y1 …(1) δ21 x1 +δ22 x2 +δ23 x3 +δ24 x4 +δ25 x5 =y2 …(2) δ31 x1 +δ32 x2 +δ33 x3 +δ34 x4 +δ35 x5 =y3 …(3) 但し e1 min ≦x1 ≦e1 max e2 min ≦x2 ≦e2 max e3 min ≦x3 ≦e3 max e4 min ≦x4 ≦e4 max e5 min ≦x5 ≦e5 max d1 min ≦y1 ≦d1 max d2 min ≦y2 ≦d2 max d3 min ≦y3 ≦d3 maxNext, an example of this solution will be described.
A three-dimensional simultaneous equation with five unknowns is described as follows. δ11 x1 + δ12 x2 + δ13 x3 + δ14 x4 + δ15 x5 = y1 (1) δ21 x1 + δ22 x2 + δ23 x3 + δ24 x4 + δ25 x5 +5 x3 + δ3 + δ3 + δ3 + δ3 + δ3 + δ3 + δ3 min ≤ x1 ≤ e1 max e2 min ≤ x2 ≤ e2 max e3 min ≤ x3 ≤ e3 max e4 min ≤ x4 ≤ e4 max e5 min ≤ x5 ≤ e5 max d1 min ≤ y1 ≤ d1 max d2 min ≤ y2 ≤ d2 max d3 min ≤y3 ≤d3 max
【0010】上記(1)〜(3)式のx4 、x5 に定数
を与えるが、計画者の経験値として例えば10≦X4 ≦
20、30≦X5 ≦50の時、範囲を例えば10等分し
て中心領域から探索し、上下限値の方向へ拡げていく。
通常、操業の運用上に用いられる有効な変数は数学的に
厳密に解いたものではなく、例えば小数点以下1桁程度
までのおおまかな数値で十分である。このようなことか
ら、本実施例では変更幅を上記のように10等分とする
など適当に設定することにより準最適解を求めるてい
る。Although constants are given to x4 and x5 in the above equations (1) to (3), the experience value of the planner is, for example, 10≤X4≤.
When 20, 30 ≤ X5 ≤ 50, the range is divided into, for example, 10 equal parts, the central region is searched, and the range is expanded toward the upper and lower limit values.
In general, effective variables used in operation of the operation are not mathematically rigorously solved, and for example, a rough numerical value up to about one decimal place is sufficient. Therefore, in this embodiment, the quasi-optimal solution is obtained by appropriately setting the change width into 10 equal parts as described above.
【0011】本実施例においては、n次元のユークリッ
ド空間に存在する多面体の中でn枚の平面を平行移動さ
せながら交点(解)を探索し、交点が多面体の内部にあ
れば解を採用し、外部にあれば範囲外のため不採用とし
ている。つまり或る平面を平行移動した時に解が多面体
の外部となった時点で探索を打切る(次の領域の探索を
止める。)ことにより探索空間を狭めることができる。
また、このような処理によっても演算が終了しない場合
には、所定の領域(初期値からの一定の距離)まで探索
して止める。例えば初期値からの一定の距離をi,j,
k…をi0 ±h,j0 ±h,k0 ±h内に設定し、その
範囲内で探索する。後述する図2の実施例においては、
領域a,b,c…に対してh=1,2,3…と設定す
る。In the present embodiment, an intersection (solution) is searched while translating n planes in a polyhedron existing in an n-dimensional Euclidean space, and if the intersection is inside the polyhedron, the solution is adopted. , If it is outside, it is out of scope and is not adopted. That is, the search space can be narrowed by stopping the search (stopping the search in the next region) when the solution becomes outside the polyhedron when the plane is translated.
Further, when the calculation is not completed even by such processing, the search is stopped up to a predetermined area (a fixed distance from the initial value). For example, a fixed distance from the initial value is i, j,
Set k ... Within i0 ± h, j0 ± h, k0 ± h, and search within that range. In the embodiment of FIG. 2 described below,
.. are set to the regions a, b, c ...
【0012】図2に2台の高速演算プロセッサで処理し
て場合の例を示す。プロセッサA,Bともにaの領域内
で領域を分割して多元連立方程式を解き、得られた解の
組み合わせで最も評価の高いものを準最適解として統轄
装置3に通知し、統轄装置3は両者を比較して評価の高
い方を選択する。aの領域で解が得られない場合には、
bの領域と、更に順次c→d→eと順次探索空間を拡げ
ていく。FIG. 2 shows an example of processing by two high-speed arithmetic processors. Both processors A and B divide the area within the area of a to solve a multi-dimensional simultaneous equation, and notify the governing device 3 of the combination of the obtained solutions that has the highest evaluation as a suboptimal solution. And select the one with the highest evaluation. If no solution is obtained in the region of a,
The area of b and the search space are sequentially expanded in the order of c → d → e.
【0013】ところで、複数の高速演算プロセッサによ
り並列処理する場合の問題点としては、プログラムの分
割やデータの各プロセッサに対する割付けが容易でない
こと、また、プロセッサ間のデータ通信が膨大となるた
め処理速度に影響を与えること等が挙げられるが、本実
施例においてはこの点を考慮し、線形計画問題を多元連
立方程式で記述して、各プロセッサに対して各々が解く
範囲を割振るようにしている。また、各プロセッサに最
初に初期パラメータを与えることにより各々が解くべき
連立方程式を自己で生成し、準最適解を統轄装置3に返
すことにより処理速度の高速化が図られている。A problem in parallel processing by a plurality of high-speed arithmetic processors is that it is not easy to divide a program or allocate data to each processor, and the data communication between the processors is enormous. However, in this embodiment, the linear programming problem is described by a multi-dimensional simultaneous equation, and the range solved by each processor is allocated to each processor. .. Further, simultaneous processing equations to be solved by each processor are first generated by giving initial parameters to each processor, and a suboptimal solution is returned to the governing device 3 to increase the processing speed.
【0014】例えば資源の組合せ問題の一例として原料
の配合計画を挙げると、年間・半期の中長期計画は評価
関数としてコストを最優先に考慮して決定されることが
多いが、月次・週間レベルの短期計画では配合原料の品
質とヤード置きの銘柄毎の在庫調整を最優先となる。こ
のため、計画者は評価関数のコストよりは制約条件とし
ての品質や在庫を適性にするよう制約条件を変更しなが
ら銘柄毎配合量を決定する。このような場合には、制約
条件を満足させる準最適解を高速探索する本実施例は特
に有用である。For example, as an example of a resource combination problem, a raw material blending plan is given. In the mid-to-long term plan for the year and the half year, the cost is often taken into consideration as an evaluation function with the highest priority. In the short-term level plan, the quality of blended raw materials and inventory adjustment for each brand at every yard are given top priority. For this reason, the planner determines the blending amount for each brand while changing the constraint conditions so that the quality and the inventory are appropriate as the constraint conditions rather than the cost of the evaluation function. In such a case, the present embodiment, which searches for a suboptimal solution that satisfies the constraint condition at high speed, is particularly useful.
【0015】[0015]
【発明の効果】以上のように本発明によれば、線形計画
問題を多元連立方程式で表現してそれを複数の高速演算
プロセッサによりパラレル処理をし、そして、探索を最
適解と思われる値の近傍から制約の端の方へ向かって進
めるようにしたので、準最適解の高速探索が可能になっ
ている。As described above, according to the present invention, a linear programming problem is represented by a multi-dimensional simultaneous equation, the parallel processing is performed by a plurality of high-speed arithmetic processors, and the search is performed with a value that is considered to be an optimum solution. Since it is designed to proceed from the neighborhood toward the end of the constraint, it is possible to search the suboptimal solution at high speed.
【図1】本発明の一実施例の準最適解の探索方法を実施
する装置の構成を示したブロック図である。FIG. 1 is a block diagram showing the configuration of an apparatus that implements a suboptimal solution search method according to an embodiment of the present invention.
【図2】2台の高速演算プロセッサにより処理した場合
の例を示した説明図である。FIG. 2 is an explanatory diagram showing an example in which processing is performed by two high-speed arithmetic processors.
1 計画作成用計算機 2 計画作成用計算機のマンマシンインタフェース 3 統轄装置 4 高速演算プロセッサ 1 Planning computer 2 Man-machine interface of planning computer 3 Governance device 4 High-speed arithmetic processor
Claims (1)
表現し、この連立方程式の未知数のいくつかに適当な定
数を与えることにより得られる多元連立方程式を複数の
演算プロセッサに振分けて並列演算処理を行ない、この
並列演算処理により求められた解を評価する際に、探索
空間内で最適解が存在する範囲内の所定の値から制約の
端の方へ探索を進めることにより準最適解を求めること
を特徴とする準最適解の探索方法。1. A multi-dimensional simultaneous equation obtained by expressing the constraint condition of a linear programming problem by a simultaneous equation and assigning an appropriate constant to some of the unknowns of this simultaneous equation is distributed to a plurality of arithmetic processors to perform parallel arithmetic processing. When evaluating the solution obtained by this parallel operation processing, a suboptimal solution is obtained by advancing the search from a predetermined value within the range where the optimal solution exists in the search space toward the end of the constraint. A method of searching for a suboptimal solution characterized by the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29285391A JPH05128142A (en) | 1991-11-08 | 1991-11-08 | Quasi-optimum solution searching system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29285391A JPH05128142A (en) | 1991-11-08 | 1991-11-08 | Quasi-optimum solution searching system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05128142A true JPH05128142A (en) | 1993-05-25 |
Family
ID=17787219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29285391A Pending JPH05128142A (en) | 1991-11-08 | 1991-11-08 | Quasi-optimum solution searching system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05128142A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009119929A (en) * | 2007-11-12 | 2009-06-04 | Ns Solutions Corp | Information processing apparatus, information processing method, and program |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02242474A (en) * | 1989-03-16 | 1990-09-26 | Hitachi Ltd | Element placement optimization method and device, and optimal placement determination method and device |
-
1991
- 1991-11-08 JP JP29285391A patent/JPH05128142A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02242474A (en) * | 1989-03-16 | 1990-09-26 | Hitachi Ltd | Element placement optimization method and device, and optimal placement determination method and device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009119929A (en) * | 2007-11-12 | 2009-06-04 | Ns Solutions Corp | Information processing apparatus, information processing method, and program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8996504B2 (en) | Plan caching using density-based clustering | |
JP5890907B2 (en) | Machining process determination method and machining process design apparatus | |
US10685067B2 (en) | Data visualization system | |
CN112935575B (en) | Cutting path optimization method and device and computer readable storage medium | |
CN114918581B (en) | Welding parameter processing method and device, storage medium and processor | |
US20150254374A1 (en) | Manufacturing cost estimator | |
KR102229859B1 (en) | Operation management method, apparatus and system using machine learning and transfer learning | |
Chauhan et al. | Parameter optimization of multi-pass turning using chaotic PSO | |
Held et al. | Improved spiral high-speed machining of multiply-connected pockets | |
JP2006350730A (en) | Clustering device, clustering method, and program | |
CN106202092A (en) | Method and system for data processing | |
KR20200105853A (en) | Process knowledge push method based on machining characteristics | |
CN116341059A (en) | Tunnel intelligent design method based on similarity | |
Lin et al. | Cut Redistribution With Directed-Self-Assembly Templates for Advanced 1-D Gridded Layouts | |
CN117521221A (en) | Building model conversion method, device, equipment and storage medium | |
CN100501772C (en) | Periodic interactive image analysis method | |
CN111122222A (en) | A method and system for determining the location of a sample point | |
JPH05128142A (en) | Quasi-optimum solution searching system | |
CN117444358B (en) | Additive manufacturing method, device, equipment and storage medium | |
Nuvoli et al. | Automatic surface segmentation for seamless fabrication using 4‐axis milling machines | |
US12008499B2 (en) | Information processing device, work planning method, and storage medium | |
Cembranos et al. | Supporting the automatic extraction of HBIM elements from point clouds | |
JPH09174387A (en) | Production planning method and planing method | |
US20020082928A1 (en) | Method of constructing a database for managing manufacturing engineering information, recording medium recording program thereof, and system therefor | |
CN116068962B (en) | Process route planning method based on numerical control machine tool and related equipment |