[go: up one dir, main page]

JPH05125577A - Gas diffusion electrode - Google Patents

Gas diffusion electrode

Info

Publication number
JPH05125577A
JPH05125577A JP3314086A JP31408691A JPH05125577A JP H05125577 A JPH05125577 A JP H05125577A JP 3314086 A JP3314086 A JP 3314086A JP 31408691 A JP31408691 A JP 31408691A JP H05125577 A JPH05125577 A JP H05125577A
Authority
JP
Japan
Prior art keywords
gas diffusion
reaction layer
gas
diffusion electrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3314086A
Other languages
Japanese (ja)
Inventor
Choichi Furuya
長一 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP3314086A priority Critical patent/JPH05125577A/en
Publication of JPH05125577A publication Critical patent/JPH05125577A/en
Priority to US08/421,840 priority patent/US5618392A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To pass large amts. of the electrolyte and gas even if the distance between the electrodes is reduced by boring many holes through a reaction layer wherein a fine hydrophilic part permeable to liq. and a fine water-repellent part permeable to gas are entangled with each other. CONSTITUTION:The reaction layer 1 consists of hydrophilic carbon black, water- repellent carbon black and polytetrafluoroethylene, and a fine hydrophilic part permeable to liq. and a fine water-repellent part permeable to gas are entangled with each other in the reaction layer. Holes 2 are bored staggeringly through the reaction layer 1. When the reaction layer 1 is used as a gas diffusion electrode, the gas is collected in the gas diffusion layer 5 and easily moved into the reaction layer 1, and the liq. is passed through the holes 4 and 2 and supplied to the reaction layer 1. The liq. formed by electrolysis is also passed through the holes 2 and 4 and moved to the electrolyte side. Even if the distance between the electrodes is reduced, the electrolyte and gas are allowed to flow on the rear side of the electrode in large amts., the electrolyte is sent to the reaction layer 1 through the holes 2 and 4, and energy efficiency is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電解、燃料電池、電気
メッキ、電気化学的リアクター等に用いるガス拡散電極
の改良に関する。
FIELD OF THE INVENTION The present invention relates to improvements in gas diffusion electrodes used in electrolysis, fuel cells, electroplating, electrochemical reactors and the like.

【0002】[0002]

【従来の技術】従来のガス拡散電極は、液体の浸透でき
る微細な親水部(通路)と気体の出入可能な微細な撥水
部(通路)が入り組み接し合って混在している反応層に
触媒を担持させてなるものと、この触媒を担持させた反
応層に気体の出入可能な微細な撥水部(通路)が微細に
分散しているガス拡散層を張り合わせてなるものとが、
一般的である。その使用法は反応層側に電解液を保持し
ガス拡散層側に気体を通すことで作動させている。
2. Description of the Related Art A conventional gas diffusion electrode has a reaction layer in which a fine hydrophilic portion (passage) through which a liquid can permeate and a fine water repellent portion (passage) through which a gas can flow in and out are mixed and in contact with each other. The one supporting a catalyst and the one laminating a gas diffusion layer in which a fine water-repellent portion (passage) capable of gas flow in and out are finely dispersed in a reaction layer supporting the catalyst,
It is common. The method of use is to operate by holding the electrolytic solution on the reaction layer side and passing gas through the gas diffusion layer side.

【0003】ところで、このようなガス拡散電極は、電
解、電池、電気メッキ等に於いて、電極間(陽極と陰極
の間)が広いと、抵抗が大きくなり、エネルギー効率が
低下するので、電極間を狭くしたい。しかし、電極間を
狭くすると、電極反応の結果生じ電解液中に増加又は減
少する物質を排出又は補給するために必要な電解液を流
すことが難しくなり、効率が低下する。
By the way, such a gas diffusion electrode has a large resistance between electrodes (between the anode and the cathode) in electrolysis, batteries, electroplating, etc., and therefore has a large resistance and a low energy efficiency. I want to narrow the gap. However, if the space between the electrodes is narrowed, it becomes difficult to flow the electrolytic solution necessary for discharging or replenishing the substance that increases or decreases in the electrolytic solution as a result of the electrode reaction, and the efficiency decreases.

【0004】また、電解によっては電極間にイオン交換
膜を使う場合があるが、この場合においても電極間を狭
くすると、イオン交換膜と電極との間が一層狭くなり、
電解液の流量が減少し、効率が低下する。
Also, depending on the electrolysis, an ion exchange membrane may be used between the electrodes, and in this case as well, if the space between the electrodes is narrowed, the space between the ion exchange membrane and the electrodes becomes narrower.
The electrolyte flow rate is reduced and efficiency is reduced.

【0005】[0005]

【発明が解決しようとする課題】そこで本発明は、電極
間を狭くしても電解液やガスを多く流すことができ、エ
ネルギー効率を上げることのできるガス拡散電極を提供
しようとするものである。
SUMMARY OF THE INVENTION Therefore, the present invention is intended to provide a gas diffusion electrode capable of flowing a large amount of electrolyte and gas even if the space between the electrodes is narrowed and increasing the energy efficiency. ..

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
の本発明のガス拡散電極は、液体の浸透できる微細な親
水部と気体の出入可能な微細な撥水部が入り組み接し合
って混在している反応層に、透孔が多数貫通穿設されて
なるものである。
In the gas diffusion electrode of the present invention for solving the above problems, a fine hydrophilic portion through which a liquid can permeate and a fine water repellent portion through which a gas can flow in and out are mixed and in contact with each other. A large number of through holes are formed through the reaction layer.

【0007】前記反応層には触媒が担持されている場合
もある。
A catalyst may be supported on the reaction layer.

【0008】またこれら反応層には、該反応層の透孔と
同じ位置に透孔を有し、気体の出入可能な微細な撥水部
が微細に分散しているガス拡散層が張り合わされている
場合もある。
A gas diffusion layer, which has a through hole at the same position as the through hole of the reaction layer and in which fine water repellent portions through which gas can flow in and out are finely dispersed, is stuck to these reaction layers. There are also cases.

【0009】さらにこれらの構造のガス拡散電極に、集
電体が張り合わせ又は内蔵されている場合もある。
Further, a current collector may be attached to or built in the gas diffusion electrode having these structures.

【0010】[0010]

【作用】上述のように本発明のガス拡散電極は、透孔が
多数貫通穿設されているので、電解、燃料電池、電気メ
ッキ等に用いた際、電極間を狭くしても電極の背面側で
電解液やガスを多く流して、透孔を通して電解液を反応
層の親水部に、ガスを反応層の撥水部や反応層に張り合
わされたガス拡散層に吸収できるので、又は排出できる
反応が促進され、エネルギー効率が向上する。
As described above, since the gas diffusion electrode of the present invention has a large number of through holes formed therein, it can be used for electrolysis, fuel cell, electroplating, etc. even if the space between the electrodes is narrowed. By flowing a large amount of electrolyte or gas on the side, the electrolyte can be absorbed through the through hole to the hydrophilic part of the reaction layer and the gas can be absorbed into the water repellent part of the reaction layer or the gas diffusion layer attached to the reaction layer, or can be discharged. The reaction is promoted and the energy efficiency is improved.

【0011】[0011]

【実施例】本発明のガス拡散電極の一実施例を図1によ
って説明すると、1は親水性カーボンブラック、撥水性
カーボンブラック、ポリ四弗化エチレンよりなり、液体
の浸透できる微細な親水部と気体の出入可能な微細な撥
水部が入り組み接し合って混在している反応層で、この
反応層1に円形の透孔2が千鳥に貫通穿設されている。
この構造のガス拡散電極3の反応層1には、白金族金
属、その酸化物、或いは白金族合金等の触媒を担持させ
たものもある。
EXAMPLE An example of the gas diffusion electrode of the present invention will be described with reference to FIG. 1. Reference numeral 1 is a hydrophilic carbon black, a water-repellent carbon black, and polytetrafluoroethylene. In the reaction layer, in which fine water-repellent portions through which gas can flow in and out are mixed and in contact with each other, circular through holes 2 are staggered through the reaction layer 1.
The reaction layer 1 of the gas diffusion electrode 3 having this structure may have a catalyst such as a platinum group metal, an oxide thereof, or a platinum group alloy supported thereon.

【0012】本発明のガス拡散電極の他の実施例を図2
によって説明すると、1は前記と同じ反応層で、これに
反応層1の透孔2と同じ位置に透孔4を有し、撥水性カ
ーボンブラック、ポリ四弗化エチレンよりなり、気体の
出入可能な微細な撥水部が微細に分散しているガス拡散
層5が張り合わされてガス拡散電極6が構成されてい
る。この構造のガス拡散電極6の反応層1には、白金族
金属、その酸化物、或いは白金族合金等の触媒を担持さ
せたものもある。
Another embodiment of the gas diffusion electrode of the present invention is shown in FIG.
Explained by 1, reference numeral 1 is the same reaction layer as described above, which has a through hole 4 at the same position as the through hole 2 of the reaction layer 1 and is made of water-repellent carbon black and polytetrafluoroethylene, which allows gas to flow in and out. A gas diffusion electrode 6 is formed by laminating gas diffusion layers 5 in which fine water repellent portions are finely dispersed. Some of the reaction layers 1 of the gas diffusion electrode 6 having this structure carry a catalyst such as a platinum group metal, its oxide, or a platinum group alloy.

【0013】本発明のガス拡散電極のさらに他の実施例
を図3によって説明すると、6は図2と同じガス拡散電
極で、このガス拡散電極6のガス拡散層5に網状の集電
体7が張り合わされて、ガス拡散電極6′が構成されて
いる。ガス拡散層の一部にポリ四弗化プロピレンディス
パージョンをスプレーする方法でさらに撥水化させた。
Another embodiment of the gas diffusion electrode of the present invention will be described with reference to FIG. 3. Reference numeral 6 is the same gas diffusion electrode as in FIG. 2, and the gas diffusion layer 5 of the gas diffusion electrode 6 has a net-shaped current collector 7. Are bonded together to form a gas diffusion electrode 6 '. The part of the gas diffusion layer was further made water repellent by a method of spraying polytetrafluoropropylene dispersion.

【0014】次にこれらガス拡散電極の使用態様を、図
2に示すガス拡散電極6(反応層2にPt触媒を担持さ
せてある。)を代表して説明する。
Next, the manner of use of these gas diffusion electrodes will be described on behalf of the gas diffusion electrode 6 (where the Pt catalyst is supported on the reaction layer 2) shown in FIG.

【0015】先ず、電解の場合について説明すると、図
4に示すようにイオン交換膜10を挾んでガス拡散電極6
を陽極と陰極に用い、両極を陽イオン交換膜10に接近す
るように配する。そして陽極側にNaCl水溶液とH2
を流し、陰極側にNaOH水溶液とO2 を流すと、陽イ
オン交換膜10と陽極、陰極の間が狭くともH2 は陽極の
背面側で、またO2 は陰極の背面側のガス拡散層に捕集
され、容易に反応層に移動でき、NaClはガス拡散層
5の透孔4、反応層1の透孔2を通って反応層1に供給
され、電解によって陽イオン交換膜を通過したNa+
OH- と反応してNaOHを生じる。このNaOHは透
孔2、4を通り電解液側に移動する。このようにして反
応が進む。このように電極間が狭くとも電解液やガスを
多く流すことができ、物質移動が容易となったので電解
が効率良く行われ、エネルギー効率が向上する。
First, the case of electrolysis will be described. As shown in FIG. 4, the gas diffusion electrode 6 is sandwiched between the ion exchange membranes 10.
Is used as an anode and a cathode, and both electrodes are arranged so as to approach the cation exchange membrane 10. Then, on the side of the anode, NaCl aqueous solution and H 2
And a NaOH aqueous solution and O 2 are flown to the cathode side, H 2 is the back side of the anode and O 2 is the gas diffusion layer on the back side of the cathode even if there is a narrow gap between the cation exchange membrane 10 and the anode. And is easily transferred to the reaction layer. NaCl was supplied to the reaction layer 1 through the through holes 4 of the gas diffusion layer 5 and the through holes 2 of the reaction layer 1, and passed through the cation exchange membrane by electrolysis. Na + reacts with OH to produce NaOH. This NaOH moves to the electrolytic solution side through the through holes 2 and 4. The reaction proceeds in this way. Thus, even if the gap between the electrodes is narrow, a large amount of electrolyte or gas can be flowed, and mass transfer is facilitated, so that electrolysis is efficiently performed and energy efficiency is improved.

【0016】次に硫酸型燃料電池の場合について説明す
ると、図5に示すように透孔を有しない反応層11とガス
拡散層12とよりなるガス拡散電極13を気室側の酸素極と
し、図2に示すガス拡散電極6(反応層1にPt触媒を
担持させてある。)を液室側の水素極として接近して配
したもので、気室側にあるO2 がガス拡散電極13のガス
拡散層12中に拡散して反応層11の撥水部に至り、ここで
液室側から反応層11の親水部に侵入したH2SO4 とPt触
媒で反応が行われ、電子の授受が行われて電流が生じ
る。液室には薄いガラスフィルター等のセパレーターを
用いることが望ましい。一方、液室側に供給されたH2
はガス拡散電極6の背面側から透孔4を通ってガス拡散
層5中に拡散して反応層1の撥水部に至り、ここで反応
層1の親水部に侵入したH2SO4 とPt触媒で反応が行わ
れて電子の授受が行われて電流が生じる。この燃料電池
において、H2SO4 水溶液は酸素極と水素極との間が狭く
とも水素極の背面側で容易に移動でき、電池の発熱をH2
SO4 水溶液の移動(循環)によって冷却することが可能
となり、従来電池の発熱を除くべく別の冷却手段を必要
としたものが省略できる。しかも電極間を狭くできたこ
とによりエネルギー効率が向上する。
Explaining the case of a sulfuric acid fuel cell, as shown in FIG. 5, a gas diffusion electrode 13 composed of a reaction layer 11 having no through hole and a gas diffusion layer 12 is used as an oxygen electrode on the air chamber side. The gas diffusion electrode 6 shown in FIG. 2 (where the Pt catalyst is supported on the reaction layer 1) is disposed closely as a hydrogen electrode on the liquid chamber side, and O 2 on the gas chamber side is the gas diffusion electrode 13 gas diffusion to the the diffusion layer 12 of the reaction layer 11 reaches the water-repellent portion, where the reaction with H 2 SO 4 and the Pt catalyst penetrates into the hydrophilic portion of the reaction layer 11 from the liquid chamber side is performed, the electronic Electric current is generated by giving and receiving. It is desirable to use a separator such as a thin glass filter in the liquid chamber. On the other hand, H 2 supplied to the liquid chamber side
Is diffused from the back side of the gas diffusion electrode 6 through the through holes 4 into the gas diffusion layer 5 to reach the water repellent portion of the reaction layer 1, where H 2 SO 4 that has entered the hydrophilic portion of the reaction layer 1 A reaction is performed by the Pt catalyst to transfer electrons to generate an electric current. In this fuel cell, H 2 SO 4 aqueous solution can easily be moved back side of the hydrogen electrode with narrow between the oxygen electrode and the hydrogen electrode, the heat generation of the battery H 2
It becomes possible to cool by moving (circulating) the SO 4 aqueous solution, and it is possible to omit the one that conventionally required another cooling means to remove the heat generation of the battery. In addition, energy efficiency is improved by narrowing the space between the electrodes.

【0017】次いで電気メッキの場合について説明する
と、図6に示すように電解槽内に被メッキ物14としての
陰極とガス拡散電極6の陽極を接近して配し、電解槽内
にZnSO4 水溶液を充填し、H2 (ガス)を供給して、通
電すると、ZnSO4 水溶液はガス拡散電極6と被メッキ物
14との間が狭くともガス拡散電極6の背面側で容易に移
動し、ガス拡散層5の透孔4、反応層1の透孔2を通っ
て反応層1の親水部に吸収され、H2 は透孔4を通って
ガス拡散層5に吸収され、ここから反応層1の撥水部に
至り、Pt触媒で結果的にH2SO4 が生じる。H2 は酸化
されZnは被メッキ物14にメッキされる。陰極である被メ
ッキ物14上にH2 が発生するが、このH2 は透孔2、4
を通ってガス拡散層5に吸収されるので、その分H2
供給を節約できる。このように電気メッキにおいても電
極間が狭くともガス拡散電極側の背面側で電解液が容易
に移動できるので、Zn2+イオンの供給が容易で電気メ
ッキは効率良く行うことができ、エネルギー効率が良
い。
Next, the case of electroplating will be described. As shown in FIG. 6, the cathode as the object to be plated 14 and the anode of the gas diffusion electrode 6 are placed close to each other in the electrolytic cell, and the ZnSO 4 aqueous solution is placed in the electrolytic cell. When H 2 (gas) is supplied and electricity is supplied, the ZnSO 4 aqueous solution becomes gas diffusion electrode 6 and the object to be plated.
Even if it is narrow between 14 and 14, it easily moves on the back surface side of the gas diffusion electrode 6, passes through the through hole 4 of the gas diffusion layer 5 and the through hole 2 of the reaction layer 1, and is absorbed by the hydrophilic portion of the reaction layer 1. 2 passes through the through holes 4 and is absorbed by the gas diffusion layer 5, reaches the water repellent portion of the reaction layer 1 from this, and H 2 SO 4 is eventually produced by the Pt catalyst. H 2 is oxidized and Zn is plated on the object to be plated 14. While H 2 is generated on the object to be plated 14, which is a cathode, the H 2 is hole 2,4
Since it is absorbed by the gas diffusion layer 5 through the gas, the supply of H 2 can be saved accordingly. As described above, even in the electroplating, even if the distance between the electrodes is small, the electrolytic solution can easily move on the back side of the gas diffusion electrode side, so that Zn 2+ ions can be easily supplied and the electroplating can be performed efficiently, resulting in energy efficiency. Is good.

【0018】尚、本発明のガス拡散電極の透孔は円形に
限らず角形でも良いものであり、その配列も千鳥に限ら
ずどのような配列でも良い。また図7に示すように透孔
2、4の周りを少し傾けた形状にして電解液やガスの流
れを変えてより多く接触するようにしても良い。
The through holes of the gas diffusion electrode of the present invention are not limited to circular shapes and may be rectangular shapes, and the arrangement is not limited to zigzag and any arrangement may be used. Further, as shown in FIG. 7, the through holes 2 and 4 may be formed in a slightly inclined shape so as to change the flow of the electrolytic solution and the gas so as to make more contact.

【0019】[0019]

【発明の効果】以上の通り本発明のガス拡散電極は、透
孔が多数貫通穿設されているので、電解、燃料電池、電
気メッキ等に用いた際、電極間を狭くしても電極の背面
側で電解液やガスを多く流して、透孔を通して電解液を
反応層の親水部に、ガスを反応層の撥水部や反応層に張
り合わされたガス拡散層に吸収されるので、反応が促進
されるので、エネルギー効率が良い。従って、電解装
置、燃料電池、電気メッキ装置の容量増大を図っても大
型化する必要がなく、大型化すれば大容量のものが容易
に得られる。
As described above, the gas diffusion electrode of the present invention has a large number of through holes formed therein. Therefore, when it is used for electrolysis, fuel cell, electroplating, etc., even if the gap between the electrodes is narrowed, A large amount of electrolyte or gas is made to flow on the back side, and the electrolyte is absorbed through the through holes into the hydrophilic part of the reaction layer, and the gas is absorbed into the water repellent part of the reaction layer or the gas diffusion layer attached to the reaction layer. Is energy efficient because it is promoted. Therefore, it is not necessary to increase the size of the electrolysis device, the fuel cell, and the electroplating device, and a large-capacity device can be easily obtained by increasing the size.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のガス拡散電極の一実施例を示す一部拡
大断面図である。
FIG. 1 is a partially enlarged sectional view showing an embodiment of a gas diffusion electrode of the present invention.

【図2】本発明のガス拡散電極の他の実施例を示す一部
拡大断面図である。
FIG. 2 is a partially enlarged sectional view showing another embodiment of the gas diffusion electrode of the present invention.

【図3】本発明のガス拡散電極のさらに他の実施例を示
す一部拡大断面図である。
FIG. 3 is a partially enlarged cross-sectional view showing still another embodiment of the gas diffusion electrode of the present invention.

【図4】図2のガス拡散電極を用いて電解を行う場合を
示す概略断面図である。
FIG. 4 is a schematic cross-sectional view showing a case where electrolysis is performed using the gas diffusion electrode of FIG.

【図5】図2のガス拡散電極を硫酸型燃料電池に用いた
場合を示す概略断面図である。
5 is a schematic cross-sectional view showing a case where the gas diffusion electrode of FIG. 2 is used in a sulfuric acid fuel cell.

【図6】図2のガス拡散電極を用いて電気メッキを行う
場合を示す概略断面図である。
6 is a schematic cross-sectional view showing a case where electroplating is performed using the gas diffusion electrode of FIG.

【図7】本発明のガス拡散電極における透孔の形状変更
例を示す断面図である。
FIG. 7 is a cross-sectional view showing an example of changing the shape of through holes in the gas diffusion electrode of the present invention.

【符号の説明】[Explanation of symbols]

1 反応層 2 透孔 3 ガス拡散電極 4 透孔 5 ガス拡散層 6、6′ ガス拡散電極 7 集電体 1 Reaction Layer 2 Through Hole 3 Gas Diffusion Electrode 4 Through Hole 5 Gas Diffusion Layer 6, 6'Gas Diffusion Electrode 7 Current Collector

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 液体の浸透できる微細な親水部と気体の
出入可能な微細な撥水部が入り組み接し合って混在して
いる反応層に、透孔が多数貫通穿設されてなるガス拡散
電極。
1. A gas diffusion layer having a large number of through holes formed in a reaction layer in which a fine hydrophilic portion capable of penetrating a liquid and a fine water repellent portion capable of letting in and out a gas are mixed and in contact with each other. electrode.
【請求項2】 反応層に、触媒が担持されていることを
特徴とする請求項1記載のガス拡散電極。
2. The gas diffusion electrode according to claim 1, wherein a catalyst is supported on the reaction layer.
【請求項3】 反応層に、該反応層の透孔と同じ位置に
透孔を有し、気体の出入可能な微細な撥水部が微細に分
散しているガス拡散層が張り合わされていることを特徴
とする請求項1又は2記載のガス拡散電極。
3. A gas diffusion layer, which has a through hole at the same position as the through hole of the reaction layer and in which fine water repellent portions through which gas can flow in and out are finely dispersed, are stuck to the reaction layer. The gas diffusion electrode according to claim 1 or 2, characterized in that.
【請求項4】 請求項1又は2若しくは3記載のガス拡
散電極に、集電体が張り合わせ又は内蔵されていること
を特徴とするガス拡散電極。
4. A gas diffusion electrode according to claim 1, 2 or 3, wherein a current collector is attached to or incorporated in the gas diffusion electrode.
【請求項5】 上記ガス拡散電極の一部にフッ素樹脂か
らなる多孔体を接合していることを特徴とする請求項1
〜4のいずれかであるガス拡散電極。
5. A porous body made of fluororesin is bonded to a part of the gas diffusion electrode.
A gas diffusion electrode which is any one of to 4.
JP3314086A 1991-10-31 1991-10-31 Gas diffusion electrode Pending JPH05125577A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3314086A JPH05125577A (en) 1991-10-31 1991-10-31 Gas diffusion electrode
US08/421,840 US5618392A (en) 1991-10-31 1995-04-13 Gas diffusion electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3314086A JPH05125577A (en) 1991-10-31 1991-10-31 Gas diffusion electrode

Publications (1)

Publication Number Publication Date
JPH05125577A true JPH05125577A (en) 1993-05-21

Family

ID=18049070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3314086A Pending JPH05125577A (en) 1991-10-31 1991-10-31 Gas diffusion electrode

Country Status (1)

Country Link
JP (1) JPH05125577A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004001884A1 (en) * 2002-06-24 2003-12-31 Nec Corporation Fuel cell, electrode for fuel cell and method for producing them
JP2006222026A (en) * 2005-02-14 2006-08-24 Masaru Hori Fuel cell structure and manufacturing method thereof
WO2014061280A1 (en) * 2012-10-19 2014-04-24 パナソニック株式会社 Fuel cell gas diffusion layer and method for manufacturing same
CN105019008A (en) * 2014-04-30 2015-11-04 先丰通讯股份有限公司 Electroplating device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004001884A1 (en) * 2002-06-24 2003-12-31 Nec Corporation Fuel cell, electrode for fuel cell and method for producing them
JP2006222026A (en) * 2005-02-14 2006-08-24 Masaru Hori Fuel cell structure and manufacturing method thereof
WO2014061280A1 (en) * 2012-10-19 2014-04-24 パナソニック株式会社 Fuel cell gas diffusion layer and method for manufacturing same
JP5562509B1 (en) * 2012-10-19 2014-07-30 パナソニック株式会社 Gas diffusion layer for fuel cell and method for producing the same
EP2911226A4 (en) * 2012-10-19 2015-09-02 Panasonic Ip Man Co Ltd FUEL CELL GAS DIFFUSION LAYER AND METHOD FOR MANUFACTURING THE SAME
CN105019008A (en) * 2014-04-30 2015-11-04 先丰通讯股份有限公司 Electroplating device

Similar Documents

Publication Publication Date Title
US5618392A (en) Gas diffusion electrode
US6743541B2 (en) Monopolar cell pack of proton exchange membrane fuel cell and direct methanol fuel cell
EP0664930B1 (en) Electrochemical apparatus for power delivery utilizing an air electrode
US9780394B2 (en) Fuel cell with transport flow across gap
JP2002530816A (en) Bipolar plate for fuel cell and fuel cell with such plate
US20030198862A1 (en) Liquid gallium alkaline electrolyte fuel cell
US9184463B2 (en) Nitric acid regeneration fuel cell systems
JP2003327402A (en) Hydrogen production system
JP2000058072A (en) Fuel cell
JP2005108849A (en) Liquid fuel mixing device and direct liquid fuel cell employing the same
US20080138695A1 (en) Fuel Cell
US5296110A (en) Apparatus and method for separating oxygen from air
JP3447875B2 (en) Direct methanol fuel cell
JPH04229960A (en) Gas-recycle battery for electoro- chemical system
JPH05125577A (en) Gas diffusion electrode
JP3171642B2 (en) Gas diffusion electrode
JP4945887B2 (en) Cell module and solid polymer electrolyte fuel cell
JPH08185873A (en) Fuel cell
JPH08287934A (en) Fuel cell
JP2000100454A (en) Fuel cell stack
JPS6247968A (en) Molten carbonate fuel cell with internal reforming
JPH05156479A (en) Gas-diffusion electrode
KR100531822B1 (en) Apparatus for supplying air of fuel cell
US20230369683A1 (en) Pellet-type anode-fed metal-carbon dioxide battery and a hydrogen generation and carbon dioxide storage system including same
JP3338138B2 (en) Gas diffusion electrode