JPH05125547A - Plasma treating device - Google Patents
Plasma treating deviceInfo
- Publication number
- JPH05125547A JPH05125547A JP3315265A JP31526591A JPH05125547A JP H05125547 A JPH05125547 A JP H05125547A JP 3315265 A JP3315265 A JP 3315265A JP 31526591 A JP31526591 A JP 31526591A JP H05125547 A JPH05125547 A JP H05125547A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- plasma
- processing
- treating
- processing chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 claims abstract description 44
- 230000005684 electric field Effects 0.000 claims description 8
- 230000002093 peripheral effect Effects 0.000 claims description 2
- 230000009977 dual effect Effects 0.000 claims 1
- 239000007789 gas Substances 0.000 abstract description 37
- 238000010849 ion bombardment Methods 0.000 abstract description 5
- 239000010408 film Substances 0.000 description 20
- 230000004907 flux Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 238000004380 ashing Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910018404 Al2 O3 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- -1 Ta2 OFive Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000007806 chemical reaction intermediate Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Plasma Technology (AREA)
- Chemical Vapour Deposition (AREA)
- ing And Chemical Polishing (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体素子や電子回路
等の製造に用いられるプラズマ処理装置に関し、特にイ
オン衝撃が少なく高性能且つ高速に処理を行うことがで
きるプラズマ処理装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing apparatus used for manufacturing semiconductor elements, electronic circuits and the like, and more particularly to a plasma processing apparatus capable of performing high-performance and high-speed processing with less ion bombardment.
【0002】[0002]
【従来の技術】半導体素子や電子回路の製造プロセスな
かでも超LSIの製造プロセスにおいては、プラズマ処
理装置は重要な位置を占めている。最終保護膜用SiN
や層間絶縁膜用のSiO2 等の薄膜形成にはプラズマC
VD装置が、配線用Alの薄膜形成にはスパッタリング
装置が、各種薄膜のエッチングにはRIE装置等が、フ
ォトレジスト層の灰化にはプラズマアッシング装置が用
いられており、その他にも酸化窒化、クリーニング、ド
ーピング、エピタキシャルプロセス等への応用も研究さ
れている。実用化されているプラズマ処理装置の多く
は、13.56MHzの高周波や2.45GHzのマイ
クロ波を励起源として用い、発生した1×1010/cm
3 以上の密度をもつプラズマに基体を接触させ、プラズ
マ処理している。2. Description of the Related Art A plasma processing apparatus occupies an important position in a VLSI manufacturing process among semiconductor device and electronic circuit manufacturing processes. SiN for final protective film
Plasma C for forming a thin film of SiO 2 or the like for the interlayer insulating film
A VD device, a sputtering device for forming a thin film of Al for wiring, a RIE device for etching various thin films, and a plasma ashing device for ashing the photoresist layer are used. Applications to cleaning, doping, epitaxial processes, etc. have also been studied. Most of the plasma processing apparatuses that have been put into practical use use a high frequency of 13.56 MHz or a microwave of 2.45 GHz as an excitation source and generate 1 × 10 10 / cm 2.
Plasma treatment is performed by contacting the substrate with plasma having a density of 3 or more.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記の
従来技術では、基体とプラズマとの接触面に形成される
シース電界によってプラズマ中の多数のイオンが加速さ
れ、数10〜100eV程度の運動エネルギーをもって
基体に入射するため、基体表面に損傷が発生しやすい。
また、有機系の原料ガスを用いる場合には、C−H結合
の解離等の不適切な反応が生じ、形成される膜中に炭素
が混入しやすい。However, in the above-mentioned prior art, a large number of ions in the plasma are accelerated by the sheath electric field formed on the contact surface between the substrate and the plasma, and the kinetic energy is about several tens to 100 eV. Since the light enters the substrate, the surface of the substrate is likely to be damaged.
When an organic source gas is used, inappropriate reaction such as dissociation of C—H bond occurs, and carbon is likely to be mixed in the formed film.
【0004】これらの問題を解決するために、プラズマ
発生室とプラズマ処理室とを分離した遠隔プラズマ処理
装置が検討されていて、損傷の少ない処理が可能になっ
ているが、発生室と基体とが空間的に離れているため
に、反応に有効な励起種が輸送途中で衝突により失活し
やすく、処理が不完全である(成膜の場合には緻密性が
低い)、処理速度が低い、等の問題がある。In order to solve these problems, a remote plasma processing apparatus in which a plasma generating chamber and a plasma processing chamber are separated has been studied and a treatment with less damage is possible. Are spatially separated, the excited species effective for the reaction are likely to be deactivated by collision during transportation, the treatment is incomplete (the density is low in the case of film formation), and the treatment speed is low. , Etc.
【0005】そこで、本発明は、以上の様な従来技術の
問題点を解決し、イオン衝撃による損傷が少なく且つ高
性能、高速に基体を処理するプラズマ処理装置を提供す
ることを目的とするものである。Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art and to provide a plasma processing apparatus capable of processing a substrate at a high speed and with high performance, with less damage due to ion bombardment. Is.
【0006】[0006]
【課題を解決するための手段】本発明によれば、以上の
様な目的を達成するものとして、処理室と、該処理室内
を排気する手段と、該処理室内に処理用ガスを供給する
手段と、該処理室内の外周部に配置された同軸状で互い
に平行な二重の筒状電極間に高周波を供給するプラズマ
発生手段と、該処理室内にて被処理基体を保持する手段
とを有することを特徴とする、プラズマ処理装置、が提
供される。According to the present invention, in order to achieve the above objects, a processing chamber, a means for exhausting the processing chamber, and a means for supplying a processing gas into the processing chamber. And plasma generating means for supplying a high frequency wave between double cylindrical electrodes which are coaxial and parallel to each other and which are arranged on the outer periphery of the processing chamber, and means for holding the substrate to be processed in the processing chamber. A plasma processing apparatus is provided.
【0007】本発明においては、上記二重の筒状電極間
に電界と垂直な磁界を発生する手段を設けることができ
る。また、上記二重の筒状電極のうちの内側の電極とし
ては、複数個の孔があけられており且つ接地されて高周
波シールドとして機能するものを用いることができる。
更に、上記処理用ガスの少なくとも一種を上記二重の筒
状電極間に供給するのが好ましい。In the present invention, means for generating a magnetic field perpendicular to the electric field can be provided between the double cylindrical electrodes. Further, as the inner electrode of the double cylindrical electrodes, an electrode having a plurality of holes and grounded to function as a high frequency shield can be used.
Furthermore, it is preferable to supply at least one of the processing gases between the double cylindrical electrodes.
【0008】本発明によれば、二重の筒状高周波電極の
うち、内側の電極に複数個の孔をあけ且つ接地して被処
理基体周辺の空間に対する高周波シールドとして機能さ
せることができ、これにより被処理基体付近のプラズマ
密度を低下させて、イオン衝撃による被処理基体の損傷
を低減し、更に二重の筒状高周波電極間に電界と垂直な
磁界を発生させて、電極付近に局在した高周波のマグネ
トロン放電を発生させ、且つ処理用ガスの少なくとも一
種を二重の筒状電極間に形成されるプラズマ高密度部を
通過させることにより、反応に有効な励起種を大量に被
処理基体近傍に輸送して更に高性能で高速な処理が可能
となる。According to the present invention, among the double cylindrical high frequency electrodes, a plurality of holes can be opened in the inner electrode and grounded to function as a high frequency shield for the space around the substrate to be processed. Reduces the plasma density near the substrate to be treated to reduce damage to the substrate due to ion bombardment, and also generates a magnetic field perpendicular to the electric field between the double cylindrical high frequency electrodes to localize near the electrodes. By generating a high-frequency magnetron discharge and passing at least one kind of the processing gas through the high-density plasma portion formed between the double cylindrical electrodes, a large amount of excited species effective for the reaction can be obtained. It can be transported to a nearby area for higher performance and faster processing.
【0009】本発明装置で用いる高周波の周波数として
は、1〜300MHzの範囲の適当な値を選択すること
ができる。高周波電極近傍での磁束密度としては、必要
なプラズマ局在化の度合いに応じて100〜1000G
の適当な値を選択することができる。磁界発生手段は永
久磁石でも電磁石でもよい。処理用ガス供給手段として
は、リング状の導入管の導入孔がプラズマに接触する様
なものや、先端がプラズマに接触する2個の同軸円筒管
の間からガスを供給するもの等が適当である。低損傷を
達成するために基体からプラズマを隔離しているにもか
かわらず、ガスの励起効率が高められ、反応に有効な励
起種が大量に基体に供給されるので、高速且つ高性能な
処理が可能になる。As the high frequency used in the device of the present invention, an appropriate value in the range of 1 to 300 MHz can be selected. The magnetic flux density in the vicinity of the high frequency electrode is 100 to 1000 G depending on the required degree of plasma localization.
An appropriate value of can be selected. The magnetic field generating means may be a permanent magnet or an electromagnet. As the processing gas supply means, one in which the introduction hole of the ring-shaped introduction tube comes into contact with the plasma, or one in which the gas is supplied between the two coaxial cylindrical tubes whose tips come into contact with the plasma is suitable. is there. Despite the plasma isolation from the substrate in order to achieve low damage, the gas excitation efficiency is increased and a large amount of excited reactive species for the reaction is supplied to the substrate, resulting in high-speed and high-performance processing. Will be possible.
【0010】更に、基体または基体に付着した反応中間
体に吸収される可視紫外光を基体表面に照射する光アシ
ストプラズマ処理装置に本発明を適用すれば、尚一層の
低温で高性能な処理が可能になる。Furthermore, if the present invention is applied to a photo-assisted plasma processing apparatus that irradiates the surface of the substrate with visible ultraviolet light absorbed by the substrate or a reaction intermediate attached to the substrate, a high-performance treatment can be performed at a still lower temperature. It will be possible.
【0011】図1は本発明によるプラズマ処理装置の第
1の構成例を示す模式図である。FIG. 1 is a schematic view showing a first structural example of a plasma processing apparatus according to the present invention.
【0012】図1において、処理室1は不図示のコンダ
クタンスバルブを介して不図示の排気手段により排気5
が可能とされている。該処理室は上下方向の方向性を有
する円筒形状をなしている。該処理室1内の下部には被
処理基体2を支持するための支持体3が配置されてい
る。該支持体内には基体2を加熱するためのヒータ4が
内蔵されている。処理室1内には第1の処理用ガスを供
給するための第1のリング状の導入管6及び第2の処理
用ガスを供給するための第2のリング状の導入管7が配
置されており、これら配管にあけられた導入孔から処理
室1内に処理用ガスが供給される。In FIG. 1, the processing chamber 1 is evacuated by an exhaust means (not shown) through a conductance valve (not shown).
Is possible. The processing chamber has a cylindrical shape having a vertical direction. A support 3 for supporting the substrate 2 to be processed is arranged in the lower part of the processing chamber 1. A heater 4 for heating the substrate 2 is built in the support. A first ring-shaped introduction pipe 6 for supplying the first processing gas and a second ring-shaped introduction pipe 7 for supplying the second processing gas are arranged in the processing chamber 1. The processing gas is supplied into the processing chamber 1 through the introduction holes formed in these pipes.
【0013】処理室1内の上部には円筒状多孔シールド
電極9と円筒状高周波電極10とが同軸状に配置されて
おり、これら2つの電極の間にリング形状の放電室8が
形成されている。これら2つの電極9,10間には高周
波電源11により高周波電圧が印加される。この電界の
向きは水平方向であり処理室の半径方向を向いている。
尚、シールド電極9は接地されている。高周波電極10
の周囲には、電界に対し直交する上下方向の磁界を形成
するための永久磁石12が処理室1の上部外部の周囲に
配置されている。A cylindrical porous shield electrode 9 and a cylindrical high-frequency electrode 10 are coaxially arranged in the upper part of the processing chamber 1, and a ring-shaped discharge chamber 8 is formed between these two electrodes. There is. A high frequency power supply 11 applies a high frequency voltage between these two electrodes 9 and 10. The direction of this electric field is the horizontal direction and the radial direction of the processing chamber.
The shield electrode 9 is grounded. High frequency electrode 10
A permanent magnet 12 for forming a vertical magnetic field perpendicular to the electric field is arranged around the outer periphery of the upper part of the processing chamber 1.
【0014】本構成例の装置の使用に際しては、基体2
を支持体3上に固定保持し、ヒータ4に電流を流して基
体2を所望の温度(たとえば室温〜数百℃)まで上昇さ
せる。続いて、第1の導入管6から放電室8内に第1の
処理用ガスを供給し、第2の導入管7から基体2の近傍
に直接第2の処理用ガスを供給する。そして、処理室1
内を所望の真空度(たとえば1mTorr〜1Tor
r)まで減圧し、高周波電源11により高周波電極10
に所望の高周波(たとえば電力数十〜数千W)を印加し
て、磁石12によるマグネトロン磁界(たとえば磁束密
度数百G)の存在下で放電室8内に高周波電界を発生さ
せて、電極10の近傍に局在化したプラズマを発生させ
る。かくして、第1の処理用ガスは放電室8内でプラズ
マ化され、反応に有効な励起種が大量に基体2の近傍へ
と供給される。この様にして処理用ガス供給を適宜の時
間行うことにより、基体2に対し所望の処理を行うこと
ができる。When using the apparatus of this configuration example, the substrate 2
Is fixedly held on the support 3, and a current is passed through the heater 4 to raise the temperature of the substrate 2 to a desired temperature (for example, room temperature to several hundreds of degrees Celsius). Then, the first processing gas is supplied from the first introduction pipe 6 into the discharge chamber 8, and the second processing gas is directly supplied from the second introduction pipe 7 to the vicinity of the substrate 2. And the processing chamber 1
To the desired degree of vacuum (for example, 1 mTorr to 1 Tor)
The pressure is reduced to r) and the high frequency power source 11 is used to
A desired high frequency (for example, electric power of several tens to several thousands W) is applied to the electrode 10 to generate a high frequency electric field in the discharge chamber 8 in the presence of a magnetron magnetic field (for example, magnetic flux density of several hundred G) by the magnet 12 to generate an electric field. A localized plasma is generated in the vicinity of. Thus, the first processing gas is turned into plasma in the discharge chamber 8 and a large amount of excited species effective for the reaction is supplied to the vicinity of the substrate 2. By thus supplying the processing gas for an appropriate time, the substrate 2 can be processed as desired.
【0015】図2は本発明によるプラズマ処理装置の第
2の構成例を示す模式図である。図2において、上記図
1におけると同様の部材には同一の符号が付されてい
る。FIG. 2 is a schematic diagram showing a second configuration example of the plasma processing apparatus according to the present invention. 2, the same members as those in FIG. 1 are designated by the same reference numerals.
【0016】本構成例は、図1のプラズマ処理装置に光
アシスト機能を追加したものである。即ち、処理室1の
上部には窓16が付されており、ここから処理室1内の
被処理基体に対し光照射する手段として、光源13、イ
ンテグレータ14及びコリメータレンズ15が配置され
ている。本構成例では、上記図1の場合の操作に加え
て、光源13から適宜の強度の可視紫外光を照射する。In this configuration example, an optical assist function is added to the plasma processing apparatus of FIG. That is, a window 16 is attached to the upper part of the processing chamber 1, and a light source 13, an integrator 14 and a collimator lens 15 are arranged as means for irradiating the substrate to be processed in the processing chamber 1 with light. In the present configuration example, in addition to the operation in the case of FIG. 1 described above, visible light of appropriate intensity is emitted from the light source 13.
【0017】[0017]
【実施例】以下に、本発明装置を用いたプラズマ処理の
実施例を説明する。EXAMPLES Examples of plasma processing using the apparatus of the present invention will be described below.
【0018】(実施例1)本実施例は、図1に示される
装置をプラズマCVD装置に適用した例である。本実施
例では、基体2としてSi基板を用い、第1の処理用ガ
スとして原料ガスN2 を200sccm、第2の処理用
ガスとして原料ガスSiH4 を20sccm供給した。
処理室1内の圧力0.1Torr、基体温度300℃、
高周波電力200W、磁束密度130Gの条件で、Si
N膜を成膜した。(Embodiment 1) This embodiment is an example in which the apparatus shown in FIG. 1 is applied to a plasma CVD apparatus. In the present example, a Si substrate was used as the substrate 2, the source gas N 2 was supplied as 200 sccm as the first processing gas, and the source gas SiH 4 was supplied as 20 sccm as the second processing gas.
Pressure in the processing chamber 1 is 0.1 Torr, substrate temperature is 300 ° C.,
Si under the conditions of high-frequency power of 200 W and magnetic flux density of 130 G
An N film was formed.
【0019】その結果、水素含有率10atm%、圧縮
応力2×109dyn/cm2 の良質なSiN膜が、損
傷少なく、70nm/minの高速で成膜された。As a result, a good quality SiN film having a hydrogen content of 10 atm% and a compressive stress of 2 × 10 9 dyn / cm 2 was formed at a high speed of 70 nm / min with little damage.
【0020】本実施例では、原料ガスとしてN2 及びS
iH4を用いてSiN膜を成膜したが、原料ガスを替
え、必要に応じて成膜条件を適宜変更することにより、
SiO 2 、Ta2 O5 、Al2 O3 、AlN等の絶縁膜
や、a−Si、poly−Si、GaAs等の半導体膜
や、Al、W等の金属膜を成膜することができる。In this embodiment, N is used as the source gas.2 And S
iHFourWas used to form a SiN film, but the source gas was changed
By changing the film formation conditions as needed,
SiO 2 , Ta2 OFive , Al2 O3 , AlN etc. insulation film
And semiconductor films such as a-Si, poly-Si and GaAs
Alternatively, a metal film of Al, W, or the like can be formed.
【0021】(実施例2)本実施例は、図1に示される
装置を表面改質処理装置に適用した例である。本実施例
では、基体2としてSi基板を用い、第1の処理用ガス
として酸化処理用のO2 を200sccm供給した。処
理室1内の圧力0.2Torr、基体温度500℃、高
周波電力500W、磁束密度130Gの条件で、表面酸
化処理した。(Embodiment 2) This embodiment is an example in which the apparatus shown in FIG. 1 is applied to a surface modification treatment apparatus. In this example, a Si substrate was used as the base body 2, and 200 sccm of O 2 for oxidation treatment was supplied as the first treatment gas. The surface was oxidized under the conditions of a pressure of 0.2 Torr in the processing chamber 1, a substrate temperature of 500 ° C., a high frequency power of 500 W, and a magnetic flux density of 130 G.
【0022】その結果、耐圧11MV/cmの良質なS
iO2 膜が、界面電荷密度4×1010/cm2 と損傷少
なく、1.5nm/minの高速で形成された。As a result, a high-quality S having a breakdown voltage of 11 MV / cm
The iO 2 film was formed at a high speed of 1.5 nm / min with an interface charge density of 4 × 10 10 / cm 2 and less damage.
【0023】本実施例では、処理用ガスとしてO2 を用
いてSiの表面酸化を行ったが、基体及び処理用ガスの
適宜の組み合わせを採用し、必要に応じて処理条件を適
宜変更することにより、Si、Al、Ti、Zn、Ta
等の酸化窒化や、B、As、P等のドーピングが可能で
ある。In the present embodiment, the surface oxidation of Si was carried out using O 2 as the processing gas. However, an appropriate combination of the substrate and the processing gas may be adopted, and the processing conditions may be changed as necessary. Due to Si, Al, Ti, Zn, Ta
It is possible to perform oxynitridation of B, As, P, etc.
【0024】(実施例3)本実施例は、図1に示される
装置を表面クリーニング処理装置に適用した例である。
本実施例では、基体2としてSi基板を用い、第1の処
理用ガスとしてクリーニング処理用のNF3 +H2 をN
F3 50sccm、H2 200sccm供給した。処理
室1内の圧力0.2Torr、基体温度300℃、高周
波電力300W、磁束密度130Gの条件で、クリーニ
ング処理した。(Embodiment 3) This embodiment is an example in which the apparatus shown in FIG. 1 is applied to a surface cleaning processing apparatus.
In this embodiment, a Si substrate is used as the substrate 2, and NF 3 + H 2 for cleaning processing is used as N as the first processing gas.
F 3 50 sccm and H 2 200 sccm were supplied. The cleaning process was performed under the conditions of a pressure of 0.2 Torr in the processing chamber 1, a substrate temperature of 300 ° C., a high frequency power of 300 W, and a magnetic flux density of 130 G.
【0025】その結果、1分間でSi基板上の自然酸化
膜が完全に除去できた。As a result, the natural oxide film on the Si substrate could be completely removed in 1 minute.
【0026】本実施例では、処理用ガスとしてNF3 +
H2 を用いて、Siの表面クリーニングを行ったが、基
体及び処理用ガスの適宜の組み合わせを採用し、必要に
応じて処理条件を適宜変更することにより、有機物や重
金属等の表面クリーニング処理が可能である。In this embodiment, NF 3 + is used as the processing gas.
Although the surface of Si was cleaned using H 2 , the surface cleaning treatment of organic substances, heavy metals, etc. can be performed by adopting an appropriate combination of the substrate and the treatment gas and appropriately changing the treatment conditions as necessary. It is possible.
【0027】(実施例4)本実施例は、図2に示される
装置を光アシストプラズマCVD処理装置に適用した例
である。本実施例では、基体2としてSi基板を用い、
第1の処理用ガスとして原料ガスO2 を500scc
m、第2の処理用ガスとして原料ガスTEOS(テトラ
エチルオルソシリケート)を100sccm供給した。
処理室1内の圧力0.1Torr、基体温度300℃、
光照度0.6W/cm2 、高周波電力500W、磁束密
度130Gの条件で、SiO2 膜を成膜した。(Embodiment 4) This embodiment is an example in which the apparatus shown in FIG. 2 is applied to a photo-assisted plasma CVD processing apparatus. In this embodiment, a Si substrate is used as the base 2,
The source gas O 2 is 500 scc as the first processing gas.
m, and a raw material gas TEOS (tetraethyl orthosilicate) was supplied at 100 sccm as the second processing gas.
Pressure in the processing chamber 1 is 0.1 Torr, substrate temperature is 300 ° C.,
A SiO 2 film was formed under the conditions of light illuminance of 0.6 W / cm 2 , high frequency power of 500 W, and magnetic flux density of 130 G.
【0028】その結果、水素含有率1atm%以下、引
張り応力2×108 dyn/cm2の良質で平坦なSi
O2 膜が、180nm/minの高速で成膜された。As a result, good-quality flat Si having a hydrogen content of 1 atm% or less and a tensile stress of 2 × 10 8 dyn / cm 2 was obtained.
The O 2 film was formed at a high speed of 180 nm / min.
【0029】本実施例では、原料ガスとしてO2 及びT
EOSを用いて、SiO2 膜を成膜したが、原料ガスを
替え、必要に応じて成膜条件を適宜変更することによ
り、SiN、Ta2 O5 、Al2 O3 、AlN等の絶縁
膜や、a−Si、poly−Si、GaAs等の半導体
膜や、Al、W等の金属膜を成膜することができる。In this embodiment, O 2 and T are used as source gases.
An SiO 2 film was formed using EOS, but an insulating film such as SiN, Ta 2 O 5 , Al 2 O 3 or AlN was formed by changing the source gas and appropriately changing the film forming conditions as needed. Alternatively, a semiconductor film such as a-Si, poly-Si, or GaAs, or a metal film such as Al or W can be formed.
【0030】[0030]
【発明の効果】以上説明したように、本発明によれば、
処理室内の外周部に配置された同軸状で互いに平行な二
重の筒状電極間に高周波を供給するプラズマ発生手段を
設けたので、これら二重の筒状電極間に処理用ガスの少
なくとも一種を供給して、この被処理基体から離れた位
置でプラズマを発生させることにより、被処理基体近傍
のプラズマ密度を低下させてイオン衝撃による基体の損
傷を少なくでき、且つ処理に有効な励起種を基体の近傍
に迅速に輸送でき、高性能、高速に基体を処理すること
ができる。As described above, according to the present invention,
Since plasma generating means for supplying a high frequency is provided between the coaxial and parallel double cylindrical electrodes arranged in the outer peripheral portion of the processing chamber, at least one kind of processing gas is provided between these double cylindrical electrodes. Is supplied to generate a plasma at a position distant from the substrate to be processed, the plasma density in the vicinity of the substrate to be processed can be reduced, damage to the substrate due to ion bombardment can be reduced, and an effective excited species for processing can be obtained. It can be quickly transported to the vicinity of the substrate, and the substrate can be processed with high performance and high speed.
【図1】本発明によるプラズマ処理装置の第1の構成例
を示す模式図である。FIG. 1 is a schematic diagram showing a first configuration example of a plasma processing apparatus according to the present invention.
【図2】本発明によるプラズマ処理装置の第2の構成例
を示す模式図である。FIG. 2 is a schematic diagram showing a second configuration example of the plasma processing apparatus according to the present invention.
1 処理室 2 基体 3 支持体 4 ヒータ 5 排気 6 処理用ガス導入管 7 処理用ガス導入管 8 放電室 9 多孔シールド電極 10 高周波電極 11 高周波電源 12 永久磁石 13 光源 14 インテグレータ 15 コリメータレンズ 16 窓 1 processing chamber 2 substrate 3 support 4 heater 5 exhaust 6 processing gas introduction pipe 7 processing gas introduction pipe 8 discharge chamber 9 porous shield electrode 10 high frequency electrode 11 high frequency power supply 12 permanent magnet 13 light source 14 integrator 15 collimator lens 16 window
フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H05H 1/46 9014−2G Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H05H 1/46 9014-2G
Claims (4)
と、該処理室内に処理用ガスを供給する手段と、該処理
室内の外周部に配置された同軸状で互いに平行な二重の
筒状電極間に高周波を供給するプラズマ発生手段と、該
処理室内にて被処理基体を保持する手段とを有すること
を特徴とする、プラズマ処理装置。1. A processing chamber, a means for exhausting the processing chamber, a means for supplying a processing gas into the processing chamber, and dual coaxial, parallel to each other arranged on an outer peripheral portion of the processing chamber. A plasma processing apparatus comprising: a plasma generating means for supplying a high frequency wave between the cylindrical electrodes; and a means for holding a substrate to be processed in the processing chamber.
界を発生する手段をもつことを特徴とする、請求項1に
記載のプラズマ処理装置。2. The plasma processing apparatus according to claim 1, further comprising means for generating a magnetic field perpendicular to the electric field between the double cylindrical electrodes.
には複数個の孔があけられており且つ接地されて高周波
シールドとして機能することを特徴とする、請求項1ま
たは請求項2に記載のプラズマ処理装置。3. The inner electrode of the double cylindrical electrode is provided with a plurality of holes and is grounded to function as a high frequency shield. The plasma processing apparatus according to 2.
二重の筒状電極間に供給されることを特徴とする、請求
項1〜請求項3のいずれかに記載のプラズマ処理装置。4. The plasma processing apparatus according to claim 1, wherein at least one kind of the processing gas is supplied between the double cylindrical electrodes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3315265A JPH05125547A (en) | 1991-11-05 | 1991-11-05 | Plasma treating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3315265A JPH05125547A (en) | 1991-11-05 | 1991-11-05 | Plasma treating device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05125547A true JPH05125547A (en) | 1993-05-21 |
Family
ID=18063347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3315265A Pending JPH05125547A (en) | 1991-11-05 | 1991-11-05 | Plasma treating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05125547A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09283518A (en) * | 1996-04-12 | 1997-10-31 | Semiconductor Energy Lab Co Ltd | Semiconductor device and manufacturing method thereof |
US20080277064A1 (en) * | 2006-12-08 | 2008-11-13 | Tes Co., Ltd. | Plasma processing apparatus |
JP2009280871A (en) * | 2008-05-23 | 2009-12-03 | Toyo Seikan Kaisha Ltd | Method for forming plasma-photo combined cvd film |
-
1991
- 1991-11-05 JP JP3315265A patent/JPH05125547A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09283518A (en) * | 1996-04-12 | 1997-10-31 | Semiconductor Energy Lab Co Ltd | Semiconductor device and manufacturing method thereof |
US7019385B1 (en) | 1996-04-12 | 2006-03-28 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of fabricating same |
US7838968B2 (en) | 1996-04-12 | 2010-11-23 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of fabricating same |
US20080277064A1 (en) * | 2006-12-08 | 2008-11-13 | Tes Co., Ltd. | Plasma processing apparatus |
JP2009280871A (en) * | 2008-05-23 | 2009-12-03 | Toyo Seikan Kaisha Ltd | Method for forming plasma-photo combined cvd film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20210042939A (en) | Equipment and process for electron beam mediated plasma etching and deposition process | |
JPS5816078A (en) | Plasma etching device | |
WO2019003663A1 (en) | Etching method and etching device | |
TW200531160A (en) | Method for cleaning process chamber of substrate processing apparatus, substrate processing apparatus, and method for processing substrate | |
JP2003109941A (en) | Plasma processing apparatus and surface processing method | |
TWI674597B (en) | Method of etching a magnetic layer | |
JP2008181710A (en) | Plasma treatment device and method | |
JPH07245193A (en) | Plasma generating device and plasma processing device | |
JP2004047695A (en) | Plasma doping method and apparatus | |
JPH0718433A (en) | Icp sputtering device | |
JPH0613196A (en) | Plasma generation method and generator | |
US6096176A (en) | Sputtering method and a sputtering apparatus thereof | |
JP3907444B2 (en) | Plasma processing apparatus and structure manufacturing method | |
JPH05125547A (en) | Plasma treating device | |
TWI787239B (en) | Method and apparatus for etching organic materials | |
JP2807674B2 (en) | Processing apparatus and cleaning method for processing apparatus | |
JPH05125546A (en) | Plasma treating device | |
JP2000294548A (en) | Microwave plasma treatment apparatus using dielectrics window | |
JP2002324760A (en) | Film forming equipment | |
JP3258441B2 (en) | Microwave plasma processing apparatus and microwave plasma processing method | |
JP2008159763A (en) | Plasma processing apparatus | |
JPH0693454A (en) | Glow discharge method and glow discharge device | |
JPH06333843A (en) | Device and method for plasma treatment | |
JPH05259153A (en) | Method and apparatus for manufacture of silicon oxide film | |
JP2933422B2 (en) | Plasma processing equipment |