JPH05123182A - Production of microbial cellulose by standing culture and apparatus therefor - Google Patents
Production of microbial cellulose by standing culture and apparatus thereforInfo
- Publication number
- JPH05123182A JPH05123182A JP31015591A JP31015591A JPH05123182A JP H05123182 A JPH05123182 A JP H05123182A JP 31015591 A JP31015591 A JP 31015591A JP 31015591 A JP31015591 A JP 31015591A JP H05123182 A JPH05123182 A JP H05123182A
- Authority
- JP
- Japan
- Prior art keywords
- culture
- cellulose
- oxygen
- hydrophobic material
- standing culture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 229920001340 Microbial cellulose Polymers 0.000 title claims description 9
- 239000000463 material Substances 0.000 claims abstract description 26
- 229920002678 cellulose Polymers 0.000 claims abstract description 22
- 239000001913 cellulose Substances 0.000 claims abstract description 22
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 19
- 238000012258 culturing Methods 0.000 claims abstract description 5
- 230000003068 static effect Effects 0.000 claims description 20
- 244000005700 microbiome Species 0.000 claims description 19
- 239000007788 liquid Substances 0.000 abstract description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 9
- 239000001301 oxygen Substances 0.000 abstract description 9
- 229910052760 oxygen Inorganic materials 0.000 abstract description 9
- -1 polytetrafluoroethylene Polymers 0.000 abstract description 5
- 230000000813 microbial effect Effects 0.000 abstract description 4
- 239000004698 Polyethylene Substances 0.000 abstract description 3
- 229920000573 polyethylene Polymers 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 3
- 241000589212 Acetobacter pasteurianus Species 0.000 abstract description 2
- 239000000919 ceramic Substances 0.000 abstract description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 abstract description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 abstract description 2
- 229910001220 stainless steel Inorganic materials 0.000 abstract description 2
- 239000010935 stainless steel Substances 0.000 abstract description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 42
- 239000000243 solution Substances 0.000 description 13
- 241000894006 Bacteria Species 0.000 description 12
- 238000000034 method Methods 0.000 description 7
- 238000005273 aeration Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 238000013019 agitation Methods 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 229920001296 polysiloxane Polymers 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- 108010023063 Bacto-peptone Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-N Gluconic acid Natural products OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 1
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 1
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 1
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 241001148470 aerobic bacillus Species 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 230000003544 deproteinization Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229950006780 n-acetylglucosamine Drugs 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229920006268 silicone film Polymers 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000052 vinegar Substances 0.000 description 1
- 235000021419 vinegar Nutrition 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、静置培養による微生物
セルロースの製造法並びに静置培養用装置に関する。本
発明の装置は酢酸菌等の微生物を使用する発酵生産に用
いられ、生産工程の効率化を図ることができる。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing microbial cellulose by static culture and a static culture apparatus. The device of the present invention is used for fermentation production using microorganisms such as acetic acid bacteria and can improve the efficiency of the production process.
【0002】[0002]
【従来の技術および発明が解決しようとする課題】酢酸
菌は、絶対好気性の菌で、一般には通気攪拌した方が効
率よく生産できるため、広く通気攪拌培養が採用されて
いる。しかし、通気攪拌培養により、かえって生産物の
生産効率が低下したり、品質の劣化を起こす場合があ
る。このような場合には、依然として静置培養が工業的
に実施されている。たとえば、食酢発酵においては、通
気攪拌培養にすることにより、香味に影響があることが
知られており、かかる欠点を解消するため、静置培養が
好んで用いられている。2. Description of the Related Art Acetic acid bacteria are absolutely aerobic bacteria and can be produced efficiently by aeration and agitation, and thus aeration and agitation culture is widely used. However, the aeration and agitation culture may rather lower the production efficiency of the product or deteriorate the quality. In such a case, static culture is still industrially carried out. For example, in vinegar fermentation, it is known that the aeration and agitation culture has an influence on the flavor, and in order to eliminate such drawbacks, static culture is preferably used.
【0003】また、微生物セルロースや分子内にN−ア
セチルグルコサミンを含有する新規セルロース(特願平
3−50100号明細書)の生産において、グルコース
を主要炭素源とした培地での通気攪拌では、グルコース
の酸化反応が優先的に進行する。そのため、グルコン酸
を多量に副成したり、セルロースの収量が低下したりす
ることが不可避である。Further, in the production of microbial cellulose and novel cellulose containing N-acetylglucosamine in the molecule (Japanese Patent Application No. 3-50100), glucose is aerated and agitated in a medium containing glucose as a main carbon source. The oxidation reaction of 1 proceeds preferentially. Therefore, it is inevitable that a large amount of gluconic acid is by-produced and the yield of cellulose is reduced.
【0004】また、通気攪拌することにより、微生物の
セルロース生産能力が欠落することが知られている。し
たがって、従来は生産効率の低下を犠牲にして工業的に
は静置培養が適用されている。しかし、静置培養では、
培養液表面からしか酸素が供給されず、たとえば酢酸菌
などのように酸素供給が微生物の生育の律速因子となる
ような微生物の培養を含め、静置培養による微生物の培
養において通気攪拌培養の場合と同様の生産効率や良質
の生産物を得ることのできる、より効率的な培養方法の
開発が待たれていた。It is also known that the ability of microorganisms to produce cellulose is lost by aeration and stirring. Therefore, conventionally, static culture has been applied industrially at the expense of a decrease in production efficiency. However, in static culture,
Oxygen is supplied only from the surface of the culture solution, for example, in the case of aeration and agitation culture in the culture of static microorganisms, including the culture of microorganisms such as acetic acid bacteria in which oxygen supply is the rate-determining factor of the growth of microorganisms. The development of a more efficient culture method that can obtain the same production efficiency and high-quality product as described above has been awaited.
【0005】これまでこうした試みとしては、中空糸を
利用して気液界面を大きくし、単位液量当りの酸素供給
を高めたり(Cellulose and Wood-Chemistry and Techno
logy, C. Schuuerch編、p. 573、John Wiley & Sons, I
nc. 1989) 、気泡塔型のリアクターを適用する方法(特
開昭62−87099号公報、特開平1−243997
号公報)、気泡培養法(特開平2−286092号公
報)などがあるが、いずれも複雑な装置を作成しなけれ
ばならなかったり、高価な酸素ガスを吹き込む必要があ
るなど実用的ではなかった。Hitherto, such attempts have been made by using a hollow fiber to increase the gas-liquid interface and increase the oxygen supply per unit liquid volume (Cellulose and Wood-Chemistry and Technol.
logy, C. Schuuerch, p. 573, John Wiley & Sons, I
nc. 1989), a method of applying a bubble column type reactor (JP-A-62-87099 and JP-A-1-243997).
No. 2), a bubble culturing method (Japanese Patent Laid-Open No. 2-286092) and the like, but none of them are practical because a complicated device has to be prepared and an expensive oxygen gas has to be blown. ..
【0006】[0006]
【課題を解決するための手段】本発明者らは、上記実情
に鑑み、静置培養において、効率よく酢酸菌等の微生物
を用いてセルロースなどの有用な生産物を生産する方法
並びにこの方法に使用できる簡便な装置を開発すべく鋭
意努力を重ねた。その結果、酢酸菌等の微生物の静置培
養において、装置の底面部を酸素透過性の疎水性材料で
形成したものを使用することにより、微生物セルロース
の生産効率を高めることができることを見出し、本発明
を完成した。In view of the above situation, the present inventors have found a method for efficiently producing a useful product such as cellulose by using microorganisms such as acetic acid bacteria in static culture and a method for this method. We have made great efforts to develop a simple device that can be used. As a result, in static culture of microorganisms such as acetic acid bacteria, it was found that the production efficiency of microbial cellulose can be increased by using a device in which the bottom surface of the device is formed of an oxygen-permeable hydrophobic material. Completed the invention.
【0007】すなわち本発明は、セルロース生産能を有
する微生物を用いて静置培養によりセルロースを製造す
るにあたり、静置培養用装置として装置底面部を酸素透
過性の疎水性材料で形成したものを使用することを特徴
とする静置培養による微生物セルロースの製造法並びに
装置底面部を酸素透過性の疎水性材料で形成し、該疎水
性材料の外側に保持体を設けたことを特徴とする静置培
養用装置に関する。That is, according to the present invention, when the cellulose is produced by static culture using a microorganism capable of producing cellulose, a static culture apparatus in which the bottom surface of the apparatus is formed of an oxygen-permeable hydrophobic material is used. A method for producing microbial cellulose by static culture, characterized in that the bottom surface of the apparatus is formed of an oxygen-permeable hydrophobic material, and a holding body is provided outside the hydrophobic material. The present invention relates to a culture device.
【0008】図面は、本発明の静置培養用装置の1実施
態様を示す説明図である。装置1の底面部2は酸素透過
性の疎水性材料で形成されており、該材料の外側は保持
体3によって保持、固定されている。装置1内には適量
の液体培地4が充填されており、所望のセルロース生産
能を有する微生物を接種して培養する。なお、5は装置
上面を密閉する部材で、図示の例ではシリコーン栓であ
る。また、6は該部材5を貫通する管(例えばガラス管
など)であり、7は該管を塞ぐ通気性の栓(例えば綿栓
など)である。装置の形状,大きさ,材質等について
は、使用目的などを考慮して適宜決定すればよいが、殺
菌処理が可能であることが望ましい。The drawings are explanatory views showing one embodiment of the apparatus for static culture of the present invention. The bottom portion 2 of the device 1 is formed of an oxygen-permeable hydrophobic material, and the outer side of the material is held and fixed by a holder 3. The device 1 is filled with an appropriate amount of liquid medium 4, and a microorganism having a desired cellulose-producing ability is inoculated and cultured. Reference numeral 5 denotes a member for sealing the upper surface of the device, which is a silicone stopper in the illustrated example. Further, 6 is a tube (eg, glass tube) penetrating the member 5, and 7 is a breathable plug (eg, cotton plug) that closes the tube. The shape, size, material, etc. of the device may be appropriately determined in consideration of the purpose of use, etc., but it is desirable that sterilization is possible.
【0009】装置1の底面部2を形成する酸素透過性の
疎水性材料としては、例えばポリテトラフルオロエチレ
ン(商品名テフロンなど)などのフッ素樹脂やケイ素樹
脂(シリコーン),ポリエチレン等が好適であるが、他
の材料であってもよい。なお、この材料にゼオライトな
どの吸着性物質を含有させることにより、酸素透過性を
向上させることが可能である。該材料の形状は、通常は
平膜状が操作性(装着や洗浄の容易さなど)の立場から
適しているが、波状に成形して気液界面の面積を増大さ
せることにより、生産性の向上を図ることができる。As the oxygen-permeable hydrophobic material forming the bottom surface 2 of the device 1, for example, fluororesin such as polytetrafluoroethylene (trade name: Teflon), silicon resin (silicone), polyethylene or the like is suitable. However, other materials may be used. In addition, it is possible to improve the oxygen permeability by including an adsorbing substance such as zeolite in this material. As for the shape of the material, a flat film shape is usually suitable from the standpoint of operability (e.g., ease of mounting and cleaning), but by increasing the area of the gas-liquid interface by forming a corrugated shape, productivity can be improved. It is possible to improve.
【0010】疎水性材料の厚さは、装置の大きさ,培養
液量などを考慮して決定されるが、通常は強度面から1
0ミクロン以上とすべきである。しかし、酸素透過性の
面からは、可及的に薄いものが望ましい。また、疎水性
材料の孔径については、培養液が漏れることのないよう
に、平均孔径が0.5ミクロン以下のものを用いることが
望ましい。本発明では、装置底面部の疎水性材料の外側
に保持体を設けて補強するが、この保持体としてはナイ
ロン等のプラスチック製またはステンレス製のネットや
セラミック製の目皿などが好適である。保持体による疎
水性材料の固定方法は任意であり、培養液が漏洩しなけ
ればよい。The thickness of the hydrophobic material is determined in consideration of the size of the device, the amount of culture solution, etc.
It should be 0 micron or more. However, from the viewpoint of oxygen permeability, the thinnest possible material is desirable. Regarding the pore size of the hydrophobic material, it is desirable to use one having an average pore size of 0.5 micron or less so that the culture solution does not leak. In the present invention, a holder is provided outside the hydrophobic material on the bottom surface of the device to reinforce, and as the holder, a net made of plastic such as nylon or a stainless net or a ceramic plate is suitable. Any method may be used to fix the hydrophobic material on the support, as long as the culture solution does not leak.
【0011】本発明の静置培養用装置は、底面部が酸素
透過性の疎水性材料で形成されているため、培養液は上
表面だけでなく、該材料に接する底面の培養液に対して
も酸素の供給が行われ、気液界面積が増大する。その結
果、酢酸菌などの微生物は培養液の上表面と共に底面の
疎水性材料の液内側にも生育することができ、単位液量
あたりの微生物生育量を大幅に増加させることができ
る。しかも、培養にあたって通気攪拌をしないため、微
生物自体が有するセルロース生産能力は低下しない。そ
れ故、増加した微生物菌体量に応じて、目的とする微生
物セルロースの生産効率が向上する。すなわち、単位液
量あたりの微生物セルロースの生産性を飛躍的に増大さ
せることができる。In the apparatus for static culture of the present invention, the bottom surface is formed of an oxygen-permeable hydrophobic material, so that the culture solution is not limited to the upper surface but to the culture solution on the bottom surface in contact with the material. Also, oxygen is supplied, and the gas-liquid interface area increases. As a result, microorganisms such as acetic acid bacteria can grow on the upper surface of the culture solution as well as on the inner surface of the hydrophobic material on the bottom surface, and the amount of microbial growth per unit liquid volume can be greatly increased. Moreover, since the culture is not aerated and agitated, the ability of the microorganism to produce cellulose does not decrease. Therefore, the production efficiency of the target microbial cellulose is improved according to the increased microbial cell amount. That is, the productivity of microbial cellulose per unit liquid volume can be dramatically increased.
【0012】微生物の培養条件については、特別な制限
はなく、既知の方法に従えばよい。培養液としては、微
生物が増殖して目的とするセルロースが効果的に生産さ
れるものであればよく、特別な組成である必要はない。
同様に、培養の温度,pHなどについても常法によれば
よく、必要に応じて培養中に温度やpHを適当に制御す
る。There are no particular restrictions on the culture conditions for the microorganisms, and known methods may be used. The culture liquid may be any liquid as long as it can effectively produce the target cellulose by the growth of microorganisms, and does not have to have a special composition.
Similarly, the temperature and pH of the culture may be determined by a conventional method, and the temperature and the pH may be appropriately controlled during the culture, if necessary.
【0013】セルロース生産菌としては、酢酸菌などの
既知のものを任意に用いることができる他、前記特願平
3−50100号明細書に開示されているものなども使
用することができる。As the cellulose-producing bacterium, known ones such as acetic acid bacterium can be arbitrarily used, and also those disclosed in the above-mentioned Japanese Patent Application No. 3-50100 can be used.
【0014】[0014]
【実施例】以下、本発明を実施例により説明するが、本
発明はこれらにより制限されるものではない。 実施例1 図1に示すような培養装置(内径47mm,高さ60m
mのガラス製円筒の底部に厚さ500ミクロン,平均孔
径0.5ミクロンのシリコーン製のシートを張り、ステン
レス製のネットで保持、固定したもの)にHestrin-Schr
amm 培地(D−グルコース2.0g,バクトペプトン(デ
ィフコ社製)0.5g,酵母エキス(ディフコ社製)0.5
g,クエン酸0.115g,リン酸水素2ナトリウム0.2
7g,蒸留水100ml、pH6.0)を30ml入れ、
オートクレーブで殺菌後、アセトバクター・パスツリア
ヌス ATCC10245を植菌し、30℃で6日間培
養した。EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited thereto. Example 1 A culture device as shown in FIG. 1 (inner diameter 47 mm, height 60 m)
Hestrin-Schr), which is made by sticking a silicone sheet with a thickness of 500 microns and an average pore size of 0.5 microns to the bottom of a glass cylinder of m, held and fixed with a stainless steel net).
amm medium (D-glucose 2.0 g, Bactopeptone (manufactured by Difco) 0.5 g, yeast extract (manufactured by Difco) 0.5)
g, citric acid 0.115 g, disodium hydrogen phosphate 0.2
7 g, 100 ml distilled water, 30 ml of pH 6.0),
After sterilization in an autoclave, Acetobacter pasteurianus ATCC10245 was inoculated and cultured at 30 ° C for 6 days.
【0015】培養終了後、培養液表面および培養液底部
に産生された酢酸菌セルロースを主成分とする膜を取り
出し、1%NaOH水溶液に浸漬し、室温で24時間放
置して除蛋白処理を行った。次いで、水洗後、風乾して
膜の重量を測定した。一方、対照として、装置の底部が
ガラスで形成されていること以外は、図1と全く同じ培
養装置を用いて同じ条件で培養した。この場合は、培養
液上表面からしか酸素供給が得られないため、酢酸菌セ
ルロースの生産速度は5.9〜8.0g/m2 /日であった
が、前記のように装置の底部をシリコーン膜で形成した
ものでは、11.3〜14.5g/m2 /日の酢酸菌セルロ
ース生産速度が得られた。After completion of the culturing, the membranes containing acetic acid cellulose produced as the main component on the surface of the culture broth and the bottom of the culture broth were taken out, immersed in a 1% NaOH aqueous solution and left at room temperature for 24 hours for deproteinization. It was Then, after washing with water, it was air-dried and the weight of the film was measured. On the other hand, as a control, the culture was performed under the same conditions using the same culture device as in FIG. 1 except that the bottom of the device was formed of glass. In this case, since oxygen was supplied only from the upper surface of the culture solution, the production rate of acetic acid bacterium cellulose was 5.9 to 8.0 g / m 2 / day. In the case of using the silicone film, the acetic acid bacterium cellulose production rate of 11.3 to 14.5 g / m 2 / day was obtained.
【0016】実施例2 ガラス円筒底部に厚さ50ミクロン、平均孔径0.2ミク
ロンのテフロン製のシートを張ったこと以外は実施例1
と同じ培養装置,培養液,微生物等を用い、実施例1と
同様に培養した。このときの酢酸菌セルロースの生産速
度は、10.3g/m2 /日であった。Example 2 Example 1 except that a Teflon sheet having a thickness of 50 μm and an average pore size of 0.2 μm was placed on the bottom of the glass cylinder.
Culture was performed in the same manner as in Example 1 using the same culture device, culture solution, microorganisms, etc. At this time, the production rate of acetic acid bacterium cellulose was 10.3 g / m 2 / day.
【0017】実施例3 ガラス円筒底部に厚さ10ミクロンのポリエチレン製の
シートを張ったこと以外は実施例1と同じ培養装置,培
養液,微生物等を用い、実施例1と同様に培養した。こ
のときの酢酸菌セルロースの生産速度は、9.9g/m2
/日であった。Example 3 Culture was performed in the same manner as in Example 1 using the same culture apparatus, culture solution, microorganisms and the like as in Example 1 except that a polyethylene sheet having a thickness of 10 microns was placed on the bottom of the glass cylinder. At this time, the production rate of acetic acid cellulose was 9.9 g / m 2
/ Day.
【0018】実施例4 ガラス円筒底部にゼオライトを含有するシリコーン膜
(膜厚470ミクロン,平均孔径0.5ミクロン)を張っ
たこと以外は実施例1と同じ培養装置,培養液,微生物
等を用い、実施例1と同様に培養した。このときの酢酸
菌セルロースの生産速度は、11.3g/m2 /日であっ
た。Example 4 The same culture apparatus, culture solution, microorganisms, etc. as in Example 1 were used except that a zeolite-containing silicone membrane (film thickness 470 μm, average pore size 0.5 μm) was placed on the bottom of the glass cylinder. The cells were cultured in the same manner as in Example 1. The production rate of acetic acid cellulose was 11.3 g / m 2 / day.
【0019】[0019]
【発明の効果】酢酸菌などの好気性微生物を用いて静置
培養によりセルロースなどの有用物質を製造するにあた
り、本発明の培養装置を用いれば、培養液の上表面のみ
ならず装置底面の培養液に対しても酸素が供給されるた
め、微生物の生育量が増加し、それに伴い微生物セルロ
ースの生産効率を格段に高めることが可能である。ま
た、本発明の培養装置は構造が簡便であり、実用性に富
むものである。INDUSTRIAL APPLICABILITY In producing useful substances such as cellulose by static culture using aerobic microorganisms such as acetic acid bacteria, the culture device of the present invention can be used to culture not only the upper surface of the culture solution but also the bottom surface of the device. Since oxygen is also supplied to the liquid, the growth amount of microorganisms increases, and along with that, the production efficiency of microbial cellulose can be significantly increased. Further, the culture device of the present invention has a simple structure and is highly practical.
【図1】 本発明の静置培養用装置の1実施態様を示す
説明図である。FIG. 1 is an explanatory view showing one embodiment of a static culture device of the present invention.
1:装置本体 2:酸素透過性の疎水性材料 3:保持体 4:培養液 5:密閉部材 6:管 7:通気性の栓 1: Device body 2: Oxygen-permeable hydrophobic material 3: Retainer 4: Culture solution 5: Sealing member 6: Tube 7: Breathable stopper
Claims (2)
て静置培養によりセルロースを製造するにあたり、静置
培養用装置として装置底面部を酸素透過性の疎水性材料
で形成したものを使用することを特徴とする静置培養に
よる微生物セルロースの製造法。1. When producing cellulose by static culture using a microorganism capable of producing cellulose, it is preferable to use a static culture device whose bottom surface is formed of an oxygen-permeable hydrophobic material. A method for producing microbial cellulose by static culturing characterized.
形成し、該疎水性材料の外側に保持体を設けたことを特
徴とする静置培養用装置。2. An apparatus for static culturing, characterized in that the bottom surface of the apparatus is formed of a hydrophobic oxygen-permeable material, and a holder is provided outside the hydrophobic material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31015591A JPH05123182A (en) | 1991-10-30 | 1991-10-30 | Production of microbial cellulose by standing culture and apparatus therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31015591A JPH05123182A (en) | 1991-10-30 | 1991-10-30 | Production of microbial cellulose by standing culture and apparatus therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05123182A true JPH05123182A (en) | 1993-05-21 |
Family
ID=18001823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31015591A Pending JPH05123182A (en) | 1991-10-30 | 1991-10-30 | Production of microbial cellulose by standing culture and apparatus therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05123182A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1128082A (en) * | 1997-07-11 | 1999-02-02 | Mitsubishi Heavy Ind Ltd | Culture container |
JP2007511205A (en) * | 2003-10-08 | 2007-05-10 | ウィルソン ウォルフ マニュファクチャリング コーポレイション | Method and apparatus for culturing cells using gas permeable substances |
JP2014530618A (en) * | 2011-10-21 | 2014-11-20 | セル・メディカ・リミテッド | Equipment for aseptic growth of cells |
US9290730B2 (en) | 2005-07-26 | 2016-03-22 | Corning Incorporated | Multilayered cell culture apparatus |
US9732317B2 (en) | 2006-12-07 | 2017-08-15 | Wilson Wolf Manufacturing Corporation | Highly efficient gas permeable devices and methods for culturing cells |
CN113528597A (en) * | 2021-07-30 | 2021-10-22 | 振德医疗用品股份有限公司 | Preparation method of silica gel sleeve device and bacterial cellulose membrane with hollow channel |
KR102366585B1 (en) * | 2021-10-25 | 2022-02-23 | (주)엔피스바이오 | Method for manufacturing bio-cellulose mass using a bio-cellulose mass culture manufacturing container |
-
1991
- 1991-10-30 JP JP31015591A patent/JPH05123182A/en active Pending
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1128082A (en) * | 1997-07-11 | 1999-02-02 | Mitsubishi Heavy Ind Ltd | Culture container |
US9410114B2 (en) | 2003-10-08 | 2016-08-09 | Wilson Wolf Manufacturing | Cell culture methods and devices utilizing gas permeable materials |
JP2016174614A (en) * | 2003-10-08 | 2016-10-06 | ウィルソン ウォルフ マニュファクチャリング コーポレイションWilson Wolf Manufacturing Corporation | Method and apparatus for culturing cells which utilize gas-permeable substance |
JP2011147460A (en) * | 2003-10-08 | 2011-08-04 | Wilson Wolf Manufacturing Corp | Cell culture method and device utilizing gas permeable material |
JP2012040033A (en) * | 2003-10-08 | 2012-03-01 | Wilson Wolf Manufacturing Corp | Cell culture method and device utilizing gas permeable material |
CN103173354A (en) * | 2003-10-08 | 2013-06-26 | 威尔森沃尔夫制造公司 | Cell culture methods and devices utilizing gas permeable materials |
USRE49293E1 (en) | 2003-10-08 | 2022-11-15 | Wilson Wolf Manufacturing | Cell culture methods and devices utilizing gas permeable materials |
JP2014236753A (en) * | 2003-10-08 | 2014-12-18 | ウィルソン ウォルフ マニュファクチャリング コーポレイションWilson Wolf Manufacturing Corporation | Cell culture method and device utilizing gas permeable material |
US9255243B2 (en) | 2003-10-08 | 2016-02-09 | Wilson Wolf Manufacturing Corporation | Cell culture methods and devices utilizing gas permeable materials |
EP3450538B1 (en) | 2003-10-08 | 2021-08-25 | Wilson Wolf Manufacturing Corporation | Cell culture methods and devices utilizing gas permeable materials |
JP2007511205A (en) * | 2003-10-08 | 2007-05-10 | ウィルソン ウォルフ マニュファクチャリング コーポレイション | Method and apparatus for culturing cells using gas permeable substances |
EP1687400A4 (en) * | 2003-10-08 | 2009-01-07 | Wolf Wilson Mfg Corp | CELL CULTURE PROCESSES AND DEVICES USING GAS-PERMANENT MATERIALS |
EP3450538A1 (en) * | 2003-10-08 | 2019-03-06 | Wilson Wolf Manufacturing Corporation | Cell culture methods and devices utilizing gas permeable materials |
US9441192B2 (en) | 2003-10-08 | 2016-09-13 | Wilson Wolf Manufacturing | Cell culture methods and devices utilizing gas permeable materials |
US9845451B2 (en) | 2005-07-26 | 2017-12-19 | Corning Incorporated | Multilayered cell culture apparatus |
US9290730B2 (en) | 2005-07-26 | 2016-03-22 | Corning Incorporated | Multilayered cell culture apparatus |
US11274273B2 (en) | 2005-07-26 | 2022-03-15 | Corning Incorporated | Multilayered cell culture apparatus |
US11905506B2 (en) | 2005-07-26 | 2024-02-20 | Corning Incorporated | Multilayered cell culture apparatus |
US9732317B2 (en) | 2006-12-07 | 2017-08-15 | Wilson Wolf Manufacturing Corporation | Highly efficient gas permeable devices and methods for culturing cells |
JP2014530618A (en) * | 2011-10-21 | 2014-11-20 | セル・メディカ・リミテッド | Equipment for aseptic growth of cells |
CN113528597A (en) * | 2021-07-30 | 2021-10-22 | 振德医疗用品股份有限公司 | Preparation method of silica gel sleeve device and bacterial cellulose membrane with hollow channel |
KR102366585B1 (en) * | 2021-10-25 | 2022-02-23 | (주)엔피스바이오 | Method for manufacturing bio-cellulose mass using a bio-cellulose mass culture manufacturing container |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4442206A (en) | Method of using isotropic, porous-wall polymeric membrane, hollow-fibers for culture of microbes | |
Yoshino et al. | Cellulose production by Acetobacter pasteurianus on silicone membrane | |
Yokoi et al. | Hydrogen production by immobilized cells of aciduric Enterobacter aerogenes strain HO-39 | |
US5955326A (en) | Production of microbial cellulose using a rotating disk film bioreactor | |
EP0197299A1 (en) | Method and apparatus for carrying out cell culture | |
WO1997005271A9 (en) | Production of microbial cellulose using a rotating disk film bioreactor | |
KR900007936B1 (en) | Novel Microorganisms in Oreo-Basicium and Acquisition Method of Erythritol Using the Strain | |
US4910139A (en) | Method for continuously producing citric acid by dual hollow fiber membrane bioreactor | |
JPH0595778A (en) | Porous separation membrane integrated type incubator equipped with stirrer | |
JPH06181750A (en) | Culture container | |
JPH05123182A (en) | Production of microbial cellulose by standing culture and apparatus therefor | |
JPS5838156B2 (en) | Continuous microbial fermentation method involving simultaneous conversion of sucrose to isomaltulose | |
US5342765A (en) | Method of producing extracellular products from aerobic microorganisms | |
Mori et al. | Growth behavior of immobilized acetic acid bacteria | |
US1908225A (en) | Process of fermentation | |
Takahashi et al. | Diacetyl production by immobilized citrate-positive Lactococcus lactis subsp. lactis 3022 in the fibrous Ca-alginate gel | |
US2302079A (en) | Process for producing enzymes by the cultivation of micro-organisms on nitrogen and carbohydratecontaining mashes | |
CA1210719A (en) | Method of immobilizing enzymes | |
JPH01273599A (en) | Production of microbial cellulose | |
Mori et al. | Vinegar production in a bioreactor with chitosan beads as supports of immobilized bacteria | |
Lakata | Apparatus for controlled submerged fermentation | |
CA1186256A (en) | Use of isotropic, porous-wall polymeric membrane, hollow-fibers for culture of microbes and other living cells | |
JPH05336981A (en) | Production of optically active m-hydroxy acid | |
Paterson et al. | Evidence of oxygen limitation in a hollow fibre reactor with immobilized E. coli | |
RU2116345C1 (en) | Method of preparing biomass and proteolytic enzymes from pathogenic pseudomonades |