[go: up one dir, main page]

JPH05122158A - Photoelectric converter - Google Patents

Photoelectric converter

Info

Publication number
JPH05122158A
JPH05122158A JP3277502A JP27750291A JPH05122158A JP H05122158 A JPH05122158 A JP H05122158A JP 3277502 A JP3277502 A JP 3277502A JP 27750291 A JP27750291 A JP 27750291A JP H05122158 A JPH05122158 A JP H05122158A
Authority
JP
Japan
Prior art keywords
circuit
output
voltage
photoelectric conversion
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3277502A
Other languages
Japanese (ja)
Inventor
Wahei Nakao
和平 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP3277502A priority Critical patent/JPH05122158A/en
Publication of JPH05122158A publication Critical patent/JPH05122158A/en
Pending legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)
  • Optical Communication System (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To cancel a noise by executing the current/voltage conversion of a signal obtained by the current/voltage conversion of a signal outputted from a photodetecting photoelectric conversion element and a signal outputted from a shielded photoelectric conversion element, comparing and amplifying both the signals. CONSTITUTION:An optical signal is received by a 1st photoelectric conversion element 1 and an output from the element is converted by a 1st current/voltage conversion circuit 2. On the other hand, an output from a shielded 2nd photoelectric conversion element 5 having the same structure as the element 1 is converted by a 2nd current/voltage conversion circuit 6 having the same structure as the circuit 2. Outputs from both the circuits 2, 6 are inputted to a differential amplifier circuit 11 and compared and amplified to cancel a noise.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光信号によりデータ伝送
を行うための光電変換装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric conversion device for transmitting data by optical signals.

【0002】[0002]

【従来の技術】図3に従来の光電変換装置の回路例を示
す。同図において、1は伝送されてきた光信号を受信し
電気信号に変換する第一光電変換素子、2は第一光電変
換素子1の信号を電流電圧変換する第一電流電圧変換回
路、3は第一電流電圧変換回路2の出力信号を増幅する
第一増幅回路、4は増幅回路3の出力信号Vsと基準電
圧Vrを比較して信号出力Voとして再生出力する比較
器、5は第一光電変換素子1と同一の構造をもつ遮光さ
れた第二光電変換素子、6は前記第一電流電圧変換回路
2と同一の第二電流電圧変換回路、7は前記第一増幅回
路3と同一の第二増幅回路である。また、8は第一増幅
回路3と第二増幅回路7の出力を分圧しその中点の電位
をホールド基準信号Vhとして出力する分圧回路、9は
分圧回路8からのホールド基準信号Vhの最大値をホー
ルドするピーク値ホールド回路である。
2. Description of the Related Art FIG. 3 shows a circuit example of a conventional photoelectric conversion device. In the figure, 1 is a first photoelectric conversion element that receives a transmitted optical signal and converts it into an electric signal, 2 is a first current-voltage conversion circuit that converts the signal of the first photoelectric conversion element 1 into current-voltage, and 3 is A first amplifier circuit that amplifies the output signal of the first current-voltage conversion circuit 2, a comparator 4 that compares the output signal Vs of the amplifier circuit 3 and a reference voltage Vr, and reproduces and outputs as a signal output Vo. A light-shielded second photoelectric conversion element having the same structure as the conversion element 1, 6 is a second current-voltage conversion circuit that is the same as the first current-voltage conversion circuit 2, and 7 is a first current-voltage conversion circuit that is the same as the first amplification circuit 3. Two amplifier circuits. Further, 8 is a voltage dividing circuit that divides the outputs of the first amplifying circuit 3 and the second amplifying circuit 7 and outputs the potential at the midpoint thereof as the hold reference signal Vh, and 9 is the hold reference signal Vh from the voltage dividing circuit 8. It is a peak value hold circuit that holds the maximum value.

【0003】図4は図3を説明するための動作波形図で
ある。同図において、V1は図示しない光源の光信号を
発生させる送信側駆動パルス波形であり、Vsはその信
号が第一光電変換素子1により光電流に変換され、さら
に第一電流電圧変換回路2および第一増幅回路3により
変換、増幅された波形である。
FIG. 4 is an operation waveform diagram for explaining FIG. In the figure, V1 is a transmission side drive pulse waveform for generating an optical signal of a light source (not shown), and Vs is a signal converted into a photocurrent by the first photoelectric conversion element 1, and further the first current-voltage conversion circuit 2 and The waveform is converted and amplified by the first amplifier circuit 3.

【0004】Vzは第二増幅回路7の出力波形である。Vz is an output waveform of the second amplifier circuit 7.

【0005】Vrは基準電圧のレベルを示し、この値V
rと出力信号Vsを比較器4によつて大小を比較し所定
の2値出力(ハイレベルまたはローレベル)を出し、信
号出力Voとして再生出力する。
Vr indicates the level of the reference voltage, and this value V
r and the output signal Vs are compared in magnitude by the comparator 4, and a predetermined binary output (high level or low level) is output and reproduced and output as the signal output Vo.

【0006】この場合、第一光電変換素子1、第一電流
電圧変換回路2、第二増幅回路3の動作特性および図示
しない光源、光伝送路の動作特性等により、出力信号V
sの立上り、立下りに時間遅れが生じるので、信号出力
Oのパルス幅が送信側駆動パルスV1のパルス幅と等
しくなるように、基準電圧Vrのレベルを出力信号Vs
のパルス振幅の1/2の値に設定する必要がある。
In this case, the output signal V depends on the operating characteristics of the first photoelectric conversion element 1, the first current-voltage converting circuit 2 and the second amplifying circuit 3 and the operating characteristics of the light source and the optical transmission line (not shown).
Since a time delay occurs in the rising and falling of s, the level of the reference voltage Vr is set so that the pulse width of the signal output V O becomes equal to the pulse width of the transmission side drive pulse V1.
It is necessary to set the value to 1/2 of the pulse amplitude of.

【0007】また、送信側駆動パルスV1の振幅が低下
したり、第一光電変換素子1および第一電流電圧変換回
路2、第一増幅回路3の特性の変動等により、出力信号
Vsのパルス振幅が変化する場合がある。
Further, the pulse amplitude of the output signal Vs is reduced due to a decrease in the amplitude of the transmission side drive pulse V1 or fluctuations in the characteristics of the first photoelectric conversion element 1, the first current / voltage conversion circuit 2 and the first amplification circuit 3. May change.

【0008】本例では、この時でも比較器4の基準電圧
Vrは分圧回路8とピーク値ホールド回路9により出力
信号Vsと第二増幅回路7の出力信号Vzの中点の電位
を保持している。
In this example, even at this time, the reference voltage Vr of the comparator 4 holds the potential at the midpoint of the output signal Vs and the output signal Vz of the second amplifier circuit 7 by the voltage dividing circuit 8 and the peak value holding circuit 9. ing.

【0009】ここで、出力信号Vzは光信号の入力しな
い時の信号出力Vsと同じ電位となるため、基準電圧V
rは出力信号Vsのパルス振幅の1/2の値を保持する
ことになり、信号出力Voのパルス幅が送信側駆動パル
スV1のパルス幅と等しく保たれる。
Since the output signal Vz has the same potential as the signal output Vs when no optical signal is input, the reference voltage Vz
r holds a value of 1/2 of the pulse amplitude of the output signal Vs, and the pulse width of the signal output Vo is kept equal to the pulse width of the transmission side drive pulse V1.

【0010】[0010]

【発明が解決しようとする課題】通常、第一光電変換素
子1に入力する光信号は微少なため、電流電圧変換回路
2,6や増幅回路3,7の増幅度を大きく設定してい
る。このため、出力信号Vs,Vzにはノイズが乗りや
すくなる。特に、図5に示すように出力信号Vsが反転
する時に電源ラインを通じて両光電変換素子1,5に入
るノイズは同相ノイズとなつて出力信号Vs,Vzに現
れる。この時、基準電圧Vrには、Vzに比例するVh
のノイズ波形がピーク値ホールドされるため、本来のノ
イズのない場合の基準電圧Vrと異なつたレベルに設定
されてしまい、故に出力信号Vsのパルス振幅の1/2
の値からのずれを生じて信号出力Voのパルス幅に変動
ΔSを生じてしまうという欠点があつた。
Usually, since the optical signal input to the first photoelectric conversion element 1 is very small, the amplification factors of the current-voltage conversion circuits 2 and 6 and the amplification circuits 3 and 7 are set to be large. For this reason, the output signals Vs and Vz are likely to have noise. In particular, as shown in FIG. 5, when the output signal Vs is inverted, noise that enters both photoelectric conversion elements 1 and 5 through the power supply line appears as in-phase noise in the output signals Vs and Vz. At this time, the reference voltage Vr is Vh proportional to Vz.
Is held at a peak value, the level is set to a level different from the reference voltage Vr in the case where there is no original noise. Therefore, 1/2 of the pulse amplitude of the output signal Vs is set.
However, there is a drawback in that a deviation ΔS occurs in the pulse width of the signal output Vo due to the deviation from the value of.

【0011】また出力信号Vsが基準電圧Vrと等しく
なつてから信号出力Voが変化するまでに時間遅れ△t
があるために、光信号の周波数が増加して信号出力Vo
が立上るタイミングと同時に出力信号Vsが立下る場合
や、信号出力Voが立下るタイミングと同時に出力信号
Vsが立上る場合には、特にノイズの影響を受け易かつ
た。
Also, there is a time delay Δt from when the output signal Vs becomes equal to the reference voltage Vr until the signal output Vo changes.
Therefore, the frequency of the optical signal increases and the signal output Vo increases.
When the output signal Vs falls at the same time when the signal rises, or when the output signal Vs rises at the same time when the signal output Vo falls, it is particularly susceptible to noise.

【0012】本発明は、上記課題に鑑み、ノイズに強い
光電変換装置の提供を目的とする。
In view of the above problems, the present invention aims to provide a photoelectric conversion device that is resistant to noise.

【0013】[0013]

【課題を解決するための手段】本発明請求項1による課
題解決手段は、図1,2の如く、光信号を電気信号Vx
に変換する光電変換回路Aと、前記電気信号Vxと基準
電圧Vr2を入力してその大小関係から所定の二値出力
を出す比較器4と、前記基準電圧Vr2を決定する基準
電圧発生回路Bとを備え、該基準電圧発生回路Bは、前
記基準電圧Vrの最大値を保持するピーク値ホールド回
路9と、複数の抵抗Rにより電気信号Vxを分圧してピ
ーク値ホールド回路9に基準電圧Vrの基となるホール
ド基準信号Vhを入力する分圧回路12とから構成さ
れ、前記光電変換回路Aは、光信号を受信するための第
一光電変換素子1と、該第一光電変換素子1からの信号
を電流電圧変換する第一電流電圧変換回路2と、前記第
一光電変換素子1と同一の構造を有する遮光された第二
光電変換素子5と、前記第一電流電圧変換回路2と同一
の構造を有し遮光された前記第二光電変換素子5からの
信号を電流電圧変換する第二電流電圧変換回路6と、前
記第一電流電圧変換回路2からの第一出力Vaおよび前
記第二電流電圧変換回路6からの第二出力Vbを比較し
て両出力Va,Vbのノイズを打ち消す差動増幅回路1
1とから構成されたものである。
As shown in FIGS. 1 and 2, the means for solving a problem according to the first aspect of the present invention is to convert an optical signal into an electric signal Vx.
A photoelectric conversion circuit A for converting the electric signal Vx to a reference voltage Vr2, a comparator 4 which inputs the electric signal Vx and a reference voltage Vr2 and outputs a predetermined binary output based on the magnitude relationship between them, and a reference voltage generation circuit B which determines the reference voltage Vr2. The reference voltage generating circuit B includes a peak value holding circuit 9 for holding the maximum value of the reference voltage Vr, and a plurality of resistors R for dividing the electric signal Vx to supply the peak value holding circuit 9 with the reference voltage Vr. The photoelectric conversion circuit A comprises a first voltage conversion circuit 1 for receiving an optical signal, and a voltage dividing circuit 12 for inputting a hold reference signal Vh as a base. A first current-voltage conversion circuit 2 for converting a signal into a current-voltage, a light-shielded second photoelectric conversion element 5 having the same structure as the first photoelectric conversion element 1, and the same as the first current-voltage conversion circuit 2 Has a structure and is shaded The second current-voltage conversion circuit 6 for converting the signal from the second photoelectric conversion element 5 into a current-voltage, the first output Va from the first current-voltage conversion circuit 2, and the second current-voltage conversion circuit 6 A differential amplifier circuit 1 that compares the second output Vb and cancels the noise of both outputs Va and Vb.
It is composed of 1 and 1.

【0014】本発明請求項2による課題解決手段は、請
求項1記載の差動増幅回路11は、反転出力Vxおよび
非反転出力Vyをノイズが消去された状態で出力するよ
う構成され、請求項1記載の比較器4には差動増幅回路
11の反転出力Vxが入力され、請求項1記載の分圧回
路12には差動増幅回路11の反転出力Vxおよび非反
転出力Vyが入力され、請求項1記載のピーク値ホール
ド回路9には、分圧回路12によつて反転出力Vxと非
反転出力Vyを4分の3に分圧した出力が入力されるよ
う回路構成されたものである。
According to a second aspect of the present invention, there is provided a means for solving the problems, wherein the differential amplifier circuit 11 according to the first aspect is configured to output the inverted output Vx and the non-inverted output Vy in a state where noise is eliminated. The inverted output Vx of the differential amplifier circuit 11 is input to the comparator 4 described in 1, and the inverted output Vx and the non-inverted output Vy of the differential amplifier circuit 11 are input to the voltage dividing circuit 12 according to claim 1. The peak value hold circuit 9 according to claim 1 is configured so that an output obtained by dividing the inverted output Vx and the non-inverted output Vy into three quarters by the voltage dividing circuit 12 is input. ..

【0015】本発明請求項3による課題解決手段は、請
求項1,2記載の光電変換回路A、比較器4および基準
電圧発生回路Bは、1チツプに集積化されたものであ
る。
According to a third aspect of the present invention, the photoelectric conversion circuit A, the comparator 4 and the reference voltage generating circuit B according to the first and second aspects are integrated in one chip.

【0016】[0016]

【作用】上記請求項1による課題解決手段において、受
けた光信号を第一光電変換素子1により電流に変換し、
第一電流電圧変換回路2を介して差動増幅回路11の一
側に入力される。また、遮光された第二光電変換素子5
からの電流も、第二電流電圧変換回路6を介して差動増
幅回路11の他端に入力される。差動増幅回路11は、
両電流電圧変換回路2,6からの各出力Va,Vbを比
較し、比較器4および基準電圧発生回路Bの分圧回路1
2に出力する。
In the problem solving means according to claim 1, the received optical signal is converted into a current by the first photoelectric conversion element 1,
It is input to one side of the differential amplifier circuit 11 via the first current-voltage conversion circuit 2. In addition, the second photoelectric conversion element 5 that is shielded from light
The current from is also input to the other end of the differential amplifier circuit 11 via the second current-voltage conversion circuit 6. The differential amplifier circuit 11 is
The outputs Va and Vb from both current-voltage conversion circuits 2 and 6 are compared, and the comparator 4 and the voltage dividing circuit 1 of the reference voltage generating circuit B are compared.
Output to 2.

【0017】ここで、差動増幅回路11は、両電流電圧
変換回路2,6からの各出力Va,Vbの双方のノイズ
を打ち消し、その影響を防ぐ。
Here, the differential amplifier circuit 11 cancels out the noise of both the outputs Va and Vb from the current-voltage conversion circuits 2 and 6 and prevents their influence.

【0018】そして、分圧回路12は、複数の抵抗Rに
よりノイズの影響がない電気信号Vxを分圧してピーク
値ホールド回路9に基準電圧Vrの基となるホールド基
準信号Vhを出力し、ピーク値ホールド回路9によりホ
ールド基準信号Vhを基に基準電圧Vrの最大値を保持
する。
Then, the voltage dividing circuit 12 divides the electric signal Vx, which is not affected by noise, by the plurality of resistors R and outputs the hold reference signal Vh, which is the basis of the reference voltage Vr, to the peak value holding circuit 9 for peaking. The value hold circuit 9 holds the maximum value of the reference voltage Vr based on the hold reference signal Vh.

【0019】その後、比較器4によりノイズの影響がな
い電気信号Vxと基準電圧Vr2とを入力してその大小
関係から所定の二値出力を出す。
After that, the comparator 4 inputs the electric signal Vx which is not affected by noise and the reference voltage Vr2, and outputs a predetermined binary output according to the magnitude relationship.

【0020】請求項2による課題解決手段において、光
電変換素子1および電流電圧変換回路2、増幅回路3の
特性の変動等により出力信号Vxのパルス振幅が変化す
る場合があるが、比較器4の基準電圧Vr2は、分圧回
路12とピーク値ホールド回路9により常に出力信号V
xとその逆相出力である出力信号Vyとの3/4の点の
電位の最大値を保持しているため、基準電圧Vr2は出
力信号VxのパルスV1のパルス振幅の1/2の値を保
持することになり、信号出力Voのパルス幅が送信側駆
動パルスV1のパルス幅と等しく保たれる。
In the problem solving means according to the second aspect, the pulse amplitude of the output signal Vx may change due to variations in the characteristics of the photoelectric conversion element 1, the current-voltage conversion circuit 2, and the amplification circuit 3, but the comparator 4 The reference voltage Vr2 is always output by the voltage dividing circuit 12 and the peak value holding circuit 9 as the output signal Vr.
Since the maximum value of the potential at the point of 3/4 between x and the output signal Vy which is the opposite phase output thereof is held, the reference voltage Vr2 has a value of 1/2 of the pulse amplitude of the pulse V1 of the output signal Vx. The pulse width of the signal output Vo is kept equal to the pulse width of the transmission side drive pulse V1.

【0021】請求項3による課題解決手段において、光
電変換装置の全回路1,2,4,5,6,9,11,1
2を1チツプに集積化しているので、ノイズの影響が小
さくなるのに加え、各光電変換素子1,5および各電流
電圧変換回路2,6の特性が一致するため、ノイズを打
ち消す効果がさらに大きくなる。
In the problem solving means according to claim 3, all circuits 1, 2, 4, 5, 6, 9, 11, 1 of the photoelectric conversion device are provided.
Since 2 is integrated in one chip, the effect of noise is reduced, and since the characteristics of each photoelectric conversion element 1, 5 and each current-voltage conversion circuit 2, 6 match, the effect of canceling noise is further improved. growing.

【0022】[0022]

【実施例】図1は本発明の一実施例の光電変換装置を示
す回路構成図、図2は同じくその各部における動作波形
図である。なお、図3に示した従来例と同一の符号は同
一のものを示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a circuit configuration diagram showing a photoelectric conversion device according to an embodiment of the present invention, and FIG. 2 is an operation waveform diagram in each part thereof. The same reference numerals as those in the conventional example shown in FIG. 3 indicate the same components.

【0023】図1中、Aは光信号を電気信号Vxに変換
する光電変換回路、Bは電気信号Vxのハイ・ローの比
較基準となる基準電圧Vr2を決定する基準電圧発生回
路、1は伝送されてきた光信号を受信し電気信号に変換
する第一光電変換素子、2は第一光電変換素子1の信号
を電流電圧変換する第一電流電圧変換回路、5は第一光
電変換素子1と同一の構造をもつ遮光された第二光電変
換素子、6は第一電流電圧変換回路2と同一の構造を有
する第二電流電圧変換回路である。11は前記第一電流
電圧変換回路2の第一出力Vaと前記第二電流電圧変換
回路6の第二出力Vbを入力とする差動増幅器、4は前
記差動増幅器11の反転出力信号Vxと基準電圧Vr2
を比較して信号出力Voとして再生出力する従来と同様
の比較器、12は差動増幅回路11の反転出力信号Vx
と非反転出力信号Vyを分圧しその3/4の点の電位を
ホールド基準信号Vhとして出力する分圧回路、9は分
圧回路8からのホールド基準信号Vhの最大値をホール
ドする従来と同様のピーク値ホールド回路である。
In FIG. 1, A is a photoelectric conversion circuit for converting an optical signal into an electric signal Vx, B is a reference voltage generation circuit for determining a reference voltage Vr2 as a high / low comparison reference of the electric signal Vx, and 1 is transmission. A first photoelectric conversion element for receiving the received optical signal and converting it into an electric signal, 2 is a first current-voltage conversion circuit for converting a signal of the first photoelectric conversion element 1 into a current-voltage, and 5 is a first photoelectric conversion element 1. A light-shielded second photoelectric conversion element having the same structure, 6 is a second current-voltage conversion circuit having the same structure as the first current-voltage conversion circuit 2. Reference numeral 11 is a differential amplifier that receives the first output Va of the first current-voltage conversion circuit 2 and the second output Vb of the second current-voltage conversion circuit 6, and 4 is an inverted output signal Vx of the differential amplifier 11. Reference voltage Vr2
And a comparator similar to the conventional one which reproduces and outputs as a signal output Vo, and 12 denotes an inverted output signal Vx of the differential amplifier circuit 11.
And a voltage divider circuit that divides the non-inverted output signal Vy and outputs the potential at the 3/4 point as a hold reference signal Vh, and 9 is the same as the conventional one that holds the maximum value of the hold reference signal Vh from the voltage divider circuit 8. It is a peak value hold circuit of.

【0024】前記差動増幅器11の一方の入力側には、
前記一側の電流電圧変換回路2の出力側が接続され、差
動増幅器11の他方の入力側には、前記他側の電流電圧
変換回路6の出力側が接続される。また、差動増幅器1
1の反転出力は、前記比較器4の一側の入力側に接続さ
れる。
On one input side of the differential amplifier 11,
The output side of the current-voltage conversion circuit 2 on the one side is connected, and the output side of the current-voltage conversion circuit 6 on the other side is connected to the other input side of the differential amplifier 11. In addition, the differential amplifier 1
The inverted output of 1 is connected to one input side of the comparator 4.

【0025】前記分圧回路12は、同一の抵抗値を示す
四個の抵抗Ra〜Rdからなり、そのうち一個の抵抗R
aの一端は、差動増反転器11の反転出力と比較器4と
の接点に接続され、その他端は残りの抵抗Ra〜Rdに
接続されている。また、抵抗Rb〜Rdは、互いに直列
に接続され、その一端は差動増幅器11の非反転出力に
接続され、その他端は前記ピーク値ホールド回路9の入
力側に接続されている。
The voltage dividing circuit 12 is composed of four resistors Ra to Rd having the same resistance value, one of which is a resistor R.
One end of a is connected to the contact between the inverting output of the differential inversion inverting device 11 and the comparator 4, and the other end is connected to the remaining resistors Ra to Rd. The resistors Rb to Rd are connected in series with each other, one end of which is connected to the non-inverting output of the differential amplifier 11 and the other end of which is connected to the input side of the peak value holding circuit 9.

【0026】そして、前記全回路1,2,4,5,6,
9,11,12は、1チツプ上にモノリイシツクに集積
化されている。
Then, all the circuits 1, 2, 4, 5, 6,
9, 11, and 12 are monolithically integrated on one chip.

【0027】次に、上記光電変換装置の回路動作を説明
する。
Next, the circuit operation of the photoelectric conversion device will be described.

【0028】図2において、V1は図示しない光源の光
信号を発生させる送信側駆動パルス波形であり、Vaは
その信号が第一光電変換素子1により光電流に変換され
た波形、Vxはさらに差動増幅回路11により増幅され
た反転波形である。なお、図1に示すVyは差動増幅回
路11のVxに対応する非反転出力波形である。また、
Vr2は基準電圧のレベルを示し、この値Vr2と出力
信号Vxとを比較器4によつて大小を比較し、所定の2
値出力(ハイレベル又はローレベル)を出し信号出力V
oとして再生出力する。
In FIG. 2, V1 is a transmission side drive pulse waveform for generating an optical signal of a light source (not shown), Va is a waveform obtained by converting the signal into a photocurrent by the first photoelectric conversion element 1, and Vx is a difference. The inverted waveform is amplified by the dynamic amplifier circuit 11. Note that Vy shown in FIG. 1 is a non-inverted output waveform corresponding to Vx of the differential amplifier circuit 11. Also,
Vr2 indicates the level of the reference voltage. The value Vr2 and the output signal Vx are compared by the comparator 4 to determine whether they are equal to a predetermined value.
Value output (high level or low level) and signal output V
Reproduce and output as o.

【0029】この場合、第一光電変換素子1、第一電流
電圧変換回路2、差動増幅回路11の動作特性、および
図示しない光源、光伝送路の動作特性等により、出力信
号Vxの立上り、立下りに時間遅れが生じるので、信号
出力VoのパルスV1のパルス幅と等しくなるように基
準電圧Vr2は出力信号Vxのパルス振幅の1/2の値
に設定する必要がある。
In this case, the rising edge of the output signal Vx depends on the operating characteristics of the first photoelectric conversion element 1, the first current-voltage converting circuit 2, the differential amplifier circuit 11 and the operating characteristics of the light source and the optical transmission line (not shown). Since there is a time delay in the fall, it is necessary to set the reference voltage Vr2 to a value of 1/2 of the pulse amplitude of the output signal Vx so as to be equal to the pulse width of the pulse V1 of the signal output Vo.

【0030】また、送信側駆動パルスV1の振幅が低下
したり第一光電変換素子1および第一電流電圧変換回路
2の特性の変動等により出力信号Vxのパルス振幅変化
する場合がある。
Further, the pulse amplitude of the output signal Vx may change due to a decrease in the amplitude of the transmission side drive pulse V1 or a change in the characteristics of the first photoelectric conversion element 1 and the first current-voltage conversion circuit 2.

【0031】本実施例の回路では、この時でも比較器4
の基準電圧Vr2は分圧回路12とピーク値ホールド回
路9により常に出力信号Vxとその逆相出力である出力
信号Vyとの3/4の点の電位(ホールド基準信号V
h)の最大値を保持している。
In the circuit of this embodiment, the comparator 4 is used even at this time.
The reference voltage Vr2 of the output voltage Vr2 of the voltage dividing circuit 12 and the peak value holding circuit 9 is always the potential at the 3/4 point of the output signal Vx and the output signal Vy which is the opposite phase output (hold reference signal Vr).
It holds the maximum value of h).

【0032】ここで、出力信号Vxと出力信号Vyとの
中点電位Vkは光信号の入力しない時の信号出力Vxと
同じ電位となるため、ホールド基準信号Vhは出力信号
VxのパルスV1の1/2の振幅で出力され、故に、基
準電圧Vr2は出力信号VxのパルスV1のパルス振幅
の1/2の値を保持することになり、信号出力Voのパ
ルス幅が送信側駆動パルスV1のパルス幅と等しく保た
れる。
Since the midpoint potential Vk between the output signal Vx and the output signal Vy is the same potential as the signal output Vx when no optical signal is input, the hold reference signal Vh is 1 of the pulse V1 of the output signal Vx. Therefore, the reference voltage Vr2 holds half the value of the pulse amplitude of the pulse V1 of the output signal Vx, and the pulse width of the signal output Vo is the pulse of the transmission side drive pulse V1. Kept equal to width.

【0033】本実施例によれば、出力信号Voが反転す
る時に電源ラインを通じて光電変換素子1,5に入るノ
イズは同相ノイズとなつて出力信号VaとVbに現れる
が、差動増幅回路11により打ち消しあつて出力信号V
x,Vyにはノイズが生じないため、ピーク値ホールド
回路9には影響を与えない。このため基準電圧Vr2
は、出力信号Vxのパルス振幅の1/2の値を保ち、比
較器4の信号出力Voのパルス幅が送信側駆動パルスV
1のパルス幅と等しく保たれることになる。
According to the present embodiment, when the output signal Vo is inverted, the noise that enters the photoelectric conversion elements 1 and 5 through the power supply line appears as the in-phase noise in the output signals Va and Vb. Output signal V for cancellation
Since no noise is generated in x and Vy, the peak value hold circuit 9 is not affected. Therefore, the reference voltage Vr2
Holds the value of 1/2 of the pulse amplitude of the output signal Vx, and the pulse width of the signal output Vo of the comparator 4 is the transmission side drive pulse V
Will be kept equal to one pulse width.

【0034】ここでそのノイズは出力信号の反転時のノ
イズだけでなく他の外来ノイズ等に対しても同様の効果
がある事は上記の説明から明らかである。
It is apparent from the above description that the noise has the same effect not only on the noise when the output signal is inverted but also on other external noises.

【0035】なお、本発明は、上記実施例に限定される
ものではなく、本発明の範囲内で上記実施例に多くの修
正および変更を加え得ることは勿論である。
The present invention is not limited to the above embodiment, and it goes without saying that many modifications and changes can be made to the above embodiment within the scope of the present invention.

【0036】[0036]

【発明の効果】以上の説明のように、本発明請求項1に
よると、光電変換回路の差動増幅回路を、受光用光電変
換素子からの信号を電流電圧変換する電流電圧変換回路
と、遮光された光電変換素子からの信号を電流電圧変換
する電流電圧変換回路との両出力を比較し、ノイズを打
ち消すよう構成しているので、複雑な回路を用いずにノ
イズに強い光電変換装置を提供することができる。
As described above, according to the first aspect of the present invention, the differential amplifier circuit of the photoelectric conversion circuit includes the current-voltage conversion circuit for converting the signal from the light-receiving photoelectric conversion element into the current-voltage conversion, and the light-shielding circuit. Comparing both outputs with a current-voltage conversion circuit that converts the signal from the photoelectric conversion element that has been converted into a current voltage and canceling the noise, a photoelectric conversion device that is resistant to noise is provided without using a complicated circuit. can do.

【0037】請求項2によると、差動増幅回路の反転出
力および非反転出力を、分圧回路によつて4分の3に分
圧し、これに基づいて電気信号と比較する基準電圧を決
定しているので、請求項1のように構成した場合にも、
電気信号と比較する基準電圧を、電気信号の最大値の2
分の1に維持でき、受信する光信号の振幅値および光電
変換した電気信号の振幅値が変化しても、出力信号のパ
ルス幅が受信したパルス信号のパルス幅に等しく安定し
て取り出すことが可能となり、出力信号の立上り、立下
りに時間遅れによるパルス幅への影響を防止できる。
According to the second aspect, the inverting output and the non-inverting output of the differential amplifier circuit are divided into three quarters by the voltage dividing circuit, and the reference voltage to be compared with the electric signal is determined based on the divided voltage. Therefore, even when configured as in claim 1,
The reference voltage to be compared with the electric signal is the maximum value of the electric signal, 2
Even if the amplitude value of the received optical signal and the amplitude value of the photoelectrically converted electrical signal change, the pulse width of the output signal is equal to the pulse width of the received pulse signal and stable extraction is possible. This makes it possible to prevent the pulse width from being affected by the time delay at the rise and fall of the output signal.

【0038】請求項3によると、光電変換装置の全回路
を1チツプに集積化しているので、回路を基板に取り付
ける際に便利であるといつた優れた効果がある。
According to the third aspect, all the circuits of the photoelectric conversion device are integrated in one chip, so that it is convenient when the circuits are mounted on the substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の一実施例を示す光電変換装置の
回路構成図である。
FIG. 1 is a circuit configuration diagram of a photoelectric conversion device showing an embodiment of the present invention.

【図2】図2は同じくその動作を示す波形図である。FIG. 2 is a waveform diagram showing the same operation.

【図3】図3は従来の光電変換装置の回路構成図であ
る。
FIG. 3 is a circuit configuration diagram of a conventional photoelectric conversion device.

【図4】図4は同じくその正常動作を示す波形図であ
る。
FIG. 4 is a waveform diagram showing the same normal operation.

【図5】図5は同じくそのノイズが入つた状態での動作
を示す波形図である。
FIG. 5 is a waveform diagram showing an operation in a state in which the noise is also included.

【符号の説明】[Explanation of symbols]

1,5 光電変換素子 2,6 電流電圧変換回路 4 比較器 9 ピーク値ホールド回路 11 差動増幅回路 12 分圧回路 1, 5 Photoelectric conversion element 2, 6 Current-voltage conversion circuit 4 Comparator 9 Peak value hold circuit 11 Differential amplifier circuit 12 Voltage dividing circuit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H03F 3/08 7328−5J ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H03F 3/08 7328-5J

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光信号を電気信号に変換する光電変換回
路と、 前記電気信号と基準電圧を入力してその大小関係から所
定の二値出力を出す比較器と、 前記基準電圧を決定する基準電圧発生回路とを備え、 該基準電圧発生回路は、 前記基準電圧の最大値を保持するピーク値ホールド回路
と、 複数の抵抗により電気信号を分圧してピーク値ホールド
回路に基準電圧の基となるホールド基準信号を入力する
分圧回路とから構成され、 前記光電変換回路は、 光信号を受信するための第一光電変換素子と、 該光電変換素子からの信号を電流電圧変換する第一電流
電圧変換回路と、 前記第一光電変換素子と同一の構造を有する遮光された
第二光電変換素子と、 前記第一電流電圧変換回路と同一の構造を有し遮光され
た前記第二光電変換素子からの信号を電流電圧変換する
第二電流電圧変換回路と、 前記第一電流電圧変換回路からの第一出力および前記第
二電流電圧変換回路からの第二出力を比較して両出力の
ノイズを打ち消す差動増幅回路とから構成されたことを
特徴とする光電変換装置。
1. A photoelectric conversion circuit for converting an optical signal into an electric signal, a comparator for inputting the electric signal and a reference voltage and outputting a predetermined binary output based on the magnitude relationship between the electric signal and a reference for determining the reference voltage. A reference voltage generating circuit, wherein the reference voltage generating circuit is a peak value holding circuit for holding the maximum value of the reference voltage, and an electric signal is divided by a plurality of resistors to serve as a basis of the reference voltage in the peak value holding circuit. A voltage dividing circuit for inputting a hold reference signal, wherein the photoelectric conversion circuit is a first photoelectric conversion element for receiving an optical signal, and a first current voltage for current-voltage converting the signal from the photoelectric conversion element. From the light-shielded second photoelectric conversion element having the same structure as the first current-voltage conversion circuit, and the light-shielded second photoelectric conversion element having the same structure as the conversion circuit, the first photoelectric conversion element Belief And a second current-voltage conversion circuit for converting the current-voltage into a first output from the first current-voltage conversion circuit and a second output from the second current-voltage conversion circuit, and a differential for canceling noise of both outputs. A photoelectric conversion device comprising an amplifier circuit.
【請求項2】 請求項1記載の差動増幅回路は、反転出
力および非反転出力をノイズが消去された状態で出力す
るよう構成され、請求項1記載の比較器には差動増幅回
路の反転出力が入力され、請求項1記載の分圧回路には
差動増幅回路の反転出力および非反転出力が入力され、
請求項1記載のピーク値ホールド回路には、分圧回路に
よつて反転出力と非反転出力を4分の3に分圧した出力
が入力されるよう回路構成されたことを特徴とする光電
変換装置。
2. The differential amplifier circuit according to claim 1 is configured to output an inverting output and a non-inverting output in a state in which noise is eliminated, and the comparator according to claim 1 includes a differential amplifier circuit The inverting output is input, the inverting output and the non-inverting output of the differential amplifier circuit are input to the voltage dividing circuit according to claim 1,
The photoelectric conversion according to claim 1, wherein the peak value hold circuit is configured to receive an output obtained by dividing the inverted output and the non-inverted output into three quarters by a voltage dividing circuit. apparatus.
【請求項3】 請求項1,2記載の光電変換回路、比較
器および基準電圧発生回路は、1チツプに集積化された
ことを特徴とする光電変換装置。
3. A photoelectric conversion device according to claim 1, wherein the photoelectric conversion circuit, the comparator and the reference voltage generating circuit are integrated in one chip.
JP3277502A 1991-10-24 1991-10-24 Photoelectric converter Pending JPH05122158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3277502A JPH05122158A (en) 1991-10-24 1991-10-24 Photoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3277502A JPH05122158A (en) 1991-10-24 1991-10-24 Photoelectric converter

Publications (1)

Publication Number Publication Date
JPH05122158A true JPH05122158A (en) 1993-05-18

Family

ID=17584495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3277502A Pending JPH05122158A (en) 1991-10-24 1991-10-24 Photoelectric converter

Country Status (1)

Country Link
JP (1) JPH05122158A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08335712A (en) * 1995-04-05 1996-12-17 Matsushita Electron Corp Photodetector and its manufacture
JP2011228590A (en) * 2010-04-22 2011-11-10 Seiko Instruments Inc Illuminance sensor
JP2016167703A (en) * 2015-03-09 2016-09-15 株式会社東芝 Transimpedance circuit
JP2021087189A (en) * 2019-11-29 2021-06-03 住友電気工業株式会社 Optical reception circuit and optical receiver

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57207445A (en) * 1981-06-17 1982-12-20 Hitachi Ltd Environmental noise compensating system for optical receiver
JPH01208055A (en) * 1988-02-15 1989-08-22 Sumitomo Electric Ind Ltd Signal transmission system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57207445A (en) * 1981-06-17 1982-12-20 Hitachi Ltd Environmental noise compensating system for optical receiver
JPH01208055A (en) * 1988-02-15 1989-08-22 Sumitomo Electric Ind Ltd Signal transmission system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08335712A (en) * 1995-04-05 1996-12-17 Matsushita Electron Corp Photodetector and its manufacture
JP2011228590A (en) * 2010-04-22 2011-11-10 Seiko Instruments Inc Illuminance sensor
JP2016167703A (en) * 2015-03-09 2016-09-15 株式会社東芝 Transimpedance circuit
CN105958951A (en) * 2015-03-09 2016-09-21 株式会社东芝 Transimpedance circuit
CN105958951B (en) * 2015-03-09 2020-02-14 株式会社东芝 Transimpedance circuit
JP2021087189A (en) * 2019-11-29 2021-06-03 住友電気工業株式会社 Optical reception circuit and optical receiver

Similar Documents

Publication Publication Date Title
JPS62145938A (en) receiver
KR19980080241A (en) The photodetection circuit
JPS6012826B2 (en) receiving circuit
US5498993A (en) Pulse light-receiving circuit with means to minimize power source noise
JP2655130B2 (en) Digital receiver circuit
US6879216B2 (en) Integrated circuit that provides access to an output node of a filter having an adjustable bandwidth
JPH05122158A (en) Photoelectric converter
JPS5925267B2 (en) optical character reader
JP3487893B2 (en) Optical pulse receiving circuit
JP3230574B2 (en) Optical receiving circuit
KR900008047B1 (en) Optical pulse receiving circuit
JPH01286655A (en) optical receiver circuit
JP4221716B2 (en) Optical logic element
JP4060597B2 (en) Pulse width detection circuit and reception circuit
JP3334656B2 (en) Digital optical receiving circuit
JPH0775336B2 (en) Optical receiver circuit
JPH07131489A (en) Receiving circuit for light signal
KR100221655B1 (en) Optical signal detection method and detector
JPS59221026A (en) Receiving circuit of digital signal
JPH0570965B2 (en)
JPS61200709A (en) Preamplifier for optical communication
JPH0996562A (en) Photoelectric transducing circuit
JP3291741B2 (en) Gain control device
JP3284255B2 (en) Optical pulse receiving circuit
JPH04263521A (en) repeater