[go: up one dir, main page]

JPH05118684A - Pulse tube refrigerator - Google Patents

Pulse tube refrigerator

Info

Publication number
JPH05118684A
JPH05118684A JP28494791A JP28494791A JPH05118684A JP H05118684 A JPH05118684 A JP H05118684A JP 28494791 A JP28494791 A JP 28494791A JP 28494791 A JP28494791 A JP 28494791A JP H05118684 A JPH05118684 A JP H05118684A
Authority
JP
Japan
Prior art keywords
piston
pulse tube
absorbing
compressor
temperature end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28494791A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Masuda
光博 増田
Masato Osumi
正人 大隅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP28494791A priority Critical patent/JPH05118684A/en
Publication of JPH05118684A publication Critical patent/JPH05118684A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1423Pulse tubes with basic schematic including an inertance tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1426Pulse tubes with basic schematic including at the pulse tube warm end a so called warm end expander

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PURPOSE:To improve the refrigerating capacity of a pulse tube refrigerator by a simple structure. CONSTITUTION:A compressor 10 is connected to a cold heat accumulator 14, a low-temperature end heat exchanger 18, a pulse tube 19 and a phase regulating unit 20 sequentially while gaseous refrigerant is moved reciprocally between the phase regulating unit 20 and the compressor 10 whereby the low-temperature end heat exchanger 18 is cooled to an ultralow temperature. The compressor 10 is constituted of a linear motor 22, a driving piston 12 driven by the linear motor 22 and the like while the phase regulating unit 20 is constituted of a power absorbing cylinder 23, an absorbing piston 24 received in the cylinder 23, a power absorbing spring 25, attached to the back surface of the absorbing piston 24, and the like. The absorbing piston 24 is moved reciprocally on the same axial line with respect to the driving piston 12 while the spring 25 of the absorbing piston 24 is connected to the back surface of the driving piston 25.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、パルスチューブを使用
して低温端熱交換器に極低温を発生し、この極低温を各
種赤外線センサー及び高温超伝導ディバイス等の冷却に
利用するパルスチューブ冷凍機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pulse tube refrigeration system which uses a pulse tube to generate an extremely low temperature in a low temperature end heat exchanger and uses this extremely low temperature for cooling various infrared sensors and high temperature superconducting devices. Regarding the machine.

【0002】[0002]

【従来の技術】本発明に先行する特開平1−11467
0号公報に記載された従来のパルスチューブ冷凍機で
は、図2に示すように、コンプレッサー1を順次、放熱
器2、蓄冷器3、低温端熱交換器4及びパルスチューブ
5に接続し、前記パルスチューブ5の高温端部5aと前
記コンプレッサー1との間で、ガス状冷媒を往復移動さ
せることにより、前記高温端部5a等で放熱しその放熱
分だけ前記低温端熱交換器4を冷却させている。更に前
記パルスチューブ冷凍機では、前記パルスチューブ5の
高温端部5aにオリフィス弁6を介してバッファタンク
7を連通させることにより、流通冷媒の流量や位相差を
調整することで、冷凍の効率と能力の向上を図ってい
る。
2. Description of the Related Art Japanese Unexamined Patent Publication No. 1-116767 prior to the present invention
In the conventional pulse tube refrigerator described in Japanese Patent Publication No. 0, as shown in FIG. 2, a compressor 1 is sequentially connected to a radiator 2, a regenerator 3, a low temperature end heat exchanger 4 and a pulse tube 5, By moving the gaseous refrigerant back and forth between the high temperature end 5a of the pulse tube 5 and the compressor 1, heat is radiated at the high temperature end 5a and the low temperature end heat exchanger 4 is cooled by that amount of heat. ing. Further, in the pulse tube refrigerator, the high temperature end portion 5a of the pulse tube 5 is connected to the buffer tank 7 through the orifice valve 6 to adjust the flow rate and the phase difference of the circulating refrigerant, thereby improving the refrigeration efficiency. I am trying to improve my ability.

【0003】しかしながらこの種従来のパルスチューブ
冷凍機では、冷媒の流量と位相差とは相互に干渉するた
めそれぞれを独立して最適値に調整することが困難であ
り、またこの調整の際に動力エネルギーが熱となって捨
て去られその分だけ冷凍効率が低下するため、冷凍能力
を充分に向上できない欠点がある。
However, in the conventional pulse tube refrigerator of this kind, it is difficult to adjust the flow rate and the phase difference of the refrigerant mutually to the optimum values independently, and it is difficult to adjust the power at the time of this adjustment. There is a drawback that the refrigerating capacity cannot be sufficiently improved because the energy becomes heat and is discarded and the refrigerating efficiency is reduced accordingly.

【0004】また、図3に示すように、パルスチューブ
5の高温端部5aにピストン8を配置し運動させた場合
には、流通冷媒の流量と位相差を適当な値に調整して冷
凍の効率と能力を適当に調整できるが、そのピストンの
機構部9が必要となりその分だけ冷凍機が大型化してし
まう等の欠点がある。
Further, as shown in FIG. 3, when the piston 8 is arranged at the high temperature end portion 5a of the pulse tube 5 and is moved, the flow rate and phase difference of the circulating refrigerant are adjusted to appropriate values and the freezing is performed. Although the efficiency and capacity can be adjusted appropriately, there is a drawback in that the mechanism section 9 of the piston is required and the refrigerator becomes larger accordingly.

【0005】[0005]

【発明が解決しようとする課題】本発明は前述の欠点を
解消し、パルスチューブ冷凍機の冷凍能力を簡単な構造
で向上させるものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned drawbacks and improves the refrigerating capacity of a pulse tube refrigerator with a simple structure.

【0006】[0006]

【課題を解決するための手段】本発明は、コンプレッサ
ーを順次、蓄冷器、低温端熱交換器、パルスチューブ及
び位相調整部に接続し、前記位相調整部と前記コンプレ
ッサーとの間で、ガス状冷媒を往復移動させることによ
り、前記低温端熱交換器を極低温に冷却してなるもので
あって、前記コンプレッサーをリニアモータと該リニア
モータで駆動される駆動用ピストン等から構成し、前記
位相調整部を動力吸収用のシリンダーと該シリンダーに
収容された吸収用ピストンと該吸収用ピストンの背面部
に添設した動力吸収用のスプリング等から構成し、前記
吸収用ピストンを前記駆動用ピストンに対して同一軸線
上で往復移動させると共に、前記吸収用ピストンのスプ
リングを前記駆動用ピストンの背面部に連結したもので
ある。
According to the present invention, a compressor is sequentially connected to a regenerator, a low temperature end heat exchanger, a pulse tube and a phase adjusting unit, and a gas state is provided between the phase adjusting unit and the compressor. By moving the refrigerant back and forth, the low temperature end heat exchanger is cooled to an extremely low temperature, the compressor is composed of a linear motor and a driving piston or the like driven by the linear motor, and the phase The adjusting unit is composed of a power absorbing cylinder, an absorbing piston housed in the cylinder, and a power absorbing spring attached to the back surface of the absorbing piston, and the absorbing piston is used as the driving piston. On the other hand, while reciprocating on the same axis, the spring of the absorbing piston is connected to the back surface of the driving piston.

【0007】[0007]

【作用】本発明によれば、位相調整部のスプリングを適
当なバネ定数とすることで、このスプリングにより、前
記位相調整部の吸収用ピストンは駆動用ピストンに対す
る最適な位相差と振幅をもって運動するようになり、こ
の吸収用ピストンの大きな運動により前記位相調整部で
はガスの流量と位相差とを夫々独立して最適値に調整で
きるようになり、また前記位相調整部による位相調整の
際の動力エネルギーが前記スプリングを介してコンプレ
ッサーに還元され、従ってパルスチューブ冷凍機の冷凍
の効率と能力が高まる。また前記位置調整部はその吸収
用ピストンに減衰力や負荷を作用させるための専用機構
が不要になり、その分だけパルスチューブ冷凍機の構造
が簡単になる。
According to the present invention, the spring of the phase adjusting unit is set to have an appropriate spring constant, so that the absorbing piston of the phase adjusting unit moves with an optimum phase difference and amplitude with respect to the driving piston. By this large movement of the absorbing piston, it becomes possible to independently adjust the gas flow rate and the phase difference to the optimum values in the phase adjusting section, and the power for phase adjustment by the phase adjusting section. Energy is returned to the compressor via the springs, thus increasing the refrigeration efficiency and capacity of the pulse tube refrigerator. Further, the position adjusting section does not require a dedicated mechanism for exerting a damping force or a load on the absorbing piston, and the structure of the pulse tube refrigerator is correspondingly simplified.

【0008】[0008]

【実施例】次に本発明の一実施例について説明する。Next, an embodiment of the present invention will be described.

【0009】10はコンプレッサーで、シリンダー11
の内部に往復動型の圧縮用ピストン12を収容してい
る。圧縮用ピストン12の外周にはリング状シール材1
3が嵌着している。14はコンプレッサー10に配管1
5で接続した蓄冷器で、鉛や銅等からなる蓄冷材16を
収納している。17は蓄冷器14の高温側端部に設けた
放熱フィン、18は蓄冷器14に連通した低温端熱交換
器、19は低温端熱交換器18に連通したステンレス鋼
製の曲がり管からなるパルスチューブである。前記低温
端熱交換器18と前記パルスチューブ19とは、ケース
を共用している。前記低温端熱交換器18はその極低温
の冷熱を各種赤外線センサー及び高温超伝導ディバイス
等に作用させこれらを冷却する。また前記パルスチュー
ブ19はその内部にパルス状の圧力変化を生じ、前記コ
ンプレッサー10の圧縮過程で発生した圧縮熱を高温端
部19a等から放熱する。このパルスチューブ19につ
いては、熱音響理論により、流体の変位が圧力に対して
同位相の成分である進行波成分と呼ばれる量が大きい場
合に大きな冷凍能力の得られることが教示されている。
Reference numeral 10 is a compressor, which is a cylinder 11
A reciprocating type compression piston 12 is housed inside. A ring-shaped sealing material 1 is provided on the outer circumference of the compression piston 12.
3 is fitted. 14 is a pipe for the compressor 10
The regenerator connected at 5 accommodates the regenerator material 16 made of lead, copper, or the like. Reference numeral 17 is a radiating fin provided at the high temperature side end of the regenerator 14, 18 is a low temperature end heat exchanger communicating with the regenerator 14, and 19 is a pulse made of a stainless steel bent tube communicating with the low temperature end heat exchanger 18. It is a tube. The low temperature end heat exchanger 18 and the pulse tube 19 share a case. The low temperature end heat exchanger 18 cools them by applying the cryogenic heat to various infrared sensors and high temperature superconducting devices. Further, the pulse tube 19 causes a pulse-like pressure change therein, and radiates the compression heat generated in the compression process of the compressor 10 from the high temperature end portion 19a and the like. With respect to the pulse tube 19, the thermoacoustic theory teaches that a large refrigerating capacity can be obtained when the displacement of the fluid is large in amount called a traveling wave component which is a component in phase with the pressure.

【0010】20はパルスチューブ19の高温端部19
aに連通した位相調整部で、パルスチューブ19内のガ
ス状冷媒の圧力変動と変位状態とを前記コンプレッサー
10に対して適当な位相差を有するように調整する。こ
の位相調整部20の詳細は後述する。
Reference numeral 20 denotes a high temperature end portion 19 of the pulse tube 19.
The phase adjusting unit communicating with a adjusts the pressure fluctuation and the displacement state of the gaseous refrigerant in the pulse tube 19 so as to have an appropriate phase difference with respect to the compressor 10. Details of the phase adjusting unit 20 will be described later.

【0011】而して前記コンプレッサー10は、リニア
モータ21を備え、このリニアモータ21で前記圧縮用
ピストン12を駆動している。このリニアモータ21は
特に図示しないが、圧縮用ピストン12にコイルヘッド
を取り付け、このコイルヘッドに対して電流を断続的に
供給することで、このコイルヘッドとマグネット22と
の間で電磁力を断続的に発生して、前記圧縮用ピストン
12をシリンダー11の軸方向で往復移動させる。
The compressor 10 is provided with a linear motor 21, and the linear motor 21 drives the compression piston 12. Although not particularly shown, the linear motor 21 has a coil head attached to the compression piston 12 and intermittently supplies a current to the coil head to intermittently generate an electromagnetic force between the coil head and the magnet 22. Then, the compression piston 12 is reciprocated in the axial direction of the cylinder 11.

【0012】また前記位相調整部20は、ガス状冷媒の
動力吸収用のシリンダー23と、該シリンダー23に収
容された吸収用ピストン24と、該吸収用ピストン24
の背面部に添設した動力吸収用のスプリング25等から
構成してある。
The phase adjusting unit 20 includes a cylinder 23 for absorbing the power of the gaseous refrigerant, an absorbing piston 24 housed in the cylinder 23, and the absorbing piston 24.
It is composed of a spring 25 for absorbing power attached to the back surface of the.

【0013】更に前記位相調整部20は、その吸収用ピ
ストン25を前記駆動用ピストン12に対して共通にケ
ーシングして同一軸線上で往復移動させると共に、前記
吸収用ピストン24のスプリング25を前記駆動用ピス
トン12の背面部に連結してある。
Further, the phase adjuster 20 casings the absorbing piston 25 in common with the driving piston 12 to reciprocate on the same axis, and drives the spring 25 of the absorbing piston 24 to drive the absorbing piston 25. It is connected to the back of the working piston 12.

【0014】前記パルスチューブ冷凍機では、圧縮過程
においてコンプレッサー10を圧縮動作させると、圧縮
冷媒はその圧縮熱を放熱フィン17と蓄冷器14にて放
熱してパルスチューブ19に流入しこのパルスチューブ
19の残留冷媒を圧縮してこの圧縮熱を高温端部19a
から放熱し更に位相調整部20に流入して前記吸収用ピ
ストン24を押し込めることでその動力エネルギーを吸
収用スプリング25に放出しそのエネルギー放出分だけ
冷却するようになる。その後膨張過程においてコンプレ
ッサー10を吸引動作させると、ガス状冷媒は前記位相
調整部20から高速で復帰移動してパルスチューブ19
内で断熱膨張し更に低温化して低温端熱交換器18及び
蓄冷器14を冷却しコンプレッサー10に戻る。斯る往
復移動サイクルを繰り返すことにより、低温端熱交換器
18に100〜20K(−173〜253℃)の極低温
が得られるようになる。
In the pulse tube refrigerator, when the compressor 10 is compressed during the compression process, the compressed refrigerant radiates the compression heat through the radiation fins 17 and the regenerator 14 and flows into the pulse tube 19, which then flows into the pulse tube 19. The residual refrigerant is compressed to transfer the heat of compression to the high temperature end portion 19a.
The heat is radiated from the above and further flows into the phase adjusting unit 20 to push in the absorbing piston 24, so that the motive energy thereof is released to the absorbing spring 25 and cooled by the amount of the energy released. After that, when the compressor 10 is sucked in the expansion process, the gaseous refrigerant returns from the phase adjusting unit 20 at a high speed to move to the pulse tube 19
Adiabatic expansion is performed therein to further lower the temperature, cool the low temperature end heat exchanger 18 and the regenerator 14, and return to the compressor 10. By repeating such a reciprocating movement cycle, the cryogenic temperature of 100 to 20 K (-173 to 253 ° C.) can be obtained in the low temperature end heat exchanger 18.

【0015】また前記パルスチューブ冷凍機では、位相
調整部20のスプリング25を適当なバネ定数とするこ
とで、このスプリング25により、前記位相調整部20
の吸収用ピストン24は駆動用ピストン12に対する最
適な位相差と振幅をもって運動するようになり、この吸
収用ピストン24の大きな運動により前記位相調整部2
0ではガスの流量と位相差とをそれぞれ独立して最適値
に調整できるようになり、また前記位相調整部20によ
る位相調整の際に動力エネルギーが前記スプリング25
を介してコンプレッサー10に還元され、運動系の仕事
の効率が向上し、従ってパルスチューブ冷凍機の冷凍の
効率と能力が高まる。また前記位置調整部20はその吸
収用ピストン24に減衰力や負荷を作用させるための専
用機構が不要になり、その分だけパルスチューブ冷凍機
の構造が簡単になりコンパクト化が図られる。
In the pulse tube refrigerator, the spring 25 of the phase adjusting unit 20 is set to have an appropriate spring constant so that the spring 25 allows the phase adjusting unit 20 to operate.
The absorbing piston 24 moves with an optimum phase difference and amplitude with respect to the driving piston 12, and the large movement of the absorbing piston 24 causes the phase adjusting portion 2 to move.
At 0, the gas flow rate and the phase difference can be independently adjusted to optimum values, and the power energy is adjusted by the spring 25 when the phase is adjusted by the phase adjusting unit 20.
And is reduced to the compressor 10 via the slag to improve the work efficiency of the kinetic system, and thus the refrigeration efficiency and capacity of the pulse tube refrigerator. Further, the position adjusting unit 20 does not require a dedicated mechanism for exerting a damping force or a load on the absorbing piston 24, and the structure of the pulse tube refrigerator is simplified and the size thereof is reduced.

【0016】[0016]

【発明の効果】本発明は以上のように構成したから、位
相調整部のスプリングを適当なバネ定数とすることで、
このスプリングにより、前記位相調整部の吸収用ピスト
ンは駆動用ピストンに対する最適な位相差と振幅をもっ
て運動するようになり、この吸収用ピストンの大きな運
動により前記位相調整部ではガスの流量と位相差とをそ
れぞれ独立して最適値に調整できるようになり、また前
記位相調整部による位相調整の際の放出エネルギーを前
記スプリングを介してコンプレッサーに還元できるよう
になり、よってパルスチューブ冷凍機の冷凍の効率と能
力を高めることができ、また前記位置調整部はその吸収
用ピストンに減衰力や負荷を作用させるための専用機構
が不要になり、その分だけパルスチューブ冷凍機の構造
を簡単にでき、従って、パルスチューブ冷凍機の冷凍能
力を簡単な構造で向上できる。
Since the present invention is configured as described above, the spring of the phase adjusting portion has an appropriate spring constant,
The spring allows the absorbing piston of the phase adjusting unit to move with an optimum phase difference and amplitude with respect to the driving piston, and due to the large movement of the absorbing piston, the gas flow rate and the phase difference in the phase adjusting unit are increased. Can be independently adjusted to the optimum value, and the energy released during the phase adjustment by the phase adjusting unit can be reduced to the compressor via the spring, and thus the refrigeration efficiency of the pulse tube refrigerator. In addition, the position adjusting section does not require a dedicated mechanism for applying a damping force or load to the absorbing piston, and the structure of the pulse tube refrigerator can be simplified accordingly. The refrigeration capacity of the pulse tube refrigerator can be improved with a simple structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】従来例の構成図である。FIG. 2 is a configuration diagram of a conventional example.

【図3】他の従来例の構成図である。FIG. 3 is a configuration diagram of another conventional example.

【符号の説明】[Explanation of symbols]

10 コンプレッサー 12 駆動用ピストン 14 蓄冷器 18 低温端熱交換器 19 パルスチューブ 20 位相調整部 21 リニアモータ 23 シリンダー 24 吸収用ピストン 25 スプリング 10 Compressor 12 Driving Piston 14 Regenerator 18 Low Temperature End Heat Exchanger 19 Pulse Tube 20 Phase Adjuster 21 Linear Motor 23 Cylinder 24 Absorption Piston 25 Spring

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 コンプレッサーを順次、蓄冷器、低温端
熱交換器、パルスチューブ及び位相調整部に接続し、前
記位相調整部と前記コンプレッサーとの間で、ガス状冷
媒を往復移動させることにより、前記低温端熱交換器を
極低温に冷却してなるものであって、 前記コンプレッサーをリニアモータと該リニアモータで
駆動される駆動用ピストン等から構成し、 前記位相調整部を動力吸収用のシリンダーと該シリンダ
ーに収容された吸収用ピストンと該吸収用ピストンの背
面部に添設した動力吸収用のスプリング等から構成し、 前記吸収用ピストンを前記駆動用ピストンに対して同一
軸線上で往復移動させると共に、前記吸収用ピストンの
スプリングを前記駆動用ピストンの背面部に連結したこ
とを特徴とするパルスチューブ冷凍機。
1. A compressor is sequentially connected to a regenerator, a low temperature end heat exchanger, a pulse tube and a phase adjusting unit, and a gaseous refrigerant is reciprocally moved between the phase adjusting unit and the compressor, The low temperature end heat exchanger is cooled to an extremely low temperature, the compressor is composed of a linear motor and a driving piston driven by the linear motor, and the phase adjusting unit is a cylinder for absorbing power. And an absorption piston housed in the cylinder and a power absorption spring attached to the back surface of the absorption piston, and the absorption piston is reciprocally moved on the same axis with respect to the drive piston. In addition, the pulse tube refrigerator is characterized in that the spring of the absorbing piston is connected to the back surface of the driving piston.
JP28494791A 1991-10-30 1991-10-30 Pulse tube refrigerator Pending JPH05118684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28494791A JPH05118684A (en) 1991-10-30 1991-10-30 Pulse tube refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28494791A JPH05118684A (en) 1991-10-30 1991-10-30 Pulse tube refrigerator

Publications (1)

Publication Number Publication Date
JPH05118684A true JPH05118684A (en) 1993-05-14

Family

ID=17685133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28494791A Pending JPH05118684A (en) 1991-10-30 1991-10-30 Pulse tube refrigerator

Country Status (1)

Country Link
JP (1) JPH05118684A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100571128B1 (en) * 2004-12-03 2006-04-13 한국과학기술원 Pulsating tube chiller using bidirectional linear compressor
JP2011144983A (en) * 2010-01-13 2011-07-28 Isuzu Motors Ltd Thermoacoustic engine
JP2012159266A (en) * 2011-02-02 2012-08-23 Isuzu Motors Ltd Thermoacoustic refrigerating plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100571128B1 (en) * 2004-12-03 2006-04-13 한국과학기술원 Pulsating tube chiller using bidirectional linear compressor
JP2011144983A (en) * 2010-01-13 2011-07-28 Isuzu Motors Ltd Thermoacoustic engine
JP2012159266A (en) * 2011-02-02 2012-08-23 Isuzu Motors Ltd Thermoacoustic refrigerating plant

Similar Documents

Publication Publication Date Title
JP2902159B2 (en) Pulse tube refrigerator
JP4533838B2 (en) Heat transport device, refrigerator and heat pump
JP2552709B2 (en) refrigerator
JP3728833B2 (en) Pulse tube refrigerator
US5791149A (en) Orifice pulse tube refrigerator with pulse tube flow separator
US3913339A (en) Reduction in cooldown time for cryogenic refrigerator
JP2839141B1 (en) Stirling refrigerator
JPWO2004088217A1 (en) Pulse tube refrigerator
JPH05118684A (en) Pulse tube refrigerator
CN108626921A (en) A kind of expanding machine unit and pulse type free-piston Stirling cooler
JP3281762B2 (en) Stirling refrigeration equipment
JP6087168B2 (en) Cryogenic refrigerator
JPH0336468A (en) Cooling warehouse
JP2969124B2 (en) Wave type refrigerator
JPH10267445A (en) Pulse pipe freezer
US7201001B2 (en) Resonant linear motor driven cryocooler system
JPH1194382A (en) Pulse tube refrigerator
KR100571128B1 (en) Pulsating tube chiller using bidirectional linear compressor
JP2000346476A (en) Stirling refrigerator
KR101503748B1 (en) Cpu cooling apparatus using stirling refrigeration
JP2577244B2 (en) Pulse refrigerator
JP2000146336A (en) V-shaped two-piston stirling equipment
JPH0674584A (en) Cryogenic refrigerator and operating method thereof
JP3363697B2 (en) Refrigeration equipment
JP2823534B2 (en) Gas compression and expansion machine