JPH0511811A - Feedforward device by inverse function generator - Google Patents
Feedforward device by inverse function generatorInfo
- Publication number
- JPH0511811A JPH0511811A JP15867791A JP15867791A JPH0511811A JP H0511811 A JPH0511811 A JP H0511811A JP 15867791 A JP15867791 A JP 15867791A JP 15867791 A JP15867791 A JP 15867791A JP H0511811 A JPH0511811 A JP H0511811A
- Authority
- JP
- Japan
- Prior art keywords
- output
- inverse function
- characteristic model
- function generator
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Feedback Control In General (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は逆関数発生器によるフィ
ードフォワード装置に関し、特にプロセス製品の各制御
に適用して有用なものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a feedforward device using an inverse function generator, and is particularly useful when applied to each control of process products.
【0002】[0002]
【従来の技術】図2はプロセス制御対象部とその制御系
の代表例を示すブロック線図である。同図に示すよう
に、プロセス制御対象部1の出力である制御量2(y)
は、目標値3(r)と減算器4で比較され、制御偏差5
(ε)を演算する。制御偏差5は比例積分動作調節器
(以下、PI調節器)6に入力され、その出力7
(u″)は、後述する係数器12の出力8(u0 )と加
算器9で加算されて操作量10(u)となる。この操作
量10がプロセス制御対象部1の入力となる。このと
き、プロセス制御対象部1の既知外乱11としては、例
えばxとwとが考えられる。2. Description of the Related Art FIG. 2 is a block diagram showing a representative example of a process control target portion and its control system. As shown in the figure, the control amount 2 (y) which is the output of the process control target unit 1
Is compared with the target value 3 (r) by the subtracter 4, and the control deviation 5
Calculate (ε). The control deviation 5 is input to a proportional-plus-integral action controller (hereinafter, PI controller) 6 and its output 7
(U ″) is added to the output 8 (u 0 ) of the coefficient unit 12 to be described later by the adder 9 to become the manipulated variable 10 (u). This manipulated variable 10 becomes the input of the process control target unit 1. At this time, for example, x and w can be considered as the known disturbance 11 of the process control target unit 1.
【0003】図2に示す従来技術においては、既知外乱
11の制御量2への影響を極力小さくするために、既知
外乱11のうちのwのみを入力した係数器12を設けて
おり、その出力8(u0 )を加算器9の一端に加えるよ
うになっている。In the prior art shown in FIG. 2, in order to minimize the influence of the known disturbance 11 on the control amount 2, a coefficient unit 12 into which only w of the known disturbance 11 is input is provided and its output. 8 (u 0 ) is added to one end of the adder 9.
【0004】[0004]
【発明が解決しようとする課題】上述の如き従来技術に
おいては、代表となる既知外乱11の例えばwのみを使
って補正値である出力u0 を求め、この出力u0 を出力
u″に加算してプロセス制御対象部1に加えていたた
め、考慮していない他の既知外乱による影響を抑えるこ
とができず、充分な制御特性が得られないという欠点が
あった。In the prior art as described above, the output u 0 , which is the correction value, is obtained by using only the representative known disturbance 11 such as w, and this output u 0 is added to the output u ″. Since it is added to the process control target portion 1, there is a drawback that it is not possible to suppress the influence of other known disturbances that are not taken into consideration and sufficient control characteristics cannot be obtained.
【0005】本発明は、上記従来技術の問題点に鑑み、
既知外乱を充分考慮して良好な制御特性を確保し得る逆
関数発生器によるフィードフォワード装置を提供するこ
とを目的とする。The present invention has been made in view of the above problems of the prior art.
It is an object of the present invention to provide a feedforward device using an inverse function generator capable of ensuring good control characteristics by sufficiently considering known disturbance.
【0006】上記目的を達成する本発明の構成は、The structure of the present invention for achieving the above object is as follows:
【0007】操作量uが入力されたプロセス制御対象部
から出力される制御量yと、目標値rとの差である制御
偏差εを求め、この制御偏差εを比例積分動作調整器で
比例積分演算した出力u″と、既知外乱による制御量y
への影響を小さくすべく、補償器である逆関数発生器か
ら出力される出力u0 とを加算して前記操作量uとする
制御装置において、前記プロセス制御対象部は、その入
出力特性が非線形であり、前記逆関数発生器は、プロセ
ス制御対象部の静的な制御量、操作量及び既知外乱の関
係を表わす静特性モデルと、この静特性モデルの出力信
号である推定された静的な制御量を目標値に近づけるた
めの閉ループ系と、閉ループ系のゲインkに対し−1/
kのゲインとなっており静特性モデルに対し平行に接続
された係数器とを有することを特徴とする。A control deviation ε, which is a difference between a control value y output from a process control target portion to which an operation amount u is input and a target value r, is obtained, and this control deviation ε is proportionally integrated by a proportional-plus-integral action regulator. Calculated output u ″ and control amount y due to known disturbance
In order to reduce the influence on the output of the compensator, the control device that adds the output u 0 output from the inverse function generator to obtain the manipulated variable u has the input / output characteristics of the process control target unit. The inverse function generator is non-linear, and the inverse function generator includes a static characteristic model representing a relationship between a static control amount, an operation amount, and a known disturbance of a process control target portion, and an estimated static signal which is an output signal of the static characteristic model. A closed-loop system to bring the controlled variable close to the target value and the gain k of the closed-loop system is -1 /
It has a gain of k and a coefficient multiplier connected in parallel to the static characteristic model.
【0008】[0008]
【作用】上記構成の本発明によれば、プロセス制御対象
部の静特性モデルから操作量の先行信号を求めることが
できる。しかも、この場合に、既知外乱の全ての値は逆
関数を求める際に取り込むことができるので、この既知
外乱の制御量への影響を低減し得る。According to the present invention having the above-described structure, it is possible to obtain the preceding signal of the manipulated variable from the static characteristic model of the process control target portion. Moreover, in this case, all the values of the known disturbance can be taken in when obtaining the inverse function, so that the influence of the known disturbance on the control amount can be reduced.
【0009】[0009]
【実施例】以下本発明の実施例を図面に基づき詳細に説
明する。なお、従来技術と同一部分には同一符号を付し
て重複する説明は省略する。Embodiments of the present invention will now be described in detail with reference to the drawings. It should be noted that the same parts as those of the prior art are designated by the same reference numerals and duplicate description will be omitted.
【0010】図1に示すように、プロセス制御対象部1
を模擬した静特性モデル13は既知外乱11と補償器で
ある逆関数発生器Iの出力8(u0 )を入力とし、静的
な制御量の推定値14(y0 )を出力する。このときプ
ロセス制御対象部1の操作量10(u)は逆関数発生器
Iの出力8(u0 )とPI調節器6の出力7(u″)を
加算器9で加算して得られる。係数器15は、静特性モ
デル13と並列に配設してあり、その入力として出力8
(u0 )を入力して係数(−1/k )を乗じ、出力16と
して送出する。この出力16は静特性モデル13の出力
である静的な制御量の推定値14(y0 )と加算器17
で加算される。加算器17の出力は、減算器18で目標
値3(r)と比較されて誤差19(δ)となる。誤差1
9(δ)は係数器20により係数(k)を乗じ、出力8
(u0 )となる。このときの係数(k)は調整用パラメ
ータで、試行誤差により求める。As shown in FIG. 1, the process control target unit 1
The static characteristic model 13 simulating is input with the known disturbance 11 and the output 8 (u 0 ) of the inverse function generator I which is the compensator, and outputs the estimated value 14 (y 0 ) of the static control amount. At this time, the manipulated variable 10 (u) of the process control target unit 1 is obtained by adding the output 8 (u 0 ) of the inverse function generator I and the output 7 (u ″) of the PI controller 6 by the adder 9. The coefficient unit 15 is arranged in parallel with the static characteristic model 13 and has an output 8 as its input.
(U 0 ) is input, multiplied by a coefficient (−1 / k), and output as output 16. This output 16 is an output of the static characteristic model 13 and an estimated value 14 (y 0 ) of the static control amount and an adder 17
Is added in. The output of the adder 17 is compared with the target value 3 (r) by the subtractor 18 and becomes an error 19 (δ). Error 1
9 (δ) is multiplied by the coefficient (k) by the coefficient unit 20, and the output 8
(U 0 ). The coefficient (k) at this time is an adjustment parameter and is obtained by trial error.
【0011】上記本実施例では、非線形なプロセス制御
対象部1を非線形な数式モデルで表現し、その非線形な
数式モデルを使い、既知外乱のすべての信号を取込むこ
とによって、プロセスの制御量の変動を極力抑えるよう
な信号を算出し、プロセスの操作量信号の一部として供
給することができる。In the present embodiment, the non-linear process control target portion 1 is expressed by a non-linear mathematical model, and by using the non-linear mathematical model, all the signals of known disturbance are taken in, thereby controlling the process control amount. A signal that minimizes fluctuation can be calculated and supplied as part of the manipulated variable signal of the process.
【0012】さらに詳言すると、まず、静特性モデル1
3で制御量10(u)を推定し、その推定値14
(y0 )をたえず目標値3(r)に近づけるための閉ル
ープ系を構成しており、その際に、静特性モデル13と
並列に係数器15を配置し、双方の出力を加算した値を
目標値に近づける。この結果、既知外乱11(x,w)
がプロセス制御対象部1に加わった場合の制御量2
(y)の変動を抑えることができる操作量10(u)が
得られる。More specifically, first, the static characteristic model 1
The control amount 10 (u) is estimated by 3 and the estimated value 14
A closed loop system for constantly making (y 0 ) close to the target value 3 (r) is configured. At that time, a coefficient unit 15 is arranged in parallel with the static characteristic model 13, and a value obtained by adding both outputs is Close to the target value. As a result, the known disturbance 11 (x, w)
Control amount 2 when is added to the process control target unit 1
A manipulated variable 10 (u) capable of suppressing the variation in (y) is obtained.
【0013】なお、静特性モデル13と並列に配置した
係数器15の係数値は閉ループ系のゲイン(k)の逆数
であり、しかも符号を反転させた値とする。The coefficient value of the coefficient unit 15 arranged in parallel with the static characteristic model 13 is the reciprocal of the gain (k) of the closed loop system, and the sign is inverted.
【0014】上述の如き本実施例の作用を数式を用いて
表現すると次の通りとなる。The operation of this embodiment as described above can be expressed by using mathematical expressions as follows.
【0015】制御量の静的な推定値14(y0 )は次式
で表わせるとする。 y0 =g(u0 ,x,w) (1) ここで、u0 は逆関数発生器Iの出力で、x,wは既知
外乱を意味する。The static estimated value 14 (y 0 ) of the controlled variable can be expressed by the following equation. y 0 = g (u 0 , x, w) (1) where u 0 is the output of the inverse function generator I, and x and w are known disturbances.
【0016】つぎに、数式モデル上で閉ループ系を構成
することにより次式を得る。 δ=r−{g(u0 ,x,w)−1/k u0 } (2) u0 =kδ (3) ここで、δは誤差を意味し、kおよび−1/kは係数器
20,15のパラメータである。Next, the following equation is obtained by constructing a closed loop system on the mathematical model. δ = r− {g (u 0 , x, w) −1 / k u 0 } (2) u 0 = kδ (3) where δ means an error, and k and −1 / k are coefficient multipliers. There are 20 and 15 parameters.
【0017】したがって、(2)式と(3)式より、次
の関係を得る。 1/k u0 =r−g(u0 ,x,w)+1/k u0 (4) すなわち、 r=g(u0 ,x,w)=y0 (5) となり、y0 がrに一致する。Therefore, the following relationship is obtained from the expressions (2) and (3). 1 / k u 0 = r−g (u 0 , x, w) + 1 / k u 0 (4) That is, r = g (u 0 , x, w) = y 0 (5), and y 0 is r Matches
【0018】したがって、ここで得られたu0 を逆関数
発生器Iの出力として、出力7(u″)に加えれば制御
性の改善が図られる。Therefore, if u 0 obtained here is added to the output 7 (u ″) as the output of the inverse function generator I, the controllability can be improved.
【0019】[0019]
【発明の効果】以上実施例とともに具体的に説明したよ
うに、本発明によれば次の効果を得ることができる。
(1)非線形の数式モデルで補償器である逆関数発生器
を形成し、かつ既知外乱の信号をすべて取込み、既知外
乱の制御量への影響を抑えるような操作量修正信号が算
出できるため、制御性能の向上を計ることができる。
(2)逆関数を直接求めるものではないので、計算処理
が簡単である。As described above in detail with reference to the embodiments, according to the present invention, the following effects can be obtained.
(1) Since an inverse function generator, which is a compensator, is formed by a non-linear mathematical model, and all known disturbance signals are taken in, a manipulated variable correction signal that suppresses the influence of the known disturbance on the control amount can be calculated. The control performance can be improved.
(2) The calculation process is simple because the inverse function is not directly obtained.
【図1】本発明の実施例に係る逆関数発生器のブロック
図である。FIG. 1 is a block diagram of an inverse function generator according to an embodiment of the present invention.
【図2】従来の制御系を示すブロック図である。FIG. 2 is a block diagram showing a conventional control system.
I 逆関数発生器 1 プロセス制御対象部 2 制御量(y) 3 目標値(r) 4 減算器 5 制御偏差(ε) 6 PI調節器 7 PI調節器の出力(u″) 8 逆関数発生器の出力(u0 ) 9 加算器 10 操作量(u) 11 既知外乱(x,w) 12 係数器 13 プロセスを模擬した静特性モデル 14 静的な制御量推定値(y0 ) 15 係数器 16 係数器の出力 17 加算器 18 減算器 19 誤差(δ) 20 係数器I Inverse function generator 1 Process control target part 2 Control amount (y) 3 Target value (r) 4 Subtractor 5 Control deviation (ε) 6 PI adjuster 7 PI adjuster output (u ″) 8 Inverse function generator Output (u 0 ) 9 adder 10 manipulated variable (u) 11 known disturbance (x, w) 12 coefficient device 13 static characteristic model simulating a process 14 static estimated control amount (y 0 ) 15 coefficient device 16 Output of coefficient unit 17 Adder 18 Subtractor 19 Error (δ) 20 Coefficient unit
Claims (1)
部から出力される制御量yと、目標値rとの差である制
御偏差εを求め、この制御偏差εを比例積分動作調整器
で比例積分演算した出力u″と、既知外乱による制御量
yへの影響を小さくすべく、補償器である逆関数発生器
から出力される出力u0 とを加算して前記操作量uとす
る制御装置において、 前記プロセス制御対象部は、その入出力特性が非線形で
あり、 前記逆関数発生器は、プロセス制御対象部の静的な制御
量、操作量及び既知外乱の関係を表わす静特性モデル
と、この静特性モデルの出力信号である推定された静的
な制御量を目標値に近づけるための閉ループ系と、閉ル
ープ系のゲインkに対し−1/kのゲインとなっており
静特性モデルに対し平行に接続された係数器とを有する
ことを特徴とする逆関数発生器によるフィードフォワー
ド装置。Claim: What is claimed is: 1. A control deviation ε, which is a difference between a control amount y output from a process control target portion to which an operation amount u is input and a target value r, is obtained, and this control deviation ε is calculated. The output u ″ calculated by the proportional-plus-integral operation controller is added to the output u 0 output from the inverse function generator, which is a compensator, in order to reduce the influence of the known disturbance on the control amount y. In the control device with the manipulated variable u, the process control target part has a non-linear input / output characteristic, and the inverse function generator has a relationship between a static control amount of the process control target part, a manipulated variable, and a known disturbance. Of the static characteristic model, a closed loop system for bringing the estimated static control amount, which is the output signal of the static characteristic model, close to the target value, and a gain of −1 / k with respect to the gain k of the closed loop system. Parallel to the static characteristic model. And a feed coefficient device having an inverse function generator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15867791A JPH0511811A (en) | 1991-06-28 | 1991-06-28 | Feedforward device by inverse function generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15867791A JPH0511811A (en) | 1991-06-28 | 1991-06-28 | Feedforward device by inverse function generator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0511811A true JPH0511811A (en) | 1993-01-22 |
Family
ID=15676956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15867791A Withdrawn JPH0511811A (en) | 1991-06-28 | 1991-06-28 | Feedforward device by inverse function generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0511811A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002235422A (en) * | 2001-12-21 | 2002-08-23 | Ig Tech Res Inc | Repairing device for building exterior wall of alc slab |
JP2004013511A (en) * | 2002-06-06 | 2004-01-15 | Toshiba Corp | Process control device |
JP2017208012A (en) * | 2016-05-20 | 2017-11-24 | 三菱重工業株式会社 | Control device, underwater vehicle, control method, and program |
-
1991
- 1991-06-28 JP JP15867791A patent/JPH0511811A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002235422A (en) * | 2001-12-21 | 2002-08-23 | Ig Tech Res Inc | Repairing device for building exterior wall of alc slab |
JP2004013511A (en) * | 2002-06-06 | 2004-01-15 | Toshiba Corp | Process control device |
JP2017208012A (en) * | 2016-05-20 | 2017-11-24 | 三菱重工業株式会社 | Control device, underwater vehicle, control method, and program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4195337A (en) | Control method utilizing a model control scheme | |
US4054780A (en) | Gain-adaptive process control | |
JPH06274205A (en) | Gain adaptive control device | |
JPH0511811A (en) | Feedforward device by inverse function generator | |
JP4648448B2 (en) | Closed loop process control device including PID regulator | |
WO2019087554A1 (en) | Feedback control method and motor control device | |
JPS63144782A (en) | Controller for motor | |
JP2631225B2 (en) | Model reference adaptive precedence controller with arithmetic circuit | |
JPH05313704A (en) | Adaptive controller | |
JPH08314503A (en) | Adaptive controller | |
JPS6338959B2 (en) | ||
JP3448210B2 (en) | Closed loop process controller including PID regulator | |
JPH07325602A (en) | Adaptive control unit | |
JPH04336301A (en) | Feedforward controller by reverse system | |
JPH0556522B2 (en) | ||
JPS60176104A (en) | Process controller | |
JPS60205710A (en) | Adaptive control device | |
JPH06289903A (en) | Feedforward controller | |
JPH05297908A (en) | Adaptive controller | |
JPH10222207A (en) | Feedforward controller | |
JPH0659706A (en) | Adaptive controller | |
JPS629404A (en) | Process controller | |
JP3553264B2 (en) | Feedback control device | |
JP2508127B2 (en) | Electric motor controller | |
JPH07219602A (en) | Adaptive controller |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19980903 |