JPH0511555B2 - - Google Patents
Info
- Publication number
- JPH0511555B2 JPH0511555B2 JP15620686A JP15620686A JPH0511555B2 JP H0511555 B2 JPH0511555 B2 JP H0511555B2 JP 15620686 A JP15620686 A JP 15620686A JP 15620686 A JP15620686 A JP 15620686A JP H0511555 B2 JPH0511555 B2 JP H0511555B2
- Authority
- JP
- Japan
- Prior art keywords
- transfer
- recording medium
- recording
- image
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000012546 transfer Methods 0.000 description 84
- 238000010438 heat treatment Methods 0.000 description 23
- 239000010410 layer Substances 0.000 description 22
- 238000010586 diagram Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 5
- 239000012790 adhesive layer Substances 0.000 description 5
- 239000003086 colorant Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000011162 core material Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- -1 polyethylene terephthalate Polymers 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 239000003094 microcapsule Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000004945 silicone rubber Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 230000008022 sublimation Effects 0.000 description 2
- 229920000298 Cellophane Polymers 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 241000978776 Senegalia senegal Species 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000001454 recorded image Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Electronic Switches (AREA)
Description
<産業上の利用分野>
本発明はプリンターや複写機、或いはフアクシ
ミリ等に利用出来る記録装置に関する。
<従来の技術>
近年、情報産業の急速な発展に伴つて種々の情
報処理システムが開発され、またそれぞれの情報
処理システムに適した記録装置が開発されてい
る。
上記記録装置の一つとして感熱転写記録装置が
ある。これは熱溶融性バインダー中に着色剤を分
散させてなる熱溶融性インクをリボン状の支持体
に塗布してなるインクリボンを用いて、記録紙に
記録を行うものである。
即ち、前記インクリボンをその熱溶融性インク
層が記録紙に接するように重ね合わすと共に、該
インクリボン及び記録紙を熱ヘツドとプラテンと
の間へ搬送し、前記インクリボンの支持体側から
熱ヘツドによつて画信号に応じたパルス状の熱を
印加すると共に、両者を圧接して溶融したインク
を記録紙に転写することにより、記録紙上に熱印
加に応じたインク像を記録してなるものである。
上記記録装置を使用する装置が小型軽量にして
騒音がなく、更に、普通紙に記録を行なうことが
出来るので、近年広く使用されている。
<発明が解決しようとする問題点>
しかしながら、従来の感熱転写記録装置にも問
題点がない訳ではない。
それは、従来の感熱転写記録装置は転写記録性
能、即ち画像品位が記録紙の平面平滑度により大
きく影響され、平面性の高い記録紙には良好な画
像記憶が行なわれるものの、平滑性の低い記録紙
の場合には画像記録品位が低下する恐れがある。
また従来の感熱転写記録装置では多色の画像を
得ようとし場合、転写を繰り返して色を重ね合わ
す必要がある。その為に複数の熱ヘツドを設けた
り、或いは記録紙に停止、逆送等複雑な動きをさ
せなければならず、色ずれが避けられないばかり
でなく、装置全体が大きく複雑になつてしまう等
の問題点がある。
<問題点を解決するための手段>
そこで本件出願人は光熱感応性の高分子材料を
用い、熱エネルギーと光エネルギーとを与えたと
き、その高分子の反応が急激に進んで転写特性が
不可逆的に変化して、画信号に応じた前記特性の
違いによる像を形成し、それを被記録媒体に転写
する記録装置を提案した(特願昭60−120080号、
同60−120081号、同60−131411号、同60−134831
号、同60−150597号、同60−199926号)。
この記録装置によれば、表面平滑度の低い被記
録媒体にも高品性の画像を記録することが可能で
あり、また多色記録に応用した場合には、被記録
媒体に複雑な動きをさせることなく多色の画像が
得られるものである。
本発明は前記記録装置を更に発展させたもので
あつて、装置環境が変化しても高品位の画像を記
録し得る記録装置を提供せんとするものである。
その為の以下述べる実施例の手段は、光エネル
ギーと熱エネルギーとが付与されることによつて
転写特性が変化する転写記録層を有する転写記録
媒体を用いて被記録媒体に画像を記録する装置で
あつて、前記転写記録媒体の搬送経路に沿つて設
けられた転写記録媒体に熱エネルギーを付与する
ための加熱手段及び前記転写記録媒体に光エネル
ギーを付与するための光照射手段とを有する記録
部と、前記記録部における熱エネルギーと光エネ
ルギーの少なくとも一方を所定の付与量に制御す
る付与量制御手段と、前記記録部で転写記録媒体
に形成された像を被記録媒体に転写するための転
写部とを有することを特徴としてなるものであ
る。
<作用>
上記手段によれば転写記録媒体と被記録媒体を
装置にセツトして記録をすると、記録部に於いて
転写記録媒体に所定の熱エネルギーと光エネルギ
ーとが付与されて像が形成され、転写部に於いて
転写記録媒体と被記録媒体とが重ねられ、前記像
が被記録媒体に転写される。
また上記記録部に於いては転写記録層の転写特
性変化量が一定になように熱エネルギー或いは光
エネルギーの付与が制御されるので常に高品位の
画像が得られる。
<実施例>
次に上記手段を適用した本発明の一実施例を説
明する。
第1図Aは記録装置の断面概略説明図であり、
第1図bはその斜視説明図である。
図に於いて、1は長尺シート状の転写記録媒体
であつて、ロール状に巻き回して供給ロール2と
して装置本体Mに着脱可能に組み込まれている。
即ち、この供給ロール2は、装置本体M設けられ
た回転自在の軸2aに着脱可能に装填される。
そこで先ずこの転写記録媒体1の先端を供給ロ
ール2、ガイドローラ12a、記録ヘツド3a及
びガイドローラ12bを経由し、転写ローラ4a
と加圧ローラ4bの間から剥離ローラ5、ガイド
ローラ12cによつて変向して巻取りロール6へ
至らせ、その先端を巻取りロール6にグリツパー
(図示せず)等の手段により係止する。その後は
巻取りロール6は公知の駆動手段によつて駆動回
転させることによつて、転写記録媒体1が矢印a
方向に繰り出され、巻取りロール6周面に順次巻
き取られていくものである。
尚、前記巻き取りの際の供給ロール2には例え
ばヒステリシスブレーキ(図示せず(図示せず)
によつて一定のバツクテンシヨンが与えられ、こ
のテンシヨン及び前記ガイドローラ12a,12
bによつて、転写記録媒体1は記録ヘツド3aに
対して一定の圧力で、且つ一定の角度で圧接しつ
つ搬送されるように構成されている。
次に前記各部の構成について個々説明する。
先ず転写記録媒体1は、第2図に示す如くシー
ト状の支持体1a上に熱エネルギーと光エネルギ
ーとが共に付与された場合に像を形成し得る性質
を有する転写記録層1bを付着してなるものであ
る。
その一例を説明すると、第2図に示す如く前記
転写記録層1bはコア1c,1dとして第1表及
び第2表に示す成分を用い、次に示す方法により
マイクロカプセル状の画像形成素体を形成してな
る。
即ち、第1表及び第2表に示す成分10gを先ず
塩化メチレン20重量部に混合したものを、カチオ
ン又はノニオン等HLB値の少なくとも10以上の
界面活性剤とゼラチン1gを溶解した水200mlに
混合し、60℃加温下ホモミキサーによつて、8000
〜10000ppmで撹拌して乳化し、平均粒径26μm
の油滴を得る。
更に60℃以下で撹拌を30分間続け塩化メチレン
を留去することにより平均粒径を10μmにする。
これにアラビアゴム1gを溶かした水20mlを加
え、ゆつくり冷却しながらNH4OH(アンモニア)
水を添加しPH11以上にすることによつてマイクロ
カプセルスラリーを得、グルタルアルデヒド20%
水溶液1.0mlをゆつくり加えてカプセル壁を硬化
する。
その後ヌツチエ濾過器で固液分離し、真空乾燥
器で35℃、10時間乾燥してマイクロカプセル状の
画像形成素体を得る。
この画像形成素体は、第1表及び第2表のコア
1c,1dがシエル1eで被覆されたマイクロカ
プセル、粒径7〜15μm、平均粒径10μmに形成
される。
前記の如く形成された画像形成素体を、厚さ
6μmのポリエチレンテレフタレートよりなる支
持体1a上に付着剤1fにて付着させて、転写記
録層1bを形成し、転写記録媒体1を構成する。
更に詳しく説明すれば、先ず付着剤1fとして
は、カネボー・エヌ・エス・シー(株)の2液性のエ
ポキシ系接着剤で、エポルジヨンEAI及びエポル
ジヨンEBIを用いた。そして上記エポルジヨン
EAI及びEBIを1:1の割合で混合した液を、水
で2倍希釈しポリエチレンテレフタレートフイル
ム上に塗布し、水分を乾燥して付着層を得た。こ
の付着層は乾燥後も粘着性を有しており、別途硬
化させた時の付着層の厚みは約0.3μmであつた。
次に粘着性を有する付着層上に、上記得られた第
1表及び第2表に示すものをコア材としたマイク
ロカプセル状の画像形成素体を1:1の割合で混
合し、これを振り掛けて接着させた。その後、余
分な画像形成素体を払い落とすと、画像形成素体
は略1層に且つ90%の割合で付着層上に配置され
ていた。
上記の如くして得られたものを100℃の環境下
に、約2時間放置して付着剤1fを硬化させて第
2図のような転写記録媒体1を構成した。
<Industrial Application Field> The present invention relates to a recording device that can be used in printers, copying machines, facsimile machines, and the like. <Background Art> In recent years, with the rapid development of the information industry, various information processing systems have been developed, and recording devices suitable for each information processing system have also been developed. One of the above-mentioned recording devices is a thermal transfer recording device. In this method, recording is performed on a recording paper using an ink ribbon made by coating a ribbon-shaped support with a heat-melt ink made by dispersing a colorant in a heat-melt binder. That is, the ink ribbons are stacked so that their heat-melting ink layers are in contact with the recording paper, and the ink ribbon and the recording paper are conveyed between a thermal head and a platen, and the ink ribbon is transferred from the support side of the ink ribbon to the thermal head. A device that records an ink image on the recording paper according to the heat application by applying pulsed heat according to the image signal and pressing the two and transferring the molten ink to the recording paper. It is. The above recording apparatus has been widely used in recent years because it is small and lightweight, has no noise, and can record on plain paper. <Problems to be Solved by the Invention> However, conventional thermal transfer recording devices are not without problems. The reason is that in conventional thermal transfer recording devices, the transfer recording performance, that is, the image quality, is greatly affected by the flatness of the recording paper. In the case of paper, the image recording quality may deteriorate. Furthermore, in order to obtain a multicolor image with a conventional thermal transfer recording apparatus, it is necessary to repeat transfer to overlap the colors. For this purpose, it is necessary to install multiple thermal heads, or to make the recording paper make complicated movements such as stopping and reversing, which not only makes color misalignment unavoidable, but also makes the entire device large and complicated. There is a problem with this. <Means for solving the problem> Therefore, the present applicant used a photothermally sensitive polymer material, and when thermal energy and light energy were applied, the reaction of the polymer rapidly progressed and the transfer characteristics were irreversible. proposed a recording device that forms an image with different characteristics depending on the image signal and transfers it to a recording medium (Japanese Patent Application No. 120080-1980).
No. 60-120081, No. 60-131411, No. 60-134831
No. 60-150597, No. 60-199926). According to this recording device, it is possible to record high-quality images even on recording media with low surface smoothness, and when applied to multicolor recording, it is possible to record complex movements on the recording medium. It is possible to obtain multicolor images without any color distortion. The present invention is a further development of the recording apparatus described above, and aims to provide a recording apparatus that can record high-quality images even when the apparatus environment changes. To this end, the means described in the following embodiments is an apparatus for recording an image on a recording medium using a transfer recording medium having a transfer recording layer whose transfer characteristics change when light energy and thermal energy are applied. A recording comprising a heating means for applying thermal energy to a transfer recording medium provided along a conveyance path of the transfer recording medium and a light irradiation means for applying light energy to the transfer recording medium. an application amount control means for controlling at least one of thermal energy and optical energy in the recording section to a predetermined application amount; It is characterized by having a transfer section. <Operation> According to the above means, when the transfer recording medium and the recording medium are set in the apparatus and recording is performed, predetermined thermal energy and light energy are applied to the transfer recording medium in the recording section to form an image. In the transfer section, the transfer recording medium and the recording medium are overlapped, and the image is transferred to the recording medium. Furthermore, in the recording section, the application of thermal energy or light energy is controlled so that the amount of change in the transfer characteristics of the transfer recording layer is constant, so that high-quality images can always be obtained. <Example> Next, an example of the present invention to which the above means is applied will be described. FIG. 1A is a schematic cross-sectional diagram of the recording device;
FIG. 1b is a perspective explanatory view thereof. In the figure, reference numeral 1 denotes a transfer recording medium in the form of a long sheet, which is wound into a roll and is removably incorporated into the main body M of the apparatus as a supply roll 2.
That is, this supply roll 2 is removably loaded onto a rotatable shaft 2a provided in the main body M of the apparatus. Therefore, first, the leading edge of the transfer recording medium 1 is passed through the supply roll 2, the guide roller 12a, the recording head 3a, and the guide roller 12b, and then transferred to the transfer roller 4a.
and the pressure roller 4b, the peeling roller 5 and the guide roller 12c change the direction to reach the take-up roll 6, and the tip thereof is locked to the take-up roll 6 by means such as a gripper (not shown). do. Thereafter, the take-up roll 6 is driven and rotated by a known driving means, so that the transfer recording medium 1 is
The sheet is unwound in the direction and is sequentially wound around the circumferential surface of the winding roll 6. Incidentally, the supply roll 2 at the time of winding is equipped with, for example, a hysteresis brake (not shown).
A constant back tension is applied by the guide rollers 12a, 12.
b, the transfer recording medium 1 is conveyed while being pressed against the recording head 3a at a constant pressure and at a constant angle. Next, the configuration of each of the above-mentioned parts will be individually explained. First, the transfer recording medium 1 has a transfer recording layer 1b having a property of forming an image when both thermal energy and light energy are applied to a sheet-like support 1a, as shown in FIG. It is what it is. To explain one example, as shown in FIG. 2, the transfer recording layer 1b uses the components shown in Tables 1 and 2 as the cores 1c and 1d, and microcapsule-shaped image forming elements are formed by the method shown below. It forms. That is, first, 10 g of the ingredients shown in Tables 1 and 2 were mixed with 20 parts by weight of methylene chloride, and then mixed with 200 ml of water in which 1 g of gelatin was dissolved and a surfactant such as a cationic or nonionic surfactant with an HLB value of at least 10. 8000 in a homomixer heated at 60°C.
Stir and emulsify at ~10000ppm, average particle size 26μm
Obtain oil droplets. Further, stirring was continued for 30 minutes at 60° C. or below, and methylene chloride was distilled off to give an average particle size of 10 μm.
Add 20ml of water in which 1g of gum arabic has been dissolved, and slowly cool to dissolve NH 4 OH (ammonia).
Microcapsule slurry was obtained by adding water to make the pH above 11, and 20% glutaraldehyde
Slowly add 1.0 ml of the aqueous solution to harden the capsule wall. Thereafter, solid-liquid separation is carried out using a Nutsuchie filter, and drying is carried out at 35° C. for 10 hours in a vacuum dryer to obtain a microcapsule-shaped image forming element. This image forming element is formed into a microcapsule in which the cores 1c and 1d shown in Tables 1 and 2 are covered with a shell 1e, and has a particle size of 7 to 15 μm and an average particle size of 10 μm. The image forming element formed as described above is
The transfer recording layer 1b is formed by adhering the transfer recording layer 1b onto a support 1a made of polyethylene terephthalate having a thickness of 6 μm using an adhesive 1f, thereby forming the transfer recording medium 1. More specifically, first, as the adhesive 1f, two-component epoxy adhesives manufactured by Kanebo NSC Co., Ltd., such as Epolsion EAI and Epolsion EBI, were used. And the above eporsion
A liquid mixture of EAI and EBI at a ratio of 1:1 was diluted twice with water, applied on a polyethylene terephthalate film, and dried to obtain an adhesive layer. This adhesive layer remained sticky even after drying, and the thickness of the adhesive layer when cured separately was about 0.3 μm.
Next, a microcapsule-shaped image forming element having core materials as shown in Tables 1 and 2 obtained above is mixed in a ratio of 1:1 on the adhesive layer. I sprinkled it on and glued it. Thereafter, when the excess image forming element was brushed off, the image forming element was arranged on the adhesive layer in approximately one layer and at a ratio of 90%. The material obtained as described above was left in an environment of 100° C. for about 2 hours to harden the adhesive 1f, thereby forming a transfer recording medium 1 as shown in FIG. 2.
【表】【table】
【表】【table】
【表】
前記第1表で示す画像形成素体中の光開始剤
は、第3図の吸光特性に於いて、グラフAの帯域
の光を吸収して反応を開始し、画像形成時にはマ
ゼンタ色となり、また第表で示す画像形成素体中
の光開始剤は、第3図のグラフBに示した帯域の
光を吸収して反応を開始し、画像形成時には青色
となる。
次に記録部3について説明する。記録部3は加
熱手段と光照射手段とから構成されている。
加熱手段は記録ヘツド3aの表面に画信号に応
じて発熱する幅0.2mmであつて8ドツト/mmのA
−4サイズ、ラインタイプの発熱素子列3bが配
列されてなり、前述した通り転写記録媒体1の支
持体1a側が搬送の際のバツクテンシヨンによつ
て前記発熱素子列3bに所定圧力をもつて圧接す
るように構成されている。尚、前記画信号は用途
に応じて、例えばフアクシミリ、イメージスキヤ
ナ、或るいは電子黒板等の制御部(図示せず)か
ら発せられる。
一方記録ヘツド3aと対向した転写記録層1b
側には第4図に示すような分光特性をもつた20W
タイプの光照射手段たる2本の蛍光灯3c,3d
が転写記録媒体1よりも約25mm離れて配設されて
いる。
更に記録ヘツド3aに圧接している転写記録媒
体1の発熱素子列直上の領域にのみ蛍光灯3c,
3dの直接光が照射されるようにスリツト板3e
が転写記録媒体1より約0.5mmの距離を保つて、
開口幅が1.2mmとなるように設けられている。
尚、本実施例に於いては前記第4図のグラフA
に示す分光特性を持つた一方の蛍光灯3cとして
(株)東芝製の20W健康線用蛍光ランプFL20SEが用
いられ、グラフBに示す分光特性を持つた他方の
蛍光灯3dとしては(株)東芝製の20W蛍光灯
FL10A70E39が使用されている。
次に上記記録部3に於ける熱エネルギーと光エ
ネルギーとの付与量制御手段について説明する。
先ず熱エネルギー付与量の制御手段14について
説明すると、第6図に示すように記録ヘツド3a
の発熱素子列3bは画信号Gに応じて駆動するヘ
ツド駆動回路14aにより、ヘツド電源部14b
から電圧印加を受けて発熱するが、該記録ヘツド
3aのヘツド基板上にはサーミスタ14cが設け
られ、該サーミスタ14cからヘツド電源部14
bに基板温度情報が伝達され、その情報に応じて
発熱素子列3bへの印加電圧値が決定されるよう
に構成されている。 上記サーミスタ14cはヘ
ツド基板温度が高いときに抵抗値が低くなり、逆
にヘツド基板温度が低いときは高い抵抗値となる
ものであり、その抵抗変化によつて発熱素子列3
bへの印加電圧を第7図のグラフに示すように制
御する。即ち、第8図に示すように前記サーミス
タ14cは抵抗rと並列に接続され、他の3個の
抵抗R1,R2,R3とでブリツジを構成している。
そしてサーミスタ14cの抵抗変化によるブリツ
ジの不平衡電圧がオペアンプ14dに供給され、
該オペアンプ14dに出力に応じ、電源部14e
から発熱素子列3bに印加する電圧をタイミング
信号Sに同期して第7図のグラフに示す如く制御
するように構成している。
従つて、発熱素子列3bは装置内温度が低い時
や非印字時、即ち記録ヘツドの温度が低い時は高
い発熱量で、逆に装置内温度が高い時や連続印字
時、即ち記録ヘツドの温度が高い時は低い発熱量
で発熱する。
次に2本の蛍光灯3c,3dには夫々光エネル
ギーの付与量制御手段15が設けられている。そ
の構成を蛍光灯3cの場合で説明すると、第9図
に示すよう蛍光灯3cの光量はフオトダイオード
等よりなる受光素子15aによつて検出され、該
受光素子15aの出力が基準電圧15bと共に誤
差検出器15cに供給される。この誤差検出器1
5cの出力は管電流制御回路15dに送られ、該
回路15dによつて光量に応じた管電流を蛍光灯
3cへ流すように構成している。
また蛍光灯3cの表面にはサーミスタ15eが
設けられ、該サーミスタ15eによつて検出され
た温度情報が基準電圧15fと共に誤差検出器1
5gに供給され、誤差検出器15gの出力により
フアンスイツチング回路15hが動作して蛍光灯
3cに隣接して取り付けられたフアン15iを動
作させるように構成している。
本実施例では上記管電流制御回路15dは電源
投入より蛍光灯3cの光量が所定値に達するまで
は約600mAを蛍光灯3cに流し、所定値に達し
た後は約400mAを流すように設定してある。ま
たフアンスイツチング回路15hは蛍光灯3cの
表面温度が約50℃より高くなつた時にフアン15
iを動作させるように設定してある。
次に転写部4について説明する。転写部4は前
記記録部3よりも転写記録媒体1の搬送方向下流
側に配設され、第1図に示す如く矢印b方向に駆
動回転する転写ローラ4aと、該転写ローラ4a
に圧接した加圧ローラ4bとによつて構成されて
いる。
前記転写ローラ4aは、表面が1mm厚で硬度70
度のシリコンゴムによつて被覆された直径40mmの
アルミローラで構成され、且つ内蔵された800W
とハロゲンヒータ4cによつて表面が90〜100℃
に保持されるように構成されている。
また加圧ローラ4bは、硬度70度とシリコンゴ
ムによつて1mm厚に被覆された直径30mmのアルミ
ローラからなり、図示しないバネ等の加圧手段に
よつて転写ローラ4aとの押圧力が6〜7Kgf/
cmになるように圧接されている。
またカセツト7内に積載された被記録媒体たる
記録紙8は、給送ローラ9、レジスタローラ対1
0a,10bによつて、転写記録媒体1の像領域
と重なるように同期して転写部4へ給送される如
く構成している。
次に上記の如く構成された記録装置によつて記
録を行なつた場合の作用について説明する。
尚、次に述べる実施例では、熱を画信号に応じ
て付与し、光は一様に付与する例を示す。
図示しないモーターを駆動させて転写記録媒体
1を供給ロール2から順次繰り出し、記録部3に
於いて転写記録媒体1の転写記録層1bに光と熱
とを画信号に応じて付与すると像が形成される。
即ち、転写記録層1bは所定波長の光と熱とが
付与されると軟化点温度が上昇し、記録紙8に転
写されなくなる性質を有している為に第5図のタ
イミングチヤートに示すようち、マゼンタ色記録
に際しては発熱素子列3bのうち画信号のマゼン
タに相当する発熱素子に通電せず、画信号の白
(記録紙8は白色とする)に相当する部分に25m
sの通電を行ない、5msの遅れをもつて蛍光灯
3cを一様に照射する。このときの照射時間は45
msとする。
次に青色記録に際しては、前記照射終了後50m
s経過してから、即ち前記通電時間より100ms
後に今度は発熱素子列3bのうち画信号の青に相
当する発熱素子には通電せずに画信号の白に相当
する部分に25msの通電を行い、5ms後に蛍光
灯3dを一様に照射する。このときの照射時間も
前記と同様に45msである。
以上のような要領で青、マゼンタ、白の画信号
に応じて、記録ヘツド3aを制御して転写記録層
1bにネガ像を形成し、200ms/1ineの繰り返
し周期で同期して転写記録媒体1を搬送する。
上記記録部3でエネルギーを付与するに際し、
熱エネルギー付与量制御手段14によつて、記録
ヘツドの温度が低いときは発熱素子列3bの発熱
量が大きくなり、逆に記録ヘツドの温度が高いと
きは発熱量が小さくなるように制御されるので転
写記録層1bには常に一定の熱エネルギーが付与
され、また光エネルギー付与制御手段15によつ
て蛍光灯の光量が少ない電源投入時には蛍光灯に
大きな管電流が流されるので転写記録層1bに付
与される光エネルギーも常に一定となる。従つて
転写記録媒体1には装置環境や印字状態に影響さ
れることなく画情報に応じて高品位のネガ像が形
成される。
上記のようにしてネガ像が形成された転写記録
媒体1は転写部4に於いて記録紙8と重なり合
い、転写ローラ4aと加圧ローラ4bとによつて
加熱押圧されて前記像を記録紙8に転写する。
その後、上記記録紙8は剥離ローラ5によつて
転写記録媒体1と剥離され、所望の画像記録が行
われた記録紙8は排出ローラ対13a,13bに
よつて排出トレー11に排出される。
上記の如くして青、マゼンタ2色の転写記録が
ワンシヨツトで、且つ装置環境等に影響を受ける
ことなく行われる。
<他の実施例>
前述の構成に於いて加熱手段としては記録ヘツ
ド3aを用いる方法の他に、YAGレーザーとポ
リゴンミラーを用いて選択的に加熱する方法等を
使用しても良い。
また光照射手段としては、前述の蛍光灯3c,
3dを用いる方法の他、例えばLEDアレイを用
いる方法、或るいはキセノンランプと材料の吸光
特性に合つたフイルターを用いる方法等が使用出
来る。
また前述の実施例では発熱素子列3bへの印加
電圧値を制御することによつて熱エネルギーの付
与量を制御したが、他の例として電圧印加時間を
制御するようにしても良く、更には発熱素子列3
bの1ライン分の発熱比率の変化に伴う電圧変動
による発熱量変化を補正して制御する構成、或い
は発熱素子列3bのうち特定の発熱素子の連続発
熱に伴う温度上昇による発熱量のバラツキを補正
する制御構成にしても良い。
光エネルギー付与量制御手段15も前述の実施
例では管電流の大きさを変えることによつて光エ
ネルギーの付与量を制御したが、他の例として蛍
光灯を点灯する時間を変えることによつて付与量
を制御するようにしても良い。
更に熱エネルギーと光エネルギーの付与量制御
手段14,15の双方を設けなくても、いずれか
一方の制御手段を設ける構成にしても良い。例え
ば光エネルギーの付与量の変化が環境温度等に影
響されず、略無視出来る場合は熱エネルギーの付
与量のみを制御するだけでも高品位の画像を得る
ことが出来る。
また前述の実施例では記録部3に於いて、転写
記録媒体1の転写記録層1b側から所望の色に応
じた所定波長の光を一様に照射すると共に、支持
体1a側から画信号に応じた熱を印加する構成で
あつたが、他の実施例として熱を一様に印加する
と共に、所定の光を画信号に応じて照射する構成
にしても良い。
また支持体1aを透光性の材質で構成すれば、
支持体1a側から光を照射すると共に、転写記録
層1b側から熱を印加する構成にしても良い。
更に前記実施例では支持体1aを挟んで光照射
と熱印加を行なつたが、これとは別に支持体1a
の片側から光照射と熱印加の双方を行うようにし
ても像形成は可能である。
また支持体1aの材料としては、前述のポリエ
チレンテレフタレートの他に、例えばポリアミ
ド、或るいはポリイミド、コンデンサー紙、セロ
ハン紙等も使用出来る。
更に記録媒体としては、前述の記録紙に限定さ
れるものでなく、例えばオーバーヘツドプロジエ
クター(OHP)用のプラスチツクシート等も当
然に使用することが出来る。
尚、前述の実施例では転写記録層1bに光エネ
ルギーと熱エネルギーとを同時に付与するように
したが、光エネルギーと熱エネルギーとは別々に
付与する構成であつても、結果的に両エネルギー
が付与される構成であれば良い。
更に前述の実施例では2色記録の例で説明した
が、画像形成素体を構成する着色剤及び光開始剤
の種類を適宜選定し、且つ前記光開始剤を反応さ
せる波長の光源を選定することによつて単色、或
るいはフルカラーの記録画像を得ることも出来
る。
更に前述の実施例に於いては、光エネルギーと
熱エネルギーによつて着色剤を含んだ高分子材料
の転写記録層1bの軟化点温度の変化によつて、
被記録媒体へ像を転写記録する例を示したが、被
記録媒体への接着特性、或るいは昇華特性の違い
によつて像を転写記録するようにしても良い。或
るいは被記録媒体に発色性をもたせて、該被記録
媒体の発色特性を変化させるような層を転写記録
媒体に設け、該転写記録媒体に形成した像を被記
録媒体へ転写することによつて、画像の記録を得
るように構成しても良い。
更に転写記録層1bとしては熱溶融性、熱軟化
性、或いは熱昇華性等の性質を有するものを適宜
選択して使用することも可能である。
また転写部4は転写ローラ4a及び加圧ローラ
4bのようにローラ状のものに限定されるもので
なく、例えば回転ベルトの如きもの等所望の圧が
得られる構成であれば良い。
更に必要に応じて転写部4で画像転写された被
記録媒体の像を定着させる定着手段を被記録媒体
の搬送方向であつて、剥離ローラの下流側に設け
るようにしても良い。
<発明の効果>
本発明は上述の如く、転写記録媒体への像の形
成と、この像の被記録媒体への転写とを順次行う
ので、表面平滑度の比較的低い被記録媒体にも画
像記録を良好に行うことが出来る。また本発明を
多色記録に応用した場合には、被記録媒体に複雑
な動きをさせることなく多色の画像を得ることが
出来る。
また像形成時には転写記録層の転写特性の変化
量が一定となるように熱エネルギーと光エネルギ
ーとの少なくとも一方が制御されるので、装置環
境に影響されることなく高品位の画像を得ること
が出来る。[Table] The photoinitiator in the image forming element shown in Table 1 absorbs light in the band of graph A in the light absorption characteristics shown in FIG. The photoinitiator in the image-forming element shown in Table 3 absorbs light in the band shown in graph B in FIG. 3 and starts a reaction, resulting in a blue color during image formation. Next, the recording section 3 will be explained. The recording section 3 is composed of heating means and light irradiation means. The heating means generates heat on the surface of the recording head 3a according to the image signal with a width of 0.2 mm and an A of 8 dots/mm.
-4 size, line type heating element rows 3b are arranged, and as described above, the support 1a side of the transfer recording medium 1 is applied with a predetermined pressure to the heating element rows 3b by back tension during conveyance. It is configured to be pressed into contact. The image signal is generated from a control unit (not shown) of, for example, a facsimile, an image scanner, or an electronic whiteboard, depending on the purpose. On the other hand, the transfer recording layer 1b facing the recording head 3a
On the side is a 20W battery with spectral characteristics as shown in Figure 4.
Two types of fluorescent lamps 3c and 3d serve as light irradiation means.
is arranged approximately 25 mm away from the transfer recording medium 1. Further, a fluorescent lamp 3c is installed only in the area directly above the row of heating elements of the transfer recording medium 1 that is in pressure contact with the recording head 3a.
Slit plate 3e so that the direct light of 3d is irradiated.
is kept at a distance of about 0.5 mm from the transfer recording medium 1,
The opening width is 1.2mm. In this example, graph A in FIG.
As a fluorescent lamp 3c with the spectral characteristics shown in
A 20W fluorescent lamp FL20SE manufactured by Toshiba Corporation was used, and the other fluorescent lamp 3d having the spectral characteristics shown in graph B was a 20W fluorescent lamp manufactured by Toshiba Corporation.
FL10A70E39 is used. Next, the means for controlling the amount of thermal energy and optical energy applied in the recording section 3 will be explained.
First, the control means 14 for controlling the amount of thermal energy applied will be explained. As shown in FIG.
The heating element array 3b is powered by a head power supply section 14b by a head drive circuit 14a that is driven in accordance with the image signal G.
A thermistor 14c is provided on the head substrate of the recording head 3a, and the head power source 14 is connected to the thermistor 14c from the thermistor 14c.
The substrate temperature information is transmitted to the heating element array 3b, and the voltage value applied to the heating element array 3b is determined in accordance with the information. The thermistor 14c has a low resistance value when the head substrate temperature is high, and a high resistance value when the head substrate temperature is low.
The voltage applied to b is controlled as shown in the graph of FIG. That is, as shown in FIG. 8, the thermistor 14c is connected in parallel with the resistor r, and forms a bridge with the other three resistors R 1 , R 2 , and R 3 .
Then, the unbalanced voltage of the bridge due to the resistance change of the thermistor 14c is supplied to the operational amplifier 14d,
According to the output of the operational amplifier 14d, the power supply section 14e
The voltage applied to the heating element array 3b is controlled in synchronization with the timing signal S as shown in the graph of FIG. Therefore, the heating element array 3b generates a high amount of heat when the internal temperature of the device is low or when not printing, that is, when the recording head temperature is low, and conversely, when the internal temperature of the device is high or when continuous printing is performed, that is, when the recording head is When the temperature is high, it generates heat with a low calorific value. Next, each of the two fluorescent lamps 3c and 3d is provided with a light energy application amount control means 15. To explain its configuration in the case of a fluorescent lamp 3c, as shown in FIG. 9, the light intensity of the fluorescent lamp 3c is detected by a light receiving element 15a made of a photodiode or the like, and the output of the light receiving element 15a has an error along with a reference voltage 15b. The signal is supplied to the detector 15c. This error detector 1
The output of the fluorescent lamp 5c is sent to a tube current control circuit 15d, and the circuit 15d is configured to cause a tube current corresponding to the amount of light to flow to the fluorescent lamp 3c. Further, a thermistor 15e is provided on the surface of the fluorescent lamp 3c, and the temperature information detected by the thermistor 15e is sent to the error detector 1 along with the reference voltage 15f.
5g, and the fan switching circuit 15h is operated by the output of the error detector 15g to operate the fan 15i attached adjacent to the fluorescent lamp 3c. In this embodiment, the tube current control circuit 15d is set to flow approximately 600 mA to the fluorescent lamp 3c from the time the power is turned on until the light intensity of the fluorescent lamp 3c reaches a predetermined value, and after reaching the predetermined value, to flow approximately 400 mA. There is. Further, the fan switching circuit 15h switches the fan 15 when the surface temperature of the fluorescent lamp 3c becomes higher than about 50°C.
i is set to operate. Next, the transfer section 4 will be explained. The transfer section 4 is disposed downstream of the recording section 3 in the conveyance direction of the transfer recording medium 1, and includes a transfer roller 4a that rotates in the direction of arrow b as shown in FIG. 1, and a transfer roller 4a.
The pressure roller 4b is in pressure contact with the pressure roller 4b. The surface of the transfer roller 4a has a thickness of 1 mm and a hardness of 70.
Consists of a 40mm diameter aluminum roller covered with high-grade silicone rubber, and has a built-in 800W
The surface is heated to 90-100℃ by halogen heater 4c.
It is configured to be held in The pressure roller 4b is made of an aluminum roller with a diameter of 30 mm and coated with silicone rubber with a hardness of 70 degrees and a thickness of 1 mm.The pressure roller 4b has a pressing force of 6 mm against the transfer roller 4a by a pressure means such as a spring (not shown). ~7Kgf/
It is pressed so that it is cm. Further, the recording paper 8, which is a recording medium loaded in the cassette 7, is transported by a feeding roller 9 and a register roller pair 1.
0a and 10b, the transfer recording medium 1 is configured to be fed to the transfer section 4 in synchronization so as to overlap with the image area of the recording medium 1. Next, the operation when recording is performed using the recording apparatus configured as described above will be explained. In the embodiment described below, an example will be shown in which heat is applied in accordance with an image signal and light is applied uniformly. An image is formed by driving a motor (not shown) to sequentially feed out the transfer recording medium 1 from the supply roll 2, and applying light and heat to the transfer recording layer 1b of the transfer recording medium 1 in the recording section 3 according to the image signal. be done. That is, when the transfer recording layer 1b is exposed to light and heat of a predetermined wavelength, its softening point temperature increases and it is no longer transferred to the recording paper 8. Therefore, as shown in the timing chart of FIG. Specifically, when recording magenta color, the heating elements of the heating element row 3b corresponding to magenta of the image signal are not energized, and the portion corresponding to the white of the image signal (recording paper 8 is white) is heated for 25 m.
The fluorescent lamp 3c is energized uniformly with a delay of 5 ms. The irradiation time at this time was 45
Let it be ms. Next, when recording blue, 50m after the end of the irradiation.
After s has elapsed, that is, 100ms from the energization time
Later, in the heating element row 3b, the heating element corresponding to the blue color of the image signal is not energized, but the portion corresponding to the white color of the image signal is energized for 25 ms, and after 5 ms, the fluorescent lamp 3d is uniformly irradiated. . The irradiation time at this time was also 45 ms, similar to the above. In the manner described above, the recording head 3a is controlled according to the blue, magenta, and white image signals to form a negative image on the transfer recording layer 1b, and the transfer recording medium 1 is synchronously formed at a repeating cycle of 200 ms/1ine. transport. When applying energy in the recording section 3,
Thermal energy application amount control means 14 controls the heat generation amount of the heating element array 3b to be large when the temperature of the recording head is low, and conversely to be small when the temperature of the recording head is high. Therefore, a constant thermal energy is always applied to the transfer recording layer 1b, and a large tube current is applied to the transfer recording layer 1b by the light energy application control means 15 when the power is turned on when the light intensity of the fluorescent lamp is low. The applied light energy is also always constant. Therefore, a high-quality negative image is formed on the transfer recording medium 1 according to the image information without being affected by the device environment or printing conditions. The transfer recording medium 1 on which the negative image has been formed as described above overlaps the recording paper 8 in the transfer section 4, and is heated and pressed by the transfer roller 4a and the pressure roller 4b to transfer the image onto the recording paper 8. Transfer to. Thereafter, the recording paper 8 is separated from the transfer recording medium 1 by a peeling roller 5, and the recording paper 8 on which the desired image has been recorded is discharged onto a discharge tray 11 by a pair of discharge rollers 13a and 13b. As described above, transfer recording of two colors, blue and magenta, is performed in one shot and without being affected by the apparatus environment or the like. <Other Embodiments> In the above-described configuration, in addition to the method of using the recording head 3a as the heating means, a method of selectively heating using a YAG laser and a polygon mirror, etc. may be used. Further, as the light irradiation means, the above-mentioned fluorescent lamp 3c,
In addition to the method using 3D, for example, a method using an LED array, a method using a xenon lamp and a filter matching the light absorption characteristics of the material, etc. can be used. Further, in the above-mentioned embodiment, the amount of thermal energy applied was controlled by controlling the voltage applied to the heating element array 3b, but as another example, the voltage application time may be controlled. Heating element row 3
A configuration that corrects and controls changes in the amount of heat generated due to voltage fluctuations associated with changes in the heat generation ratio for one line of line b, or a configuration that corrects and controls variations in the amount of heat generated due to temperature increases due to continuous heat generation of a specific heating element in the heating element array 3b. A control configuration that performs correction may also be used. The light energy application amount control means 15 also controls the amount of light energy application by changing the magnitude of the tube current in the above-mentioned embodiment, but in another example, the amount of light energy application can be controlled by changing the lighting time of the fluorescent lamp. The amount of application may be controlled. Furthermore, it is not necessary to provide both the application amount control means 14 and 15 of thermal energy and light energy, but a configuration may be adopted in which either one of the control means is provided. For example, if changes in the amount of applied light energy are not affected by environmental temperature and the like and can be substantially ignored, high-quality images can be obtained by controlling only the amount of applied thermal energy. Further, in the above-mentioned embodiment, in the recording section 3, light of a predetermined wavelength corresponding to a desired color is uniformly irradiated from the transfer recording layer 1b side of the transfer recording medium 1, and image signals are applied from the support 1a side. However, as another embodiment, heat may be applied uniformly and a predetermined light may be irradiated in accordance with the image signal. Furthermore, if the support 1a is made of a translucent material,
A configuration may be adopted in which light is irradiated from the support 1a side and heat is applied from the transfer recording layer 1b side. Furthermore, in the above embodiment, light irradiation and heat application were performed with the support 1a in between, but apart from this, the support 1a
Image formation is also possible by performing both light irradiation and heat application from one side. In addition to the above-mentioned polyethylene terephthalate, for example, polyamide, polyimide, capacitor paper, cellophane paper, etc. can also be used as the material for the support 1a. Further, the recording medium is not limited to the above-mentioned recording paper, and for example, a plastic sheet for an overhead projector (OHP) can also be used. Incidentally, in the above embodiment, light energy and thermal energy were applied to the transfer recording layer 1b at the same time, but even if the configuration is such that the optical energy and thermal energy are applied separately, the result is that both energies are applied separately. Any configuration that is given is acceptable. Furthermore, although the above-mentioned embodiment has been explained using an example of two-color recording, the types of colorant and photoinitiator constituting the image forming element are appropriately selected, and a light source with a wavelength that causes the photoinitiator to react is selected. In this way, monochromatic or full-color recorded images can be obtained. Furthermore, in the above-mentioned embodiment, the softening point temperature of the transfer recording layer 1b of the polymeric material containing the colorant is changed by light energy and thermal energy.
Although an example has been shown in which the image is transferred and recorded onto the recording medium, the image may be transferred and recorded based on differences in adhesive properties or sublimation characteristics to the recording medium. Alternatively, a layer that changes the coloring characteristics of the recording medium by imparting color development to the recording medium is provided on the transfer recording medium, and the image formed on the transfer recording medium is transferred to the recording medium. Therefore, it may be configured to obtain a record of an image. Further, as the transfer recording layer 1b, it is also possible to appropriately select and use a material having properties such as heat melting property, heat softening property, or heat sublimation property. Further, the transfer section 4 is not limited to roller-shaped rollers such as the transfer roller 4a and the pressure roller 4b, but may be of any configuration that can obtain a desired pressure, such as a rotating belt. Further, if necessary, a fixing means for fixing the image on the recording medium onto which the image has been transferred by the transfer section 4 may be provided in the conveying direction of the recording medium and downstream of the peeling roller. <Effects of the Invention> As described above, the present invention sequentially performs the formation of an image on a transfer recording medium and the transfer of this image to a recording medium, so that an image can be formed even on a recording medium with a relatively low surface smoothness. Recording can be performed well. Furthermore, when the present invention is applied to multicolor recording, a multicolor image can be obtained without making any complicated movements on the recording medium. Furthermore, during image formation, at least one of thermal energy and light energy is controlled so that the amount of change in the transfer characteristics of the transfer recording layer is constant, making it possible to obtain high-quality images without being affected by the device environment. I can do it.
第1図A,Bは本発明の一実施例の全体模式説
明図、第2図は転写記録媒体の構成説明図、第3
図は転写記録媒体中の光開始剤の吸光特性を示す
説明図、第4図は光照射手段の分光特性を示す説
明図、第5図は熱及び光を付与するタイミングチ
ヤート、第6図及び第8図は熱エネルギー付与量
制御手段の構成説明図、第7図はヘツド基板温度
とヘツド印加電圧の関係を示すグラフ、第9図は
光エネルギー付与量制御手段の構成説明図であ
る。
1は転写記録媒体、1aは支持体、1bは転写
記録層、1c,1dはコア、1eはシエル、1f
は付着剤、2は供給ロール、2aは供給ロール
軸、3は記録部、3aは記録ヘツド、3bは発熱
素子列、3c,3dは蛍光灯、3eはスリツト
板、4は転写部、4aは転写ローラ、4bは加圧
ローラ、4cはヒータ、5は剥離ローラ、6は巻
取りロール、7はカセツト、8は記録紙、9は給
送ローラ、10a,10bはレジスタローラ、1
1は排出トレー、12a,12b,12cはガイ
ドローラ、13a,13bは排出ローラ、14は
熱エネルギー付与量制御手段、14aはヘツド駆
動回路、14bはヘツド電源部、14cはサーミ
スタ、14dはオペアンプ、14eは電源部、1
5は光エネルギー付与量制御手段、15aは受光
素子、15bは基準電圧、15cは誤差検出器、
15dは管電流制御回路、15eはサーミスタ、
15fは基準電圧、15gは誤差検出器、15h
はスイツチング回路、15iはフアンである。
1A and 1B are general schematic explanatory diagrams of one embodiment of the present invention, FIG. 2 is an explanatory diagram of the configuration of a transfer recording medium, and FIG.
The figure is an explanatory diagram showing the light absorption characteristics of the photoinitiator in the transfer recording medium, FIG. 4 is an explanatory diagram showing the spectral characteristics of the light irradiation means, FIG. 5 is a timing chart for applying heat and light, and FIG. FIG. 8 is an explanatory diagram of the structure of the thermal energy application amount control means, FIG. 7 is a graph showing the relationship between head substrate temperature and head applied voltage, and FIG. 9 is a construction explanatory diagram of the optical energy application amount control means. 1 is a transfer recording medium, 1a is a support, 1b is a transfer recording layer, 1c and 1d are cores, 1e is a shell, 1f
2 is an adhesive, 2 is a supply roll, 2a is a supply roll shaft, 3 is a recording section, 3a is a recording head, 3b is a heating element array, 3c and 3d are fluorescent lamps, 3e is a slit plate, 4 is a transfer section, 4a is Transfer roller, 4b is a pressure roller, 4c is a heater, 5 is a peeling roller, 6 is a winding roll, 7 is a cassette, 8 is a recording paper, 9 is a feeding roller, 10a and 10b are register rollers, 1
1 is a discharge tray, 12a, 12b, 12c are guide rollers, 13a, 13b are discharge rollers, 14 is a heat energy application amount control means, 14a is a head drive circuit, 14b is a head power supply section, 14c is a thermistor, 14d is an operational amplifier, 14e is the power supply section, 1
5 is a light energy application amount control means, 15a is a light receiving element, 15b is a reference voltage, 15c is an error detector,
15d is a tube current control circuit, 15e is a thermistor,
15f is the reference voltage, 15g is the error detector, 15h
is a switching circuit, and 15i is a fan.
Claims (1)
ことによつて転写特性が変化する転写記録層を有
する転写記録媒体を用いて被記録媒体に画像を記
録する装置であつて、 前記転写記録媒体の搬送経路に沿つて設けられ
た、前記転写記録媒体に前記熱エネルギーを付与
するための加熱手段と、前記転写記録媒体に前記
光エネルギーを付与するための光照射手段とを有
する記録部と、 前記記録部の温度を検出し、前記検出結果に応
じて前記熱エネルギーの付与量を制御するための
制御手段と、前記記録部の光量を検出し、前記検
出結果に応じて前記光エネルギーの付与量を制御
するための制御手段の、少なくとも一方を有する
付与量制御手段と、 前記記録部で前記転写記録媒体に形成された像
を被記録媒体に転写するための転写部と、 を有することを特徴とした記録装置。[Scope of Claims] 1. An apparatus for recording an image on a recording medium using a transfer recording medium having a transfer recording layer whose transfer characteristics change upon application of light energy and thermal energy, comprising: A heating means provided along a conveyance path of the transfer recording medium for applying the thermal energy to the transfer recording medium, and a light irradiation means for applying the light energy to the transfer recording medium. a recording section; a control means for detecting the temperature of the recording section and controlling the amount of heat energy applied according to the detection result; and a control means for detecting the amount of light of the recording section and controlling the amount of heat energy applied according to the detection result. an application amount control means having at least one of the control means for controlling the application amount of light energy; a transfer section for transferring an image formed on the transfer recording medium by the recording section to a recording medium; A recording device characterized by having:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61156206A JPS6313762A (en) | 1986-07-04 | 1986-07-04 | Recorder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61156206A JPS6313762A (en) | 1986-07-04 | 1986-07-04 | Recorder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6313762A JPS6313762A (en) | 1988-01-21 |
JPH0511555B2 true JPH0511555B2 (en) | 1993-02-15 |
Family
ID=15622685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61156206A Granted JPS6313762A (en) | 1986-07-04 | 1986-07-04 | Recorder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6313762A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4723357B2 (en) * | 2005-11-22 | 2011-07-13 | 株式会社サトー | How to use temporary labels |
-
1986
- 1986-07-04 JP JP61156206A patent/JPS6313762A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6313762A (en) | 1988-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63134261A (en) | Recorder | |
JPH0511555B2 (en) | ||
JP2525579B2 (en) | Recording device | |
JP2525580B2 (en) | Recording device | |
JP2525576B2 (en) | Recording device | |
JP2607872B2 (en) | Recording method | |
JP2518611B2 (en) | Recording device | |
JP2525575B2 (en) | Recording device | |
JPS6313760A (en) | Recorder | |
JP2525572B2 (en) | Recording device | |
JPS6313757A (en) | Recorder | |
JPS6313763A (en) | Recorder | |
JPH0511557B2 (en) | ||
JPS6351161A (en) | Recording apparatus | |
JPS6353058A (en) | Recording apparatus | |
JPS62261463A (en) | Recorder | |
JPS6369672A (en) | Recording apparatus | |
JPS6313759A (en) | Recorder | |
JPS6351170A (en) | Recorder | |
JPS63191658A (en) | Recorder | |
JPH0511556B2 (en) | ||
JPS6351162A (en) | Recording apparatus | |
JPS637953A (en) | Recording apparatus | |
JPS63139753A (en) | Recorder | |
JPH0737145B2 (en) | Recording device |