JPH0511480B2 - - Google Patents
Info
- Publication number
- JPH0511480B2 JPH0511480B2 JP17748284A JP17748284A JPH0511480B2 JP H0511480 B2 JPH0511480 B2 JP H0511480B2 JP 17748284 A JP17748284 A JP 17748284A JP 17748284 A JP17748284 A JP 17748284A JP H0511480 B2 JPH0511480 B2 JP H0511480B2
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- container
- sensor
- sound
- optical fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000013307 optical fiber Substances 0.000 claims description 69
- 230000005540 biological transmission Effects 0.000 claims description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 7
- 239000012528 membrane Substances 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- 230000008602 contraction Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H9/00—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
- G01H9/004—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Light Guides In General And Applications Therefor (AREA)
- Transducers For Ultrasonic Waves (AREA)
- Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は光フアイバを用いて水中の音響信号を
検出するセンサに関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a sensor that detects underwater acoustic signals using optical fibers.
(従来の技術)
従来、光フアイバを用いて水中の音響信号を検
出する方法として、音場内に置かれた光フアイバ
と音場外の光フアイバとを通つた光を干渉させ、
音波によつて変化した光の位相を検出するいわゆ
る光干渉法(例えば日本音響学会誌40巻2号
(1984)P101−P106)、光の伝送経路の一部に光
の伝送損失を起こす構造を付加し、そこに音波を
あてて伝送損失の変化を起こさせ、音波を通過光
の強度変化として検出するいわゆる光強度変調法
(例えば日本音響学会誌40巻3号(1984)P175−
180)等が発表されていた。(Prior Art) Conventionally, as a method for detecting underwater acoustic signals using optical fibers, light passing through an optical fiber placed in the sound field and an optical fiber outside the sound field is made to interfere with each other.
The so-called optical interference method detects the phase of light changed by sound waves (for example, Journal of the Acoustical Society of Japan, Vol. 40, No. 2 (1984), P101-P106), which uses a structure that causes optical transmission loss in part of the optical transmission path. The so-called light intensity modulation method (for example, the so-called optical intensity modulation method, in which a sound wave is applied to the light to cause a change in the transmission loss, and the sound wave is detected as a change in the intensity of the passing light) (for example, the Acoustical Society of Japan, Vol. 40, No. 3 (1984), P175-
180) etc. were announced.
(発明が解決しようとする問題)
しかしながら、上記方法はいずれも原理的な方
法で、温度変動、光フアイバの振動、光源変動な
どによる出力の変動の影響など実用上重要な事項
は考慮していないという欠点があつた。(Problem to be solved by the invention) However, all of the above methods are based on principles and do not take into consideration practically important matters such as the effects of output fluctuations due to temperature fluctuations, optical fiber vibrations, light source fluctuations, etc. There was a drawback.
(問題点を解決するための手段)
本発明は、耐水圧容器と遮音構造容器とゴム容
器とからなる円筒状の容器を構成し、両端面に反
透膜を有する同質、同長の第1および第2のセン
サ用光フアイバのうち第1のセンサ用光フアイバ
の一部分を上記ゴム容器内に設置し、第2のセン
サ用光フアイバの一部分を上記遮音構造容器内に
設置し、上記ゴム容器と遮音構造容器とを連通す
る複数の小さな通路を設けて両容器内に液体を充
填し、また上記耐水圧容器内には上記第1および
第2のセンサ用光フアイバ長調整用圧電体を設け
ると共に該第1および第2のセンサ用光フアイバ
と伝送用光フアイバとをそれぞれ接続してなるこ
とを特徴とする光フアイバハイドロホンである。(Means for Solving the Problems) The present invention comprises a cylindrical container consisting of a water pressure resistant container, a sound insulating structure container, and a rubber container, and has a first tube of the same quality and length that has anti-permeable membranes on both end surfaces. A part of the first optical fiber for a sensor among the optical fibers for a second sensor is installed in the rubber container, a part of the optical fiber for a second sensor is installed in the sound-insulating structure container, and a part of the optical fiber for a second sensor is installed in the sound-insulating structure container, A plurality of small passages communicating with the sound-insulating structure container are provided to fill both containers with liquid, and a piezoelectric body for adjusting the length of the optical fiber for the first and second sensors is provided in the water pressure resistant container. The present invention is an optical fiber hydrophone characterized in that the first and second sensor optical fibers and transmission optical fibers are connected to each other.
(作用)
上記光フアイバハイドロホンを水中の音場に置
いた場合、第1のセンサ用光フアイバは音響信号
の影響を受けてその長さと屈折率に変化を生じそ
の干渉出力が変化する。第のセンサ用光フアイバ
は遮音構造の容器内にあり、音響信号の影響を受
けないのでその干渉出力は変化しない。この両干
渉出力を光伝送用光フアイバを介して光検出器に
伝送しその差を求めて音響信号を検出する。ここ
で、上記ゴム容器、遮音構造容器内にそれぞれ設
けられている第1,第2のセンサ用光フアイバ
は、充填され、小孔を通して流通する液体により
同一温度にすることができるので、温度変動によ
り生ずる出力変動は同一となり、両干渉出力の差
を求めることにより温度変動の影響を消去するこ
とができる。(Function) When the optical fiber hydrophone is placed in an underwater sound field, the first sensor optical fiber changes its length and refractive index under the influence of the acoustic signal, and its interference output changes. The optical fiber for the sensor is located in a sound-insulating structure and is not affected by the acoustic signal, so its interference output does not change. These interference outputs are transmitted to a photodetector via an optical fiber for optical transmission, and the difference between them is determined to detect an acoustic signal. Here, the first and second sensor optical fibers provided in the rubber container and the sound-insulating structure container, respectively, are filled and can be kept at the same temperature by the liquid flowing through the small holes, so temperature fluctuations can be prevented. The output fluctuations caused by this are the same, and by finding the difference between both interference outputs, it is possible to eliminate the influence of temperature fluctuations.
(実施例)
第2図は本発明の実施例を示すブロツク図であ
つて、レーザー発振器1から発射された光ビーム
2はビーム拡大器3で拡大される。拡大されたビ
ーム4はハーフミラー5で2つの経路光6,7に
分れ、レンズ8,9で集光し、伝送用光フアイバ
10,20の一方の端面から光フアイバ内に光を
入射させ伝送用光フアイバ内を伝搬させ、第1お
よび第2のセンサ用光フアイバ11,21の片端
面の半透膜12,22を通して第1および第2の
センサ用光フアイバ11,21内に入射する。入
射した光は半透膜12,13および22,23間
で多重反射をくり返し、そのうちの一部が半透膜
13,23を透過する。その透過した光を伝送用
光フアイバ16,26に入射させ、伝送し、光検
出器17,27で光の強度を検出し、増幅器1
8,28で増幅する。光検出器17,27の出力
はフアブリー・ペローの干渉計の原理に従つて、
第1および第2のセンサ用光フアイバ11,21
の長さl、半透膜の反射系数k、光の波長λ、多
重反射の回数nとすると次式の干渉出力Iに比例
する。(Embodiment) FIG. 2 is a block diagram showing an embodiment of the present invention, in which a light beam 2 emitted from a laser oscillator 1 is expanded by a beam expander 3. The expanded beam 4 is split into two path lights 6 and 7 by a half mirror 5, condensed by lenses 8 and 9, and made to enter the optical fibers from one end face of the transmission optical fibers 10 and 20. It propagates within the transmission optical fiber and enters the first and second sensor optical fibers 11, 21 through the semi-transparent membranes 12, 22 on one end surface of the first and second sensor optical fibers 11, 21. . The incident light undergoes multiple reflections between the semi-transparent films 12, 13 and 22, 23, and a portion of the light is transmitted through the semi-transparent films 13, 23. The transmitted light enters the transmission optical fibers 16 and 26 and is transmitted, the intensity of the light is detected by the photodetectors 17 and 27, and the amplifier 1
Amplify at 8,28. The outputs of the photodetectors 17 and 27 follow the principle of Fabry-Perot interferometer,
First and second sensor optical fibers 11, 21
The length l, the reflection coefficient k of the semi-transparent film, the wavelength λ of light, and the number of multiple reflections n are proportional to the interference output I of the following equation.
I=1/1+Ksim2β (1)
K=4k/1−k2 (2)
β=2πnl/λ (3)
(1)式の干渉出力Iは第3図の曲線32に示すよ
うな特性を示し、(3)式のβがπの整数倍毎に極大
値を有するので波長λを変化させるか、第1およ
び第2のセンサ用光フアイバ11,21の長さl
を変化させ干渉出力Iを調節する。光フアイバの
長さを調節する方法の1例として第1および第2
のセンサ用光フアイバ11,12の一部を圧電体
15,25に巻付け、音響信号がないときにそれ
ぞれの干渉出力Iが第3図の点線33で示すよう
にI0となりかつ2つの光学系の出力は同じ値を示
すように圧電体15,25に制御電源19,29
からそれぞれ直流電圧を印加し圧電体15,25
の伸縮に応じて光フアイバの長さを調節する。こ
のような状態で第1のセンサ用光フアイバの一部
を音場に晒し、第2のセンサ用光フアイバを遮音
し、第2図に示す点線14で囲んだ範囲内の光フ
アイバを音響センサ部とすれば音響信号により第
1のセンサ用光フアイバ11の長さと屈折率が変
化するのでその干渉出力Iは音響信号により変化
する。音響信号に晒されない方の干渉出力Iは一
定であるので増幅器18,28の出力の差を処理
回路30で求め、表示器31で表示すると音響信
号の強さに対応した出力が求められる。また、2
つの光学系において伝送用光フアイバ10と2
0,16と26、第1と第2のセンサ用光フアイ
バ11と21とをそれぞれ同質かつ同じ長さの光
フアイバとすることにより、温度の変動、伝送用
光フアイバの振動によつて生じる光強度の変化は
2つの光学系で同一となるので、増幅器18,2
8の出力の差を求めることにより上記光強度の変
化を消去することができる。レーザ発振器1の光
源変動による出力の変動も、レーザ光源1の出力
をハーフミラー5で2つに分けて用いているた
め、2つの光学系の差を求めることにより消去で
きる。 I=1/1+Ksim 2 β (1) K=4k/1−k 2 (2) β=2πnl/λ (3) The interference output I in equation (1) has the characteristics as shown in curve 32 in Figure 3. Since β in equation (3) has a maximum value at every integer multiple of π, either the wavelength λ can be changed or the length l of the first and second sensor optical fibers 11 and 21 can be changed.
is changed to adjust the interference output I. As an example of the method of adjusting the length of the optical fiber, the first and second
A part of the sensor optical fibers 11 and 12 are wound around the piezoelectric bodies 15 and 25, and when there is no acoustic signal, the interference output I of each becomes I 0 as shown by the dotted line 33 in FIG. Control power sources 19 and 29 are connected to the piezoelectric bodies 15 and 25 so that the output of the system shows the same value.
DC voltage is applied to the piezoelectric bodies 15 and 25, respectively.
The length of the optical fiber is adjusted according to the expansion and contraction of the fiber. In this state, a part of the first sensor optical fiber is exposed to the sound field, the second sensor optical fiber is sound-insulated, and the optical fiber within the range surrounded by the dotted line 14 shown in FIG. 2 is used as the acoustic sensor. Since the length and refractive index of the first sensor optical fiber 11 change depending on the acoustic signal, the interference output I changes depending on the acoustic signal. Since the interference output I on the side not exposed to the acoustic signal is constant, the difference between the outputs of the amplifiers 18 and 28 is determined by the processing circuit 30 and displayed on the display 31, so that the output corresponding to the strength of the acoustic signal is determined. Also, 2
Transmission optical fibers 10 and 2 in one optical system
By making optical fibers 0, 16 and 26, and the first and second sensor optical fibers 11 and 21 of the same quality and the same length, light generated by temperature fluctuations and vibrations of the transmission optical fibers can be reduced. Since the change in intensity is the same in the two optical systems, the amplifiers 18 and 2
By finding the difference between the outputs of 8, the above-mentioned change in light intensity can be eliminated. Fluctuations in the output of the laser oscillator 1 due to variations in the light source can also be eliminated by finding the difference between the two optical systems, since the output of the laser light source 1 is divided into two by the half mirror 5.
第1図は本発明の実施例を示す断面図であり第
2図に示す一点鎖線34内の構造であつて、この
部分が水中の音場に置かれる。中空容器36の内
側は遮音材38を内貼し遮音構造とする。中空容
器36の片側と該中空容器36の外径に等しい内
径を有する円筒形ゴム容器35とで室37を作
る。中空容器36内と室37に円筒39,40を
固定する。中空容器36、遮音材37には小孔4
1を数個所設ける。円筒39の外周に第1のセン
サ用光フアイバ11を巻付けて固定し、音響信号
検出用とする。第1のセンサ用光フアイバ11の
両端は耐水圧容器42内に導き、一方の端を圧電
体25に巻付けたのちに、他方の端はそのまま伝
送用光フアイバ10,16に接続器43,44で
接続する。円筒40の外周に第2のセンサ用光フ
アイバ21を、第1のセンサ用光フアイバ11を
円筒39に巻けたのと同じ構造で、同じ長さだけ
巻付け、両端は耐水圧容器42内に導き、一方の
端を圧電体15に巻付けたのちに、他方の端はそ
のまま伝送用光フアイバ20,26に接続器4
3,44で接続する。ここで接続器43,44間
の第1と第2のセンサ用光フアイバ11と21は
同じ長さとする。伝送用光フアイバ10,16,
20,26は圧電体15,25を駆動用ケーブル
45とともに一体化したケーブル46として耐水
圧容器42内に導入し、防水部47で固定し、防
水構造とする。ゴム容器35内の室37と中空容
器36の内側は液体で満し、小孔41を通してつ
ながつている。音響信号は、ゴム容器35を通
し、室37内の液体に伝わり、第1のセンサ用光
フアイバ11に作用し、光フアイバ11の屈折率
と長さを変化させる。中空容器36内の第2のセ
ンサ用光フアイバ21は遮音材37により遮音さ
れているので、音響信号を受けることはない。室
37と中空容器36の内側は複数個の小孔41を
通して液体が流通するので、同一の温度にするこ
とができる。したがつて第1および第2のセンサ
用光フアイバ11と21の2つの光学系のフアブ
リー・ペローの干渉出力を音響信号のないときに
一致させ、両出力の差が零となるように、圧電体
15,25に加える電圧調整しておけば、第1図
の構造の光フアイバハイドロホンを用いることに
より、前記2組のフアブリー・ペローの干渉出力
の差によつて水中の音響信号を検出することがで
きる。 FIG. 1 is a cross-sectional view showing an embodiment of the present invention, and the structure is within the dashed line 34 shown in FIG. 2, and this portion is placed in an underwater sound field. The inside of the hollow container 36 is lined with a sound insulating material 38 to form a sound insulating structure. A chamber 37 is formed by one side of the hollow container 36 and a cylindrical rubber container 35 having an inner diameter equal to the outer diameter of the hollow container 36. Cylinders 39 and 40 are fixed in the hollow container 36 and in the chamber 37. Hollow container 36 and sound insulation material 37 have small holes 4
1 in several places. A first sensor optical fiber 11 is wound and fixed around the outer periphery of the cylinder 39 to detect an acoustic signal. Both ends of the first sensor optical fiber 11 are led into a water pressure container 42, one end is wrapped around the piezoelectric body 25, and the other end is directly connected to the transmission optical fibers 10, 16 through the connector 43. Connect with 44. The second sensor optical fiber 21 is wound around the outer periphery of the cylinder 40 in the same structure as the first sensor optical fiber 11 around the cylinder 39, and the same length is wound, and both ends are placed inside the water pressure container 42. After wrapping one end around the piezoelectric body 15, the other end is directly connected to the transmission optical fibers 20 and 26 using the connector 4.
Connect with 3,44. Here, the first and second sensor optical fibers 11 and 21 between the connectors 43 and 44 have the same length. Transmission optical fiber 10, 16,
20 and 26 are introduced into the water pressure container 42 as a cable 46 in which the piezoelectric bodies 15 and 25 are integrated together with the drive cable 45, and are fixed with a waterproof portion 47 to form a waterproof structure. The chamber 37 in the rubber container 35 and the inside of the hollow container 36 are filled with liquid and are connected through a small hole 41. The acoustic signal is transmitted through the rubber container 35 to the liquid in the chamber 37 and acts on the first sensor optical fiber 11, changing the refractive index and length of the optical fiber 11. Since the second sensor optical fiber 21 inside the hollow container 36 is sound-insulated by the sound-insulating material 37, it does not receive any acoustic signals. Since the liquid flows through the plurality of small holes 41 inside the chamber 37 and the hollow container 36, the temperature can be kept at the same level. Therefore, the piezoelectric By adjusting the voltages applied to the bodies 15 and 25, underwater acoustic signals can be detected by using the optical fiber hydrophone having the structure shown in FIG. 1 based on the difference in the interference outputs of the two sets of Fabry-Perot. be able to.
本説明では光フアイバを円筒外周に巻付けてセ
ンサ部としたが、平板コイル状、円環状など任意
形状に光フアイバを配列した同形状をゴム容器3
5内の室37と遮音した中空容器36内にそれぞ
れ配置しても同様の効果が得られる。 In this explanation, optical fibers are wound around the outer periphery of the cylinder to form the sensor part, but the same shape can be used as the rubber container 3 by arranging the optical fibers in an arbitrary shape such as a flat coil shape or an annular shape.
The same effect can be obtained even if they are placed in the chamber 37 in the chamber 5 and the sound-insulated hollow container 36, respectively.
(発明の効果)
本発明は以上説明したように、それぞれに充填
した液体が複数の小孔を通して流通するようにし
たゴム容器と遮音構造容器を構成し、上記ゴム容
器内に第1のセンサ用光フアイバの一部分を、遮
音構造容器内に第2のセンサ用光フアイバの一部
分をそれぞれ設けることにより、また第1および
第2のセンサ用光フアイバ長調節用圧電体と伝送
用光フアイバ接続部分を同一の耐水圧容器に収容
することにより両光学系を同一温度としているの
で、両光学系の出力差を求めることにより温度変
動による出力変動を消去することができる利点が
ある。(Effects of the Invention) As explained above, the present invention comprises a rubber container and a sound-insulating structure container in which the liquid filled in each of them flows through a plurality of small holes, and a first sensor for a first sensor is provided in the rubber container. By providing a portion of the optical fiber and a portion of the second optical fiber for the sensor in the sound-insulating structure container, and connecting the piezoelectric body for length adjustment of the first and second optical fibers for the sensor and the optical fiber for transmission. Since both optical systems are kept at the same temperature by being housed in the same water pressure container, there is an advantage that output fluctuations due to temperature fluctuations can be eliminated by determining the output difference between the two optical systems.
第1図は本発明の実施例の断面図、第2図は本
発明を用いた実施例を示すブロツク図、第3図は
フアブリー・ペロー干渉計の出力波形図である。
10,16,20,26……伝送用光フアイ
バ、11……第1のセンサ用光フアイバ、15,
25……圧電体、21……第2のセンサ用光フア
イバ、35……ゴム容器、36……中空容器、3
7……室、38……遮音材、39,40……円
筒、41……小孔、42……耐水圧容器、43,
44……接続器、45……駆動用ケーブル、46
……ケーブル、47……防水部。
FIG. 1 is a sectional view of an embodiment of the present invention, FIG. 2 is a block diagram showing an embodiment using the present invention, and FIG. 3 is an output waveform diagram of a Fabry-Perot interferometer. 10, 16, 20, 26... Optical fiber for transmission, 11... Optical fiber for first sensor, 15,
25... Piezoelectric body, 21... Second sensor optical fiber, 35... Rubber container, 36... Hollow container, 3
7... Chamber, 38... Sound insulation material, 39, 40... Cylinder, 41... Small hole, 42... Water pressure container, 43,
44... Connector, 45... Drive cable, 46
... Cable, 47 ... Waterproof part.
Claims (1)
よび第2のセンサ用光フアイバのうち第1のセン
サ用光フアイバの一部を音場に置き、第2のセン
サ用光フアイバを音場外に置き、各センサ用光フ
アイバを通過した光の強度の差から水中音響信号
を検出する光フアイバハイドロホンにおいて、耐
水圧容器と遮音構造容器とゴム容器とからなる円
筒状の容器を構成し、上記ゴム容器内に第1のセ
ンサ用光フアイバの一部分を外周に巻いた円筒を
固定し、上記遮音構造容器内に第2のセンサ用光
フアイバの一部分を外周に巻いた円筒を固定し、
上記ゴム容器と遮音構造容器とを連通する複数の
小孔を設けると共に両容器内に液体を充填し、上
記耐水圧容器内に上記第1および第2のセンサ用
光フアイバ長をそれぞれ調節する圧電体を設ける
と共に該容器内において上記第1および第2のセ
ンサ用光フアイバと伝送用光フアイバとをそれぞ
れ接続してなることを特徴とする光フアイバハイ
ドロホン。1 Of the first and second sensor optical fibers of the same quality and the same length that have anti-transparent membranes on both end faces, a part of the first sensor optical fiber is placed in a sound field, and a part of the second sensor optical fiber is placed in a sound field. In an optical fiber hydrophone that is placed outside the sound field and detects underwater acoustic signals from the difference in the intensity of light that passes through each optical fiber for each sensor, it consists of a cylindrical container consisting of a water pressure resistant container, a sound insulating structure container, and a rubber container. A cylinder with a part of the first sensor optical fiber wound around the outer periphery is fixed in the rubber container, and a cylinder with a part of the second sensor optical fiber wound around the outer periphery is fixed in the sound-insulating structure container. ,
A plurality of small holes are provided to communicate the rubber container and the sound-insulating structure container, and a liquid is filled in both containers, and a piezoelectric actuator is provided in the water pressure container to adjust the lengths of the first and second sensor optical fibers, respectively. An optical fiber hydrophone characterized in that the first and second sensor optical fibers and the transmission optical fiber are respectively connected within the container.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17748284A JPS6156598A (en) | 1984-08-28 | 1984-08-28 | Optical fiber hydrophone |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17748284A JPS6156598A (en) | 1984-08-28 | 1984-08-28 | Optical fiber hydrophone |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6156598A JPS6156598A (en) | 1986-03-22 |
JPH0511480B2 true JPH0511480B2 (en) | 1993-02-15 |
Family
ID=16031677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17748284A Granted JPS6156598A (en) | 1984-08-28 | 1984-08-28 | Optical fiber hydrophone |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6156598A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5317544A (en) * | 1992-11-09 | 1994-05-31 | Litton Systems, Inc. | Multiple segment fiber optic hydrophone |
CA2793452C (en) * | 2010-03-15 | 2018-09-11 | The Board Of Trustees Of The Leland Stanford Junior University | Optical-fiber-compatible acoustic sensor |
JP5630460B2 (en) * | 2012-05-07 | 2014-11-26 | 防衛省技術研究本部長 | Optical fiber magnetic sensor |
CN107345833B (en) * | 2017-06-12 | 2019-07-09 | 中国科学院声学研究所 | A Longitudinal Vibration Interference Type Vibration Isolation Pressure Fiber Hydrophone |
US11215481B2 (en) | 2018-03-23 | 2022-01-04 | The Board Of Trustees Of The Leland Stanford Junior University | Diaphragm-based fiber acoustic sensor |
-
1984
- 1984-08-28 JP JP17748284A patent/JPS6156598A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6156598A (en) | 1986-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6314056B1 (en) | Fiber optic sensor system and method | |
US5155548A (en) | Passive fiber optic sensor with omnidirectional acoustic sensor and accelerometer | |
US4193130A (en) | Fiber optic hydrophone for use as an underwater electroacoustic standard | |
US5363342A (en) | High performance extended fiber optic hydrophone | |
EP1110066B1 (en) | Seismic optical acoustic recursive sensor system | |
US5218197A (en) | Method and apparatus for the non-invasive measurement of pressure inside pipes using a fiber optic interferometer sensor | |
US5247490A (en) | Pressure-compensated optical acoustic sensor | |
US4787741A (en) | Fiber optic sensor | |
US4313185A (en) | Acoustic vibration sensor and sensing system | |
GB2427910A (en) | Fiber optic temperature and pressure sensor and system incorporating same | |
JPH01105122A (en) | Sensor system/sensor array and method for remotely sensing environmental changes | |
WO1999019693A1 (en) | Interferometric sensing apparatus | |
US5231611A (en) | Wavelength multiplexed fiber optics resonant ring hydrophone array | |
US4882716A (en) | Optic fiber hydrophone and antenna associating a series of hydrophones | |
JP2009512199A (en) | Method and apparatus for suppressing laser phase noise | |
EP1228348A2 (en) | Optical method for the transmission of signals from remote arrays of electrical sensors | |
CN107421628A (en) | A kind of anti-polarization decay interference type optical fiber hydrophone system | |
EP0417162A1 (en) | An interferometric fibre optic network | |
US5237632A (en) | Optical fibre coil assemblies | |
JPH0798204A (en) | Optical fiber sensor | |
JPH0511480B2 (en) | ||
US4799202A (en) | Complementary interferometric hydrophone | |
JPH035875Y2 (en) | ||
US6002646A (en) | Portable optical range tracking array | |
JPH11110673A (en) | Pressure measuring device using non acoustic optical pressure sensor, or tdm(time division multiple transmission) array of non acoustic optical pressure sensor and method therefor |