[go: up one dir, main page]

JPH05111119A - Gas insulation switching device - Google Patents

Gas insulation switching device

Info

Publication number
JPH05111119A
JPH05111119A JP3266536A JP26653691A JPH05111119A JP H05111119 A JPH05111119 A JP H05111119A JP 3266536 A JP3266536 A JP 3266536A JP 26653691 A JP26653691 A JP 26653691A JP H05111119 A JPH05111119 A JP H05111119A
Authority
JP
Japan
Prior art keywords
circuit
gcb
grounding switch
switch
circuit breaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3266536A
Other languages
Japanese (ja)
Inventor
Naoaki Shimogawara
直明 下川原
Shozo Nihei
尚三 二瓶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3266536A priority Critical patent/JPH05111119A/en
Publication of JPH05111119A publication Critical patent/JPH05111119A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas-Insulated Switchgears (AREA)

Abstract

PURPOSE:To provide a gas insulation switching device by which induced current can be treated without installing a special grounding switch and the reclosing of a breaker is available. CONSTITUTION:A disconnector 11 and a grounding switch 12, each being connected on the side of a primary bus 10 of a GCB 7, are so structured that they may open or close a circuit due to motor spring operation or hydraulic operation about 100-200 msec after instructed to work and only the same phase as the one at which the GCB 7 operates may work. A sequence of these operations is so structured that after the GCB 7 of a faulty phase cuts off the circuit, the disconnector 11 of the same phase opens the circuit, and then the grounding switch 12 closes the circuit and after that, the GCB 7 closes the circuit. Then, after a sustaining arc disappears, the GCB 7 opens the circuit and cuts off induced current and then, after the grounding switch opens the circuit and the disconnector 11 closes the circuit, the GCB 7 closes the circuit again.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、架空送電線に地絡等の
事故が発生して事故電流が流れた場合に、系統を早期に
復帰することができるように改良を施したガス絶縁開閉
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas-insulated switch which has been improved so that the system can be quickly restored when an accident such as a ground fault occurs in an overhead power transmission line and an accident current flows. It relates to the device.

【0002】[0002]

【従来の技術】最近の送電系統は、500KVの超高圧
級から725KVそして1000KVの超々高圧級にな
ろうとしている。このような送電系統においては、並設
する他回線又は同一回線の他相の送電線との距離が、鉄
塔等の構造上の制約から、前述の超々高圧級になるに従
って電圧に比して大きくとれない恐れがある。
2. Description of the Related Art Recent power transmission systems are going from ultra high voltage class of 500 KV to ultra high voltage class of 725 KV and 1000 KV. In such a power transmission system, the distance from other lines that are installed in parallel or transmission lines of the same phase in other phases is larger than the voltage as it becomes the ultra-high voltage class mentioned above due to structural restrictions such as towers. There is a fear that it will not be taken.

【0003】通常、500KV級ぐらいまでは、落雷に
よる地絡故障時、各回線の送電線の両端である変電所に
設置された各遮断器を遮断させることにより、地絡電流
を消滅させることができる。
Normally, up to about 500 KV, when a ground fault occurs due to a lightning strike, each circuit breaker installed at the substation at both ends of the transmission line of each line is shut off to eliminate the ground fault current. it can.

【0004】ところが、725KVから1000KVの
超々高圧級になると、前述したように、他回線又は同一
回線の他相の送電線との距離が小さく電圧が高い等のた
め、他の健全回線の送電線からの誘導電流のために、事
故点の両端の変電所における各遮断器を遮断させただけ
では、送電線に誘導電流があたかも事故電流が残存した
状態となって継続して流れ、アークが持続するため、遮
断器の投入時に再度遮断動作してしまうことになる。こ
のため、再閉路動作を成功させるには、再閉路前に持続
アークを消滅させる必要がある。
However, in the ultra-high voltage class of 725 KV to 1000 KV, as described above, since the distance from another line or the transmission line of another phase of the same line is small and the voltage is high, the transmission line of another healthy line is If the circuit breakers at the substations at both ends of the accident point are simply interrupted due to the induced current from, the induced current will continue to flow in the transmission line as if the accident current remained and the arc continued. Therefore, when the circuit breaker is turned on, the circuit breaks again. Therefore, in order for the reclosing operation to be successful, it is necessary to extinguish the continuous arc before reclosing.

【0005】この方法の一つとして、遮断器による事故
電流遮断後、線路側に設けた高速接地開閉器を投入し、
持続アークに流れる誘導電流をこの高速接地開閉器に転
流させることによって消滅させ、その後、この高速接地
開閉器を開路して誘導電流を遮断する方法がある。これ
により、線路の地絡アークは完全に除去できるので、遮
断器を再閉路することにより、事故が発生した相を運転
状態に戻すことができる。
As one of the methods, after the fault current is cut off by a circuit breaker, a high-speed grounding switch provided on the line side is turned on,
There is a method in which the induced current flowing in the continuous arc is extinguished by commutating to the high-speed grounding switch, and then the high-speed grounding switch is opened to interrupt the induction current. As a result, the ground fault arc on the line can be completely removed, and the phase in which the accident has occurred can be returned to the operating state by reclosing the circuit breaker.

【0006】図4は従来のガス絶縁開閉装置の一例を示
した単線結線図であり、図5はこれをガス絶縁機器で構
成した場合の側面図である。即ち、図4に示した様に、
通常の線路回線の線路側断路器5の送電線側に、高速接
地開閉器4が追加して設けられている。
FIG. 4 is a single wire connection diagram showing an example of a conventional gas-insulated switchgear, and FIG. 5 is a side view in the case where it is constituted by a gas-insulated device. That is, as shown in FIG.
A high-speed grounding switch 4 is additionally provided on the transmission line side of the line-side disconnector 5 of a normal line circuit.

【0007】この高速接地開閉器4の動作と責務につい
て以下に説明する。架空送電線1で地絡事故が発生した
場合は、この回線に過大な事故電流が流れ、ガス遮断器
(以下、GCBと称す)7で直ちに遮断する。ところ
が、送電電圧が725KVから1000KV以上ともな
ると、事故点には他相及び他回線からの数1000A程
度の大きな誘導電流が継続して流れるため、アークが持
続し、通常のGCB再閉路動作をしても再トリップして
しまうため系統を活かすことができない。
The operation and responsibilities of this high-speed grounding switch 4 will be described below. When a ground fault occurs on the overhead power transmission line 1, an excessive fault current flows through this line, and a gas circuit breaker (hereinafter, referred to as GCB) 7 shuts it off immediately. However, when the transmission voltage rises from 725 KV to 1000 KV or more, a large induced current of several 1000 A from another phase and another line continues to flow at the accident point, so that the arc continues and the normal GCB reclosing operation occurs. However, since it trips again, the system cannot be utilized.

【0008】このため、最初にGCB7が事故電流を遮
断した後、高速接地開閉器4を投入して、事故点に継続
している誘導電流を転流させ、事故点の持続アークを消
す。その後、高速接地開閉器4はこの誘導電流を遮断
し、送電線の接地状態を完全に解消する。そして、GC
Bの再閉路により、地絡事故を起した送電線を活かすこ
とができ、系統をもとの状態に復旧することができる。
Therefore, after the GCB 7 first interrupts the fault current, the high-speed grounding switch 4 is turned on to commute the continuous induction current at the fault point and extinguish the continuous arc at the fault point. After that, the high-speed grounding switch 4 cuts off this induced current and completely cancels the grounded state of the power transmission line. And GC
By the reclosing of B, the power transmission line which caused the ground fault can be utilized and the system can be restored to the original state.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記高
速接地開閉器4はGCB7の動作に合わせて事故相を選
択し、約1秒以内に閉路、開路動作をするだけでなく、
誘導電流を投入・遮断する責務を課せられることにな
る。また、投入電流は約3000Aを越える大きな電流
であり、また遮断時においても、この電流を遮断し且つ
回復電圧は約600KVpという非常に高い電圧に耐え
なければならない。この遮断責務は、従来、線路側接地
開閉器に課せられていた誘導電流開閉責務1000A−
70KVrmsに比べて桁違いに厳しい責務であり、従
来の接地開閉器の概念では機器を構成することが難し
く、遮断器相当の接点及び機構を必要とする。
However, the high-speed grounding switch 4 selects not only the accident phase according to the operation of the GCB 7 but also closes and opens the circuit within about 1 second.
You will be tasked with turning on and off the induced current. Further, the making current is a large current exceeding about 3000 A, and even when the current is cut off, the current must be cut off and the recovery voltage must endure a very high voltage of about 600 KVp. This interruption duty is the induction current switching duty 1000A- which has been conventionally imposed on the line side grounding switch.
This is an order of magnitude more demanding than 70 KVrms, and it is difficult to construct a device with the conventional grounding switch concept, and a contact and mechanism equivalent to a circuit breaker are required.

【0010】このため、高速接地開閉器は非常に大きな
機器となり、レイアウトの大形化のみならず、GCBの
選択遮断、再閉路動作等の動作と連系をとって動作した
り、GCBとのインターロック条件を機械的に構成する
上で、GCBと離れた位置に高速接地開閉器4を配置す
ることは、両者間を接続する長い機構を必要とし、機器
の信頼性、保守点検を行う上で好ましくない。このこと
は、725KVあるいは1000KVといった超々高圧
級の変電所にとっては、大きな問題となっている。
For this reason, the high-speed grounding switch becomes a very large device, and not only the layout is enlarged, but also the operation is performed by interlocking with operations such as selective cutoff of the GCB, reclosing operation, and the like. In mechanically configuring the interlock condition, disposing the high-speed grounding switch 4 at a position distant from the GCB requires a long mechanism for connecting the two, which is necessary for reliability and maintenance inspection of the equipment. Is not preferable. This is a serious problem for substations of ultra-high voltage class of 725 KV or 1000 KV.

【0011】図6は従来のガス絶縁開閉装置の他の例を
示した単線結線図であり、図7はこれをガス絶縁機器で
構成した場合の側面図である。即ち、図6に示したガス
絶縁開閉装置においては、高速接地開閉器4がGCB7
と線路側断路器5の間に配置されている。この様に高速
接地開閉器4をGCB7より送電線側に配置してあれ
ば、図4に示したガス絶縁開閉装置と同じ効果を得るこ
とができ、さらに、高速接地開閉器4をGCB7により
近接して配置できるので、図4に示したガス絶縁開閉装
置の様に両者間を接続する長い機構を必要としないとい
う利点がある。
FIG. 6 is a single wire connection diagram showing another example of a conventional gas-insulated switchgear, and FIG. 7 is a side view of the gas-insulated device when it is constructed. That is, in the gas-insulated switchgear shown in FIG.
And the line side disconnecting switch 5. By arranging the high-speed grounding switch 4 on the transmission line side of the GCB 7 as described above, the same effect as that of the gas-insulated switchgear shown in FIG. 4 can be obtained, and the high-speed grounding switch 4 can be placed closer to the GCB 7. Therefore, there is an advantage that a long mechanism for connecting the two is not required unlike the gas insulated switchgear shown in FIG.

【0012】しかしながら、上記改良例においても、接
地開閉器としては遮断器相当の遮断責務を要するため、
高速接地開閉器は非常に大きな機器となり、レイアウト
の大形化のみならず、GCBの選択遮断、再閉路動作等
の動作と連系をとって動作する必要がある。
However, even in the above-described improved example, the grounding switch requires a breaking responsibility equivalent to that of a circuit breaker.
The high-speed grounding switch becomes a very large device, and it is necessary not only to make the layout large, but also to operate by interlocking with operations such as selective cutoff of GCB and reclosing operation.

【0013】本発明は、上記の様な従来技術の欠点を解
消するために提案されたもので、その目的は、特殊な接
地開閉器を必要とせず、動作形態のみの対応で、送電線
事故点でアークを持続させている誘導電流を処理し、遮
断器の再閉路動作を可能とした、信頼性の高いガス絶縁
開閉装置を提供することにある。
The present invention has been proposed in order to solve the above-mentioned drawbacks of the prior art, and its purpose is not to require a special grounding switch, but to cope only with the operation mode and to prevent a transmission line accident. An object of the present invention is to provide a highly reliable gas-insulated switchgear capable of processing an induced current that sustains an arc at a point and enabling reclosing of a circuit breaker.

【0014】[0014]

【課題を解決するための手段】本発明は、送電線回線に
設けられた遮断器の主母線側に、接地開閉器と断路器を
接続して成るガス絶縁開閉装置において、前記遮断器が
事故相を選択遮断した場合に、前記接地開閉器及び断路
器も同一相を選択して開閉動作を行うように構成し、ま
た、前記遮断器によって、事故点でアークを持続させて
いる誘導電流を処理できるように、前記遮断器、接地開
閉器及び断路器の動作シーケンスを構成したことを特徴
とするものである。
DISCLOSURE OF THE INVENTION The present invention is a gas-insulated switchgear in which a ground switch and a disconnector are connected to the main bus side of a circuit breaker provided in a transmission line, and the circuit breaker has an accident. When the phase is selectively cut off, the earthing switch and the disconnecting switch are also configured to perform the switching operation by selecting the same phase, and the circuit breaker prevents the induced current that keeps the arc at the accident point. The operation sequence of the circuit breaker, the earthing switch, and the disconnecting switch is configured so that they can be processed.

【0015】[0015]

【作用】本発明のガス絶縁開閉装置によれば、従来から
線路回線に組み込まれて使用されている遮断器によっ
て、事故点の持続アークに流れる誘導電流を処理するこ
とが可能となり、特殊な接地開閉器を新たに開発する必
要もない。また、従来の線路回線を構成している機器の
みによって目的を達成することができるので、機器の設
置スペースが増大することもない。さらに、1000K
V級の遮断器は通常2点以上の遮断点を有し、遮断性能
も十分余裕があり、また、高速繰返し動作が当初より組
み込まれているため、電流の投入・遮断動作を遮断器で
行うことにしたことにより、ガス絶縁開閉装置の信頼性
を大幅に向上させることができる。
According to the gas-insulated switchgear of the present invention, it is possible to process the induced current flowing in the continuous arc at the accident point by using the circuit breaker which has been conventionally incorporated and used in the line circuit. There is no need to newly develop a switch. In addition, since the object can be achieved only by the device that constitutes the conventional line circuit, the installation space of the device does not increase. Furthermore, 1000K
A class V circuit breaker usually has two or more circuit break points, has sufficient circuit breaking performance, and has high-speed repetitive operation built in from the beginning, so the circuit breaker is used to make and break current. By doing so, the reliability of the gas insulated switchgear can be greatly improved.

【0016】[0016]

【実施例】以下、本発明の一実施例を図1乃至図3に基
づいて具体的に説明する。なお、図4乃至図7に示した
従来型と同一の部材には同一の符号を付して、説明は省
略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be specifically described below with reference to FIGS. The same members as those of the conventional type shown in FIGS. 4 to 7 are designated by the same reference numerals, and the description thereof will be omitted.

【0017】本実施例においては、図1に示した様に、
GCB7の主母線側に接続されている断路器11と接地
開閉器12は、電動ばね操作あるいは油圧操作等によ
り、動作指令後、約100〜200msecで開路動作
あるいは閉路動作することができるように構成されてい
る。また、GCB7の遮断あるいは投入等の動作した相
に合わせて、上記断路器11及び接地開閉器12も、同
一相のみ動作できるように構成されている。
In this embodiment, as shown in FIG.
The disconnecting switch 11 and the grounding switch 12 connected to the main bus side of the GCB 7 are configured so that they can be opened or closed in about 100 to 200 msec after an operation command is issued by an electric spring operation or a hydraulic operation. Has been done. In addition, the disconnecting switch 11 and the grounding switch 12 are also configured to operate only in the same phase in accordance with the phase in which the GCB 7 is cut off or turned on.

【0018】さらに、動作順としては、送電線で地絡等
の事故が発生し、短絡電流が流れ、事故相のGCB7が
遮断動作した後、同一相の断路器11が開路動作し、次
に接地開閉器12が閉路動作し、次にGCB7が閉路動
作するように構成されている。そして、約500mse
c〜800msec後、事故点の持続アークに流れる誘
導電流が、GCB7及び接地開閉器12を介して接地へ
転流し、持続アークが消滅した後、GCB7が開路して
この誘導電流を遮断し、その後、接地開閉器12が開
路、断路器11が閉路した後、GCB7が再度閉路する
ように動作シーケンスが構成されている。
Further, in the order of operation, an accident such as a ground fault occurs in the transmission line, a short-circuit current flows, the GCB 7 in the accident phase shuts off, and then the disconnector 11 in the same phase opens. The ground switch 12 is configured to be closed, and then the GCB 7 is configured to be closed. And about 500 mse
After c to 800 msec, the induced current flowing in the continuous arc at the accident point is commutated to the ground through the GCB 7 and the grounding switch 12, and after the continuous arc disappears, the GCB 7 opens to cut off this induced current. The operation sequence is configured so that the ground switch 12 opens and the disconnector 11 closes, and then the GCB 7 closes again.

【0019】なお、上記断路器11及び接地開閉器12
は、上記の線路事故時の動作モードの他、通常の運用と
しての一つの指令で、三相一括で断路器のみあるいは接
地開閉器のみの操作モードも可能となるように構成され
ている。
The disconnector 11 and the grounding switch 12 are also provided.
In addition to the above-mentioned operation mode at the time of a line accident, the one is configured to enable an operation mode of only the disconnecting switch or only the grounding switch in a three-phase operation by one command for normal operation.

【0020】次に、断路器11及び接地開閉器12の構
造の一例を、図3を参照して説明する。即ち、タンク2
1内に絶縁スペーサ22に固定支持された断路器可動側
導体23と、固定側接触部24を支持している主母線導
体25が収納されている。また、断路器可動側接触子2
6は、絶縁ロッド27、レバー28、主軸29を介し
て、外部に設けた操作装置30により開閉駆動し、断路
器可動側接触部31と固定側接触部24間を開閉するよ
うに構成されている。
Next, an example of the structure of the disconnecting switch 11 and the grounding switch 12 will be described with reference to FIG. That is, tank 2
The disconnector movable side conductor 23 fixedly supported by the insulating spacer 22 and the main busbar conductor 25 supporting the fixed side contact portion 24 are accommodated in the housing 1. Further, the disconnector movable side contactor 2
6 is configured to be opened and closed by an operating device 30 provided outside through an insulating rod 27, a lever 28, and a main shaft 29 to open and close between the disconnector movable side contact portion 31 and the fixed side contact portion 24. There is.

【0021】さらに、前記断路器可動側導体23の一部
には、接地開閉器の固定側接触部32が設けられ、これ
と対向する位置には、レバー34、主軸35を介して、
可動ロッド33が操作装置36により開閉駆動するよう
に構成されている。また、前述した動作シーケンスは、
操作装置内への電気指令等により行うが、指令後直ちに
動作できるように、電動ばね操作の場合は駆動ばねを蓄
勢待機の状態とし、また、油圧操作方式の場合には、圧
力を張った状態としておく。これらはガス遮断器用の電
動ばね操作装置あるいは油圧操作装置と同様である。
Further, a fixed side contact portion 32 of the earthing switch is provided at a part of the disconnecting switch movable side conductor 23, and at a position opposed to the fixed side contact portion 32, a lever 34 and a main shaft 35 are interposed.
The movable rod 33 is configured to be opened and closed by an operating device 36. In addition, the operation sequence described above is
It is performed by an electric command etc. to the operating device, but in order to be able to operate immediately after the command, in the case of electric spring operation, the drive spring is put in a standby state for energy storage, and in the case of hydraulic operation method, pressure is applied. Keep it in a state. These are similar to electric spring operating devices or hydraulic operating devices for gas circuit breakers.

【0022】この様な構成を有する本実施例のガス絶縁
開閉装置は、以下に述べる様に動作する。即ち、架空送
電線1で落雷等により地絡事故が発生した場合には、ま
ず、事故電流をGCB7で選択遮断する。この時、地絡
事故点では、健全な他相あるいは他回線から誘導電流が
流入し、地絡アークが持続している。そして、遮断器の
遮断後、断路器11が開路して主母線10側からGCB
7を切り離した後、接地開閉器12を投入する。この場
合、接地開閉器12が投入する母線は、線路とはGCB
7で切り離され、主母線側は断路器11で切り離されて
いるため、投入時に電流が流れることはない。
The gas-insulated switchgear of this embodiment having such a structure operates as described below. That is, when a ground fault occurs in the overhead power transmission line 1 due to a lightning strike or the like, first, the fault current is selectively cut off by the GCB 7. At this time, at the ground fault accident point, an induced current flows from a healthy other phase or another line, and the ground fault arc continues. Then, after the circuit breaker is cut off, the disconnector 11 is opened and the main bus 10 side opens the GCB.
After disconnecting 7, the grounding switch 12 is turned on. In this case, the busbar that the grounding switch 12 turns on is not the line
Since it is disconnected at 7 and the main bus side is disconnected at the disconnector 11, no current flows at the time of turning on.

【0023】その後、GCB7を投入する。この時、約
3500Aの誘導電流が投入電流として流れるが、GC
B7は短絡電流50KAの投入容量を有し、また、接地
開閉器12は閉路状態では50KA以上の短時間通電性
能を有しているので、この誘導電流はまったく問題な
い。
Then, the GCB 7 is charged. At this time, an induced current of about 3500 A flows as the input current, but
B7 has a short-circuit current of 50 KA, and the grounding switch 12 has a short-time energizing performance of 50 KA or more in a closed state. Therefore, this induced current is not a problem.

【0024】そして、誘導電流がGCB7の方に転流す
ることにより、事故点の持続アークは消滅し、線路は正
常に回復するので、約500〜800msec後、アー
クが消滅するのに要する時間を経過した後、GCB7を
開路する。この時、誘導電流約3500A−280KV
を遮断することになるが、このGCB7は1000KV
系統に適用されており、且つ、事故電流50KAを遮断
する性能を有しているので、この程度の誘導電流はまっ
たく問題なく遮断することができる。
Since the induced current is diverted to the GCB7, the continuous arc at the accident point is extinguished and the line is normally restored. Therefore, after about 500 to 800 msec, the time required for the arc to extinguish is reduced. After the elapse, the GCB7 is opened. At this time, the induced current is about 3500A-280KV
Will be shut off, but this GCB7 is 1000KV
Since it is applied to the system and has the ability to cut off the fault current of 50 KA, this level of induced current can be cut off without any problem.

【0025】上記GCB7の開路後、接地開閉器12を
開路し、断路器11を閉路した後、GCB7を再閉路す
ることにより、送電線をもとの系統に復帰させ、活かす
ことができる。なお、断路器11、接地開閉器12の動
作時間は約100ms〜200msであるため、事故発
生後、GCBが開路してから系統復帰までが、約1〜
1.5秒程度以下の短時間で可能となり、系統への影響
を最小限にすることができる。
After the circuit of the GCB 7 is opened, the earthing switch 12 is opened, the disconnector 11 is closed, and then the GCB 7 is closed again, so that the power transmission line can be restored to the original system and utilized. In addition, since the operating time of the disconnecting switch 11 and the grounding switch 12 is about 100 ms to 200 ms, it takes about 1 to about 1 ms from the opening of the GCB to the restoration of the system after the accident.
This is possible in a short time of about 1.5 seconds or less, and the influence on the system can be minimized.

【0026】この様に、本実施例によれば、事故点の持
続アークに流れる誘導電流を投入し且つ遮断するような
遮断器相当の責務を、従来から線路回線に組み込まれて
使用されている遮断器によって処理することが可能とな
り、特殊な接地開閉器を新たに開発する必要もない。ま
た、従来の線路回線を構成している機器のみによって目
的を達成することができ、他の機器を配置する必要がな
いので、高速接地開閉器を用いていた場合に比べて大幅
に設置スペースを削減することができる。
As described above, according to the present embodiment, the duty corresponding to the circuit breaker for making and breaking the induced current flowing in the continuous arc at the accident point is conventionally used by being incorporated in the line circuit. It can be handled by a circuit breaker, eliminating the need to develop a special grounding switch. In addition, the purpose can be achieved only with the devices that make up the conventional line circuit, and it is not necessary to arrange other devices, so the installation space is significantly larger than when using a high-speed grounding switch. Can be reduced.

【0027】さらに、1000KV級の遮断器は通常2
点以上の遮断点を有し、遮断性能も十分余裕があり、ま
た、高速繰返し動作が当初より組み込まれているため、
電流の投入・遮断動作を遮断器で行うことにしたことに
より、より信頼性の高いガス絶縁開閉装置を提供するこ
とができる。
Furthermore, a 1000KV class circuit breaker is usually 2
Since it has a breaking point above the point, there is ample margin for breaking performance, and high-speed repetitive operation is built in from the beginning,
Since the circuit breaker is used to perform the operation of turning on / off the current, it is possible to provide a more reliable gas insulated switchgear.

【0028】[0028]

【発明の効果】以上述べた様に、本発明によれば、送電
線回線に用いられている遮断器が事故相を選択遮断した
場合に、接地開閉器及び断路器も同一相を選択して開閉
動作を行うように構成し、また、前記遮断器によって、
事故点でアークを持続させている誘導電流を処理できる
ように、遮断器、接地開閉器及び断路器の動作シーケン
スを構成することによって、特殊な接地開閉器を必要と
せず、動作形態のみの対応で、誘導電流を処理し遮断器
の再閉路動作を可能とした、信頼性の高いガス絶縁開閉
装置を提供することができる。
As described above, according to the present invention, when the circuit breaker used in the transmission line selectively cuts off the accident phase, the grounding switch and the disconnecting switch also select the same phase. It is configured to perform opening / closing operation, and by the circuit breaker,
By configuring the operation sequence of the circuit breaker, grounding switch and disconnecting switch so that the induced current that sustains the arc at the accident point can be processed, no special grounding switch is required and only the operation mode is supported. Thus, it is possible to provide a highly reliable gas-insulated switchgear capable of processing the induced current and enabling the circuit breaker to be closed again.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のガス絶縁開閉装置の一例を示す単線結
線図
FIG. 1 is a single wire connection diagram showing an example of a gas-insulated switchgear according to the present invention.

【図2】図1の単線結線図をガス絶縁機器で構成した場
合の側面図
FIG. 2 is a side view of the single wire connection diagram of FIG. 1 when configured with a gas insulation device.

【図3】本発明のガス絶縁開閉装置に用いられる母線側
断路器及び接地開閉器の一例を示す構造図
FIG. 3 is a structural diagram showing an example of a busbar-side disconnector and a grounding switch used in the gas-insulated switchgear of the present invention.

【図4】従来のガス絶縁開閉装置の単線結線図[Fig. 4] Single wire connection diagram of a conventional gas insulated switchgear

【図5】図4の単線結線図をガス絶縁機器で構成した場
合の側面図
FIG. 5 is a side view of the single wire connection diagram of FIG. 4 configured with a gas insulation device.

【図6】従来のガス絶縁開閉装置の単線結線図FIG. 6 is a single wire connection diagram of a conventional gas insulated switchgear.

【図7】図6の単線結線図をガス絶縁開閉装置で構成し
た側面図
FIG. 7 is a side view of the single wire connection diagram of FIG. 6 configured with a gas-insulated switchgear.

【符号の説明】[Explanation of symbols]

1…架空送電線 2…ブッシング 3…線路側接地開閉器 4…高速接地開閉器 5…線路側断路器 6…接地開閉器 7…ガス遮断器(GCB) 8…接地開閉器 9…母線側断路器 10…主母線 11…母線側断路器 12…接地開閉器 1 ... Overhead transmission line 2 ... Bushing 3 ... Line side grounding switch 4 ... High speed grounding switch 5 ... Line side disconnecting switch 6 ... Grounding switch 7 ... Gas circuit breaker (GCB) 8 ... Grounding switch 9 ... Bus side disconnecting Switch 10 ... Main bus 11 ... Bus-side disconnector 12 ... Ground switch

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 送電線回線に設けられた遮断器の主母線
側に、接地開閉器と断路器を接続して成るガス絶縁開閉
装置において、 前記遮断器が事故相を選択遮断した場合に、前記接地開
閉器及び断路器も同一相を選択して開閉動作を行うよう
に構成し、また、前記遮断器によって、事故点でアーク
を持続させている誘導電流を処理できるように、前記遮
断器、接地開閉器及び断路器の動作シーケンスを構成し
たことを特徴とするガス絶縁開閉装置。
1. A gas-insulated switchgear in which a grounding switch and a disconnecting switch are connected to the main bus side of a circuit breaker provided in a transmission line circuit, when the circuit breaker selectively interrupts an accident phase, The earthing switch and the disconnecting switch are also configured to perform the switching operation by selecting the same phase, and the circuit breaker can process the induced current that keeps the arc at the accident point. A gas-insulated switchgear comprising an operation sequence of a ground switch and a disconnector.
JP3266536A 1991-10-15 1991-10-15 Gas insulation switching device Pending JPH05111119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3266536A JPH05111119A (en) 1991-10-15 1991-10-15 Gas insulation switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3266536A JPH05111119A (en) 1991-10-15 1991-10-15 Gas insulation switching device

Publications (1)

Publication Number Publication Date
JPH05111119A true JPH05111119A (en) 1993-04-30

Family

ID=17432231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3266536A Pending JPH05111119A (en) 1991-10-15 1991-10-15 Gas insulation switching device

Country Status (1)

Country Link
JP (1) JPH05111119A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113690862A (en) * 2021-08-23 2021-11-23 广东电网有限责任公司 Device and method for eliminating overvoltage in flexible direct current system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113690862A (en) * 2021-08-23 2021-11-23 广东电网有限责任公司 Device and method for eliminating overvoltage in flexible direct current system

Similar Documents

Publication Publication Date Title
JP3164033B2 (en) Busbar connection structure and insulating cover
JP4841875B2 (en) Vacuum insulated switchgear
EP1226596A1 (en) Compact-structure three-pole apparatus for electric stations
JPH06335125A (en) Switching device
EA021000B1 (en) A transformation substation
JP3228635B2 (en) Gas insulated switchgear
JPH05111119A (en) Gas insulation switching device
JPH11113118A (en) Switchgear
CZ296238B6 (en) SF6 gas-insulated switch installation for electricity distribution supply networks
JP3337749B2 (en) High-speed reclosable earthing switch
JPH1189027A (en) Switchgear
JPH05115112A (en) Gas insulated switch gear
JP3423539B2 (en) High speed reclosing device
JP3169992B2 (en) Gas insulated switchgear
JP3122179B2 (en) Gas insulated switchgear
KR200268194Y1 (en) Fixing System of Fixed Arcing Contact in Circuit Breaker for Gas Insulated Switchgear
JPH08168124A (en) Switchgear
JP3695144B2 (en) Gas insulated switchgear switchgear
JPS6242448B2 (en)
WO2025012720A1 (en) Power system protection device with current limiting and controlled switching functions for ac and dc applications
KR100479438B1 (en) Air circuit breakers
Koeppi et al. Short-circuit current partitioning in HV substations in ring-bus arrangement with redundancy
JPH1141727A (en) Switchgear
JPH055066B2 (en)
JPH1118220A (en) Gas insulated switchgear