JPH0511045B2 - - Google Patents
Info
- Publication number
- JPH0511045B2 JPH0511045B2 JP8608688A JP8608688A JPH0511045B2 JP H0511045 B2 JPH0511045 B2 JP H0511045B2 JP 8608688 A JP8608688 A JP 8608688A JP 8608688 A JP8608688 A JP 8608688A JP H0511045 B2 JPH0511045 B2 JP H0511045B2
- Authority
- JP
- Japan
- Prior art keywords
- sulfur
- hydrogen
- reactor
- reaction
- liquid sulfur
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 93
- 239000011593 sulfur Substances 0.000 claims description 76
- 229910052717 sulfur Inorganic materials 0.000 claims description 76
- 229910052739 hydrogen Inorganic materials 0.000 claims description 44
- 239000001257 hydrogen Substances 0.000 claims description 44
- 238000006243 chemical reaction Methods 0.000 claims description 41
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 34
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims description 34
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 32
- 239000003054 catalyst Substances 0.000 claims description 31
- 238000004519 manufacturing process Methods 0.000 claims description 20
- 150000002431 hydrogen Chemical class 0.000 claims description 12
- 239000007791 liquid phase Substances 0.000 claims description 4
- 239000007788 liquid Substances 0.000 description 53
- 239000007789 gas Substances 0.000 description 35
- 238000000034 method Methods 0.000 description 14
- 239000002994 raw material Substances 0.000 description 8
- 238000001816 cooling Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 238000005984 hydrogenation reaction Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000008016 vaporization Effects 0.000 description 3
- 238000009834 vaporization Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000019086 sulfide ion homeostasis Effects 0.000 description 2
- -1 LPG and naphtha Chemical compound 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- WHDPTDWLEKQKKX-UHFFFAOYSA-N cobalt molybdenum Chemical compound [Co].[Co].[Mo] WHDPTDWLEKQKKX-UHFFFAOYSA-N 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- DDTIGTPWGISMKL-UHFFFAOYSA-N molybdenum nickel Chemical compound [Ni].[Mo] DDTIGTPWGISMKL-UHFFFAOYSA-N 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- WWNBZGLDODTKEM-UHFFFAOYSA-N sulfanylidenenickel Chemical compound [Ni]=S WWNBZGLDODTKEM-UHFFFAOYSA-N 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Catalysts (AREA)
- Treating Waste Gases (AREA)
Description
「産業上の利用分野」
この発明は硫黄と水素を反応させて硫化水素を
製造する方法に関する。
「従来の技術およびその課題」
硫黄と水素とを気相で反応させて硫化水素を製
造する方法はよく知られているが、硫黄と水素を
反応させる際には反応熱による温度上昇が大き
く、そのため反応器の温度制御が必要となる。
従来、その対策として、水素を大過剰とし、硫
黄を少量にして両者の反応量を制限して温度上昇
を抑える方法が一般に知られている。
しかしながらこのような方法では、製品硫化水
素濃度が10%程度で水素の利用率が低いばかりで
なく、硫化水素生産量当たりの装置の大きさが大
きくなり、また大量の水素の循環とこれに伴う吸
収、再生工程等の過大な設備が必要となり、硫化
水素製造効率が低く、製造装置が大型かつ高価に
なつてしまう問題があつた。
そこで、上述の方法の改良法として、気相反応
室を2つ以上連設し、これに硫黄を気化させるに
十分な温度にまで加熱した水素を直列に通じなが
ら、各反応室の入口に設けた硫黄導入気化室に硫
黄を分割供給して反応させる方法が提案されてい
る。(特公昭46−5572号公報)
しかし、この方法においても、1段で温度上昇
を100℃以内に抑えるには、約1モル%分のS8(硫
黄蒸気)しか反応できないので、硫化水素を高濃
度にするためには段数が多く必要となり、したが
つて不経済である。
本発明は上記事情に鑑みてなされたもので、硫
黄と水素の反応温度を効率的にコントロールし、
同時に高濃度の硫化水素を得ることのできる製造
方法の提供を目的としている。
「課題を解決するための手段」
上記目的達成のために、本発明では、硫黄と水
素を反応させて硫化水素を製造する方法におい
て、少なくとも一部が液相の硫黄と水素を、触媒
が収容された反応器内に供給し、該硫黄と水素を
接触させて反応を行うものである。
「作用」
少なくとも一部が液相の硫黄と水素を、反応器
内に供給して両者を接触させることによつて硫化
水素が生成し、このとき生じる反応熱により該硫
黄の一部が気化し、反応熱を吸収することによつ
て反応器の温度上昇が抑えられる。
「実施例」
実施例について図面を参照して説明する。第1
図は本発明の硫化水素の製造方法の1例を説明す
るためのものであつて、図中符号1は反応器、2
は液体硫黄である。この液体硫黄2中には水添触
媒が懸濁され、反応相が形成されている。この反
応器1内液体硫黄2には、加熱された水素がライ
ン3を通つて供給されるとともに、液体硫黄がラ
イン4,5を通つて供給される。そして、この液
体硫黄2中において触媒の存在下、液体硫黄と水
素を気液接触させ、硫化水素を生じさせる反応が
行なわれるようになつている。
この水素としては、LPG、ナフサ等の水蒸気
改質水素、電解水素、別プラントからの回収水素
等々が使用される。
また、硫黄は、この図において右側に位置する
ライン6から供給されるが、後述の循環液体硫黄
とともに上記ライン4,5から供給される。な
お、反応器1内に挿入された加熱器7は、製造開
始時の反応器1の加熱に使用するものである。
反応器1内の液体硫黄2の温度(反応温度)
は、水素との反応によつて生じる反応熱と液体硫
黄2の気化とによつて均衡して一定温度に保持さ
れる。この反応温度は250℃〜450℃の範囲が好適
である。反応温度がこれよりも低いと反応速度が
小さくなるばかりでなく、液体硫黄2の粘度が上
昇する。一方反応温度をこれよりも高くすると硫
黄蒸気圧が高くなり、生成するガス中に同伴する
硫黄蒸気量が多くなる、触媒が劣化する、反応器
1の器材の腐食発生などの不都合が生じる。ま
た、反応の圧力は製品硫化水素に要求される圧力
に合わせることが望ましい。
上記触媒としては、水添触媒として知られてい
るコバルト−モリブデンあるいはニツケル−モリ
ブデンの酸化物または硫化物や硫化ニツケルなど
が好適に使用される。
この反応器1より流出するガスは、硫化水素の
他、硫黄蒸気、未反応水素および水素に同伴して
供給されるメタンや不純ガスを含んでおり、ライ
ン8を通つて反応器1から流出されるが、その前
に反応器1内に供給する液体硫黄の全部または一
部をライン5より反応器1上部に供給して、該ガ
スの温度を下げて同伴される硫黄蒸気を少なくす
ることも可能である。さらに、液体硫黄2中に懸
濁した触媒が飛沫に同伴されて反応器内の器壁や
配管壁に付着し、そこで反応が起きるとその部分
が高温となつてしまう不都合を生じる場合があ
り、上記ライン5から液体硫黄を供給することに
よつて器壁等に付着した触媒を流し落として液体
硫黄2中に戻すことにより、上記不都合を防止す
ることができる。
また、場合によつては生成ガスに同伴される硫
黄蒸気を更に反応させるために、反応器1から流
出したガスの全部または一部を水添反応器9に供
給して、硫黄蒸気と水素とを気相接触反応させ
て、生成ガス中に混入する硫黄蒸気を硫化水素と
しても良い。
反応器1内で生成された生成ガスは、ライン8
を通つて冷却器10に送られて冷却され、混入す
る硫黄蒸気を凝縮させる。この冷却方法として
は、水冷による方法、原料水素や空気などの気体
との熱交換による方法等により行なわれる。この
冷却温度は、生成ガス中の硫黄蒸気をできるだけ
凝縮し、かつその固化を防ぐために150〜130℃程
度とするのが好ましい。
なお、この冷却操作の際に、原料の液体硫黄の
一部をライン11により冷却器10の上流に、あ
るいは冷却器10に接続された分離器12に供給
することによつて、生成ガスの冷却を促進すると
ともに、含有されている硫化水素と接触させるこ
とにより、ポリサルフアイド(H2Sx)を生成さ
せて液体硫黄の粘度を下げることも可能である。
冷却された生成ガスは、次いで分離器12で液
体硫黄を分離し、これにより硫化水素を主とする
生成ガスがライン13より取り出される。この
際、冷却器10での冷却温度が原料の液体硫黄の
温度より高い場合には、原料の液体硫黄をライン
6より分離器12の気相部に供給して生成ガス中
に残存している硫黄蒸気を浄化することにより分
離効率を高めることができる。
ライン13より取り出される生成ガスは、主と
して硫化水素、飽和硫黄蒸気および原料水素中の
不純ガス(メタンなど)等からなつている。この
生成ガス中の硫化水素濃度は、反応条件によつて
90%以上の高濃度にすることができる。また硫黄
蒸気の混入量を飽和量以下とする場合には、反応
器1より流出する生成ガスの全量を水添反応器9
に通し、硫黄蒸気を実質的に全て硫化水素とし、
ライン6またはライン11により液体硫黄の供給
を行わずにライン14により反応器1中に原料の
液体硫黄を供給する方法が用いられる。
上記分離器12において、凝縮分離された液体
硫黄は、ライン6から供給される液体硫黄ととも
にライン4,5を通つて反応器1に循環供給され
る。
この例による硫化水素の製造方法では、反応熱
が発生しても供給される液体硫黄および水素の加
熱と液体硫黄の気化に利用することによつて反応
温度の上昇が抑えられるとともに、気化した硫黄
は生成ガスを冷却することによつて容易に分離で
きるので、1段の反応器1で高濃度の硫化水素を
生産することができる。
また、反応温度の制御のために、従来のように
大過剰の水素を使用する必要がなく、硫化水素の
生産に使用する水素の量を削減させることができ
る。
さらに、反応器を小型にできるとともに、付帯
設備を小規模とすることができ、製造装置を小型
化することができる。
第2図ないし第5図は、本発明方法の他の例を
示すものである。
第2図は、ハニカム触媒20を液体硫黄2中に
浸漬した反応器21内に、ハニカム触媒20の下
方よりライン3,4を通してそれぞれ水素および
液体硫黄を供給し、液体硫黄2中で反応を行う例
を示すものである。
この例では、第1図に示す方法と同様の効果が
得られる他、液体硫黄2の循環を供給水素のバブ
リングによつて行うことができる。また反応を中
止して、反応器21内の液体硫黄2を抜き出す際
に、第1図に示す反応器1における懸濁触媒と異
なつて液体硫黄中の触媒粉の混入を防ぐことがで
きる。
第3図は、粒状触媒充填層22を液体硫黄2内
に浸漬した反応器23内に、粒状触媒充填層22
の下方よりライン3,4を通してそれぞれ水素お
よび液体硫黄を供給し、液体硫黄2内で反応を行
う例を示すものである。
この例では、第2図に示す例とほぼ同様の効果
が得られる。ただし、比重1.8という液体硫黄の
中なので、液体硫黄の上昇に伴う触媒粒の踊りを
防止する配慮が必要である。
第4図は、上記ハニカム触媒20または粒状触
媒充填層22からなる固定触媒床24を備えた反
応器25内に、固定触媒床24の上方より液体硫
黄を、下方より水素を各々供給し、液体硫黄が固
定触媒床24の表面上を流下する間に反応を行う
例を示すものである。反応器25の下部に溜まつ
た液体硫黄2は、ライン26で固定触媒床24上
部に循環される。
この例では、上述した第1図ないし第3図に示
す各例に比べて、反応器25内に貯留する液体硫
黄2の量を少なくすることができ、反応器25か
ら流出する生成ガス温度を低くすることができる
ために、生成ガスに同伴する硫黄蒸気を少なくす
ることができる。ただし液体硫黄の流下が滞るこ
とのないよう、また液体硫黄を溢流させないよう
に反応器25内の温度および液体硫黄あるいは水
素の供給量を調節することが必要である。
第5図は、固定触媒床24を備えた反応器27
内に、固定触媒床24の上方より液体硫黄と水素
を各々供給し、液体硫黄が固定触媒床24の表面
上を流下する間に反応を行い、生成ガスを反応器
27の中部下方からライン8に取り出すようにし
たものである。
この例によれば、第4図に示すものとほぼ同様
の効果が得られる他、液体硫黄の流下阻害や溢流
を防止することができる。
(製造例)
第6図に示す装置を用い、本発明方法に基づい
て硫化水素の製造を実施した。反応器23は、ア
ルミナに担持したCo−Mo系硫化水素触媒(粒径
3〜5mm)を充填した粒状触媒充填層22を液体
硫黄2内に浸漬した構成とした。そしてこの反応
器23内に、ライン3を通して水素5.0Nm3/Hr
を90℃に加熱して供給する一方、ライン6から液
体硫黄6.9Kg/Hrを供給し、分離器12において
分離された循環液体硫黄12.6Kg/Hrとともにラ
イン4を通して反応器23に供給し、反応器23
内の液体硫黄2内で反応を行わせた。この反応条
件は、反応温度を380℃、反応圧力を3Kg/cm2G
に設定した。
そして反応器23から流出した生成ガスを冷却
器10で140℃まで冷却し、生成ガス中に含まれ
る硫黄蒸気を分離器12で凝縮分離する一方、ラ
イン13を通して生成ガスを得た。得られた生成
ガスの組成を表1に示す。(表1において実施例
という。)
なお、本発明方法との比較のために、第7図に
示す製造装置を用い、硫黄と水素を気相接触反応
させる従来法により硫化水素の製造を行つた。こ
の比較例では、上記実施例において用いたものと
同様の粒状触媒充填層22を収容した反応器30
を用い、ライン3より水素50Nm3/Hrとライン
31を通して供給される液体硫黄5.8Kg/Hrを混
合し300℃の温度に加熱してガス状とした混合ガ
スを、ライン32を通して反応器30に供給し、
反応を行つた。反応器30の出口は反応熱により
380℃まで上昇していた。また反応圧力は3Kg/
cm2Gであつた。そして反応器30から流出した生
成ガスをライン33を通して冷却器10に送り40
℃まで冷却し、分離器12を経て生成ガスを得
た。なお、このとき原料の全硫黄が硫化水素にな
つているので分離器12には液体硫黄は認められ
なかつた。得られた生成ガスの組成を上記実施例
と同様に分析し、その結果を表1に示す。(表1
において比較例という。)
"Industrial Application Field" This invention relates to a method for producing hydrogen sulfide by reacting sulfur and hydrogen. "Prior art and its problems" The method of producing hydrogen sulfide by reacting sulfur and hydrogen in the gas phase is well known, but when sulfur and hydrogen are reacted, the temperature rises significantly due to the heat of reaction. Therefore, temperature control of the reactor is required. Conventionally, as a countermeasure against this problem, a method is generally known in which a large excess of hydrogen is used and a small amount of sulfur is used to limit the amount of reaction between the two, thereby suppressing the temperature rise. However, with this method, not only is the product hydrogen sulfide concentration around 10% and the hydrogen utilization rate is low, but the size of the equipment per unit of hydrogen sulfide production is large, and a large amount of hydrogen must be circulated. There were problems in that excessive equipment for absorption and regeneration processes was required, the hydrogen sulfide production efficiency was low, and the production equipment became large and expensive. Therefore, as an improvement to the above method, two or more gas phase reaction chambers are installed in series, and hydrogen heated to a temperature sufficient to vaporize sulfur is passed in series at the entrance of each reaction chamber. A method has been proposed in which sulfur is dividedly supplied to a sulfur-introducing vaporization chamber for reaction. (Japanese Patent Publication No. 46-5572) However, even with this method, in order to suppress the temperature rise within 100°C in one stage, only about 1 mol% of S 8 (sulfur vapor) can be reacted. In order to achieve a high concentration, a large number of stages are required, which is therefore uneconomical. The present invention was made in view of the above circumstances, and efficiently controls the reaction temperature of sulfur and hydrogen.
The purpose of the present invention is to provide a production method that can simultaneously obtain hydrogen sulfide at a high concentration. "Means for Solving the Problems" In order to achieve the above object, the present invention provides a method for producing hydrogen sulfide by reacting sulfur and hydrogen, in which a catalyst accommodates sulfur and hydrogen, at least partially in a liquid phase. The sulfur is supplied into a reactor, and the sulfur and hydrogen are brought into contact with each other to carry out a reaction. "Effect" Hydrogen sulfide is produced by supplying sulfur and hydrogen, at least part of which are in the liquid phase, into a reactor and bringing them into contact.The heat of reaction generated at this time causes part of the sulfur to vaporize. By absorbing the reaction heat, the temperature rise in the reactor is suppressed. "Example" An example will be described with reference to the drawings. 1st
The figure is for explaining one example of the method for producing hydrogen sulfide of the present invention, and the reference numeral 1 in the figure is a reactor, 2
is liquid sulfur. A hydrogenation catalyst is suspended in this liquid sulfur 2 to form a reaction phase. Heated hydrogen is supplied to the liquid sulfur 2 in the reactor 1 through a line 3, and liquid sulfur is supplied through lines 4 and 5. In this liquid sulfur 2, in the presence of a catalyst, liquid sulfur and hydrogen are brought into gas-liquid contact, and a reaction is carried out to produce hydrogen sulfide. As this hydrogen, steam reformed hydrogen such as LPG and naphtha, electrolyzed hydrogen, hydrogen recovered from another plant, etc. are used. Further, sulfur is supplied from line 6 located on the right side in this figure, and is supplied from the above-mentioned lines 4 and 5 together with circulating liquid sulfur, which will be described later. The heater 7 inserted into the reactor 1 is used to heat the reactor 1 at the start of production. Temperature of liquid sulfur 2 in reactor 1 (reaction temperature)
is maintained at a constant temperature in balance by the heat of reaction generated by the reaction with hydrogen and the vaporization of liquid sulfur 2. This reaction temperature is preferably in the range of 250°C to 450°C. If the reaction temperature is lower than this, not only the reaction rate will decrease, but also the viscosity of the liquid sulfur 2 will increase. On the other hand, if the reaction temperature is higher than this, the sulfur vapor pressure will increase, resulting in disadvantages such as an increase in the amount of sulfur vapor entrained in the generated gas, deterioration of the catalyst, and corrosion of the equipment of the reactor 1. Further, it is desirable that the reaction pressure be adjusted to the pressure required for the hydrogen sulfide product. As the catalyst, oxides or sulfides of cobalt-molybdenum or nickel-molybdenum, nickel sulfide, and the like, which are known as hydrogenation catalysts, are preferably used. The gas flowing out from the reactor 1 contains hydrogen sulfide, sulfur vapor, unreacted hydrogen, methane and impure gases supplied together with the hydrogen, and is flowed out from the reactor 1 through the line 8. However, before that, all or part of the liquid sulfur supplied into the reactor 1 may be supplied to the upper part of the reactor 1 from the line 5 to lower the temperature of the gas and reduce the amount of sulfur vapor entrained. It is possible. Furthermore, if the catalyst suspended in the liquid sulfur 2 is entrained in the droplets and adheres to the walls of the reactor or pipes, and a reaction occurs there, there may be an inconvenience that the temperature in that area becomes high. By supplying liquid sulfur from the line 5, the catalyst adhering to the vessel wall etc. is washed off and returned to the liquid sulfur 2, thereby preventing the above-mentioned inconvenience. In addition, in some cases, in order to further react the sulfur vapor entrained in the generated gas, all or part of the gas flowing out from the reactor 1 is supplied to the hydrogenation reactor 9 to combine sulfur vapor and hydrogen. may be subjected to a gas phase catalytic reaction, and the sulfur vapor mixed in the generated gas may be converted into hydrogen sulfide. The product gas produced in reactor 1 is passed through line 8
is sent to the cooler 10 to be cooled and to condense the entrained sulfur vapor. This cooling method is performed by water cooling, heat exchange with raw material hydrogen, air, or other gas, or the like. The cooling temperature is preferably about 150 to 130°C in order to condense as much sulfur vapor in the generated gas as possible and prevent it from solidifying. In addition, during this cooling operation, by supplying a part of the raw material liquid sulfur to the upstream side of the cooler 10 through the line 11 or to the separator 12 connected to the cooler 10, the produced gas can be cooled. It is also possible to reduce the viscosity of liquid sulfur by producing polysulfide (H 2 Sx) by contacting it with the contained hydrogen sulfide. The cooled product gas is then separated from liquid sulfur by a separator 12, whereby a product gas containing mainly hydrogen sulfide is taken out from a line 13. At this time, if the cooling temperature in the cooler 10 is higher than the temperature of the raw material liquid sulfur, the raw material liquid sulfur is supplied from the line 6 to the gas phase part of the separator 12 and remains in the generated gas. Separation efficiency can be increased by purifying sulfur vapor. The produced gas taken out from the line 13 mainly consists of hydrogen sulfide, saturated sulfur vapor, impurity gases (such as methane) in the raw hydrogen, and the like. The hydrogen sulfide concentration in this generated gas depends on the reaction conditions.
Concentrations can be made as high as 90% or more. In addition, when the amount of mixed sulfur vapor is kept below the saturation amount, the entire amount of generated gas flowing out from the reactor 1 is transferred to the hydrogenation reactor 9.
to convert substantially all of the sulfur vapor into hydrogen sulfide,
A method is used in which raw material liquid sulfur is supplied into the reactor 1 through line 14 without supplying liquid sulfur through line 6 or line 11. In the separator 12, the condensed and separated liquid sulfur is circulated and supplied to the reactor 1 through lines 4 and 5 together with liquid sulfur supplied from line 6. In the method for producing hydrogen sulfide according to this example, even if reaction heat is generated, the increase in reaction temperature is suppressed by heating the supplied liquid sulfur and hydrogen and using it to vaporize the liquid sulfur, and the vaporized sulfur Since hydrogen sulfide can be easily separated by cooling the produced gas, high concentration hydrogen sulfide can be produced in the single-stage reactor 1. Further, in order to control the reaction temperature, it is not necessary to use a large excess of hydrogen as in the conventional method, and the amount of hydrogen used to produce hydrogen sulfide can be reduced. Furthermore, the reactor can be made smaller, the auxiliary equipment can be made smaller, and the manufacturing equipment can be made smaller. 2 to 5 show other examples of the method of the present invention. In FIG. 2, hydrogen and liquid sulfur are supplied from below the honeycomb catalyst 20 through lines 3 and 4 into a reactor 21 in which a honeycomb catalyst 20 is immersed in liquid sulfur 2, and a reaction is carried out in the liquid sulfur 2. This is an example. In this example, in addition to obtaining the same effects as the method shown in FIG. 1, the liquid sulfur 2 can be circulated by bubbling the supplied hydrogen. Furthermore, when the reaction is stopped and the liquid sulfur 2 in the reactor 21 is extracted, unlike the suspended catalyst in the reactor 1 shown in FIG. 1, it is possible to prevent catalyst powder from being mixed into the liquid sulfur. In FIG. 3, a granular catalyst packed bed 22 is placed in a reactor 23 in which the granular catalyst packed bed 22 is immersed in liquid sulfur 2.
This shows an example in which hydrogen and liquid sulfur are supplied from below through lines 3 and 4, respectively, and the reaction is carried out within the liquid sulfur 2. In this example, substantially the same effect as the example shown in FIG. 2 can be obtained. However, since it is in liquid sulfur with a specific gravity of 1.8, care must be taken to prevent the catalyst particles from dancing as the liquid sulfur rises. FIG. 4 shows that liquid sulfur is supplied from above the fixed catalyst bed 24 and hydrogen is supplied from below the fixed catalyst bed 24 into a reactor 25 equipped with a fixed catalyst bed 24 consisting of the honeycomb catalyst 20 or the granular catalyst packed bed 22. An example is shown in which the reaction occurs while sulfur flows down over the surface of a fixed catalyst bed 24. The liquid sulfur 2 accumulated in the lower part of the reactor 25 is circulated to the upper part of the fixed catalyst bed 24 through a line 26. In this example, the amount of liquid sulfur 2 stored in the reactor 25 can be reduced compared to the examples shown in FIGS. 1 to 3 described above, and the temperature of the generated gas flowing out from the reactor 25 can be reduced. Since it is possible to reduce the amount of sulfur vapor entrained in the generated gas, it is possible to reduce the amount of sulfur vapor entrained in the generated gas. However, it is necessary to adjust the temperature inside the reactor 25 and the amount of liquid sulfur or hydrogen supplied so that the flow of liquid sulfur is not delayed and the liquid sulfur does not overflow. FIG. 5 shows a reactor 27 with a fixed catalyst bed 24.
Liquid sulfur and hydrogen are each supplied from above the fixed catalyst bed 24, and the reaction is carried out while the liquid sulfur flows down on the surface of the fixed catalyst bed 24. It was designed so that it could be taken out. According to this example, in addition to obtaining substantially the same effect as shown in FIG. 4, it is possible to prevent the flow of liquid sulfur from being obstructed and from overflowing. (Production Example) Using the apparatus shown in FIG. 6, hydrogen sulfide was produced based on the method of the present invention. The reactor 23 had a structure in which a granular catalyst packed bed 22 filled with a Co-Mo hydrogen sulfide catalyst (particle size 3 to 5 mm) supported on alumina was immersed in the liquid sulfur 2. Hydrogen 5.0Nm 3 /Hr is introduced into this reactor 23 through line 3.
At the same time, 6.9 Kg/Hr of liquid sulfur is supplied from line 6, and 12.6 Kg/Hr of circulating liquid sulfur separated in separator 12 is supplied to reactor 23 through line 4 to react. Vessel 23
The reaction was carried out in liquid sulfur 2. The reaction conditions are a reaction temperature of 380℃ and a reaction pressure of 3Kg/cm 2 G.
It was set to The produced gas flowing out from the reactor 23 was cooled to 140° C. in the cooler 10, and the sulfur vapor contained in the produced gas was condensed and separated in the separator 12, while the produced gas was obtained through the line 13. Table 1 shows the composition of the resulting gas. (This is referred to as an example in Table 1.) For comparison with the method of the present invention, hydrogen sulfide was produced using the production apparatus shown in FIG. . In this comparative example, a reactor 30 containing a granular catalyst packed bed 22 similar to that used in the above example was used.
50Nm 3 /Hr of hydrogen from line 3 and 5.8Kg/Hr of liquid sulfur supplied through line 31 are mixed and heated to a temperature of 300°C to form a gas, and the mixed gas is fed to reactor 30 through line 32. supply,
The reaction was carried out. Due to the reaction heat, the outlet of the reactor 30
The temperature had risen to 380℃. Also, the reaction pressure is 3Kg/
It was cm 2 G. The generated gas flowing out from the reactor 30 is then sent to the cooler 10 through the line 33 40
It was cooled to ℃ and passed through a separator 12 to obtain a product gas. At this time, all the sulfur in the raw material had become hydrogen sulfide, so no liquid sulfur was found in the separator 12. The composition of the resulting gas was analyzed in the same manner as in the above example, and the results are shown in Table 1. (Table 1
This is referred to as a comparative example. )
【表】
表1からも明らかなように、本発明方法によれ
ば、高濃度の硫化水素を容易に得ることができ
る。また従来法に比較して、同じ量の硫化水素を
製造するのに原料の水素流量が1/10にもなつてい
るのが判る。
「発明の効果」
以上説明したように、本発明による硫化水素の
製造方法は、少なくとも一部が液相の硫黄に水素
を、触媒が収容された反応器内に供給し、該硫黄
と水素を接触させて反応を行わせることにより、
硫黄と水素の反応によつて生じる反応熱が反応器
内の液体硫黄の気化によつて吸収され、これによ
つて反応温度の上昇が抑えられるとともに、気化
した硫黄は生成ガスを冷却することによつて容易
に分離するこができるので、1段の反応器によつ
て高濃度の硫化水素を極めて効率良く生産するこ
とができる。
また、反応温度の制御のために、従来のように
大過剰の水素を使用する必要がなく、硫化水素の
生産に使用する水素の流量を削減させることがで
きる。
さらに、反応器が小型化できるとともに、原料
の循環設備などの付帯設備を小規模とすることが
できるので、製造装置の小型化を図ることができ
る。[Table] As is clear from Table 1, high concentration hydrogen sulfide can be easily obtained according to the method of the present invention. Also, compared to the conventional method, it is clear that the flow rate of hydrogen as a raw material is 1/10 to produce the same amount of hydrogen sulfide. "Effects of the Invention" As explained above, the method for producing hydrogen sulfide according to the present invention involves supplying hydrogen to sulfur that is at least partially in a liquid phase into a reactor containing a catalyst, and then combining the sulfur and hydrogen. By bringing it into contact and causing a reaction,
The reaction heat generated by the reaction of sulfur and hydrogen is absorbed by the vaporization of liquid sulfur in the reactor, which suppresses the rise in reaction temperature, and the vaporized sulfur cools the produced gas. Therefore, since it can be easily separated, highly concentrated hydrogen sulfide can be produced extremely efficiently using a single-stage reactor. Furthermore, in order to control the reaction temperature, there is no need to use a large excess of hydrogen as in the conventional method, and the flow rate of hydrogen used to produce hydrogen sulfide can be reduced. Furthermore, since the reactor can be made smaller and ancillary equipment such as raw material circulation equipment can be made smaller, the manufacturing apparatus can be made smaller.
第1図は本発明による硫化水素の製造方法の1
例を説明するための図であつて、製造装置の概略
構成図、第2図ないし第5図は本発明の製造方法
の他の例を説明するための図であつて、製造装置
の要部の構成図、第6図は本発明方法の製造例に
おいて使用した製造装置の概略構成図、第7図は
比較例として用いた従来法による製造装置の概略
構成図である。
1,21,23,25,27……反応器、2
0,22,24……触媒。
Figure 1 shows a method for producing hydrogen sulfide according to the present invention.
2 to 5 are diagrams for explaining other examples of the manufacturing method of the present invention, showing the main parts of the manufacturing device. FIG. FIG. 6 is a schematic diagram of a manufacturing apparatus used in a manufacturing example according to the method of the present invention, and FIG. 7 is a schematic diagram of a manufacturing apparatus according to a conventional method used as a comparative example. 1, 21, 23, 25, 27...reactor, 2
0,22,24...Catalyst.
Claims (1)
方法において、少なくとも一部が液相の硫黄と水
素を、触媒が収容された反応器内に供給し、該硫
黄と水素を接触させて反応を行うことを特徴とす
る硫化水素の製造方法。1. In a method for producing hydrogen sulfide by reacting sulfur and hydrogen, sulfur and hydrogen, at least partially in a liquid phase, are supplied into a reactor containing a catalyst, and the sulfur and hydrogen are brought into contact to cause a reaction. A method for producing hydrogen sulfide, characterized in that:
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8608688A JPH01257109A (en) | 1988-04-07 | 1988-04-07 | Production of hydrogen sulfide |
DE1989620358 DE68920358T2 (en) | 1988-04-07 | 1989-04-07 | Process for the production of hydrogen sulfide. |
EP19890303466 EP0339818B1 (en) | 1988-04-07 | 1989-04-07 | Process for the manufacture of hydrogen sulfide |
US07/779,127 US5173285A (en) | 1988-04-07 | 1991-10-16 | Process for the manufacture of hydrogen sulfide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8608688A JPH01257109A (en) | 1988-04-07 | 1988-04-07 | Production of hydrogen sulfide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01257109A JPH01257109A (en) | 1989-10-13 |
JPH0511045B2 true JPH0511045B2 (en) | 1993-02-12 |
Family
ID=13876896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8608688A Granted JPH01257109A (en) | 1988-04-07 | 1988-04-07 | Production of hydrogen sulfide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01257109A (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101594931B (en) * | 2007-01-16 | 2013-07-10 | 巴斯夫欧洲公司 | Method and device for the continuous production of hydrogen sulfide |
EP2125613B1 (en) * | 2007-01-16 | 2016-10-12 | Basf Se | Method and device for continuous production of hydrogen sulphide |
EP2125612B1 (en) * | 2007-01-16 | 2011-03-30 | Basf Se | Reactor and method for the production of hydrogen sulfide |
EP2125611B1 (en) * | 2007-01-16 | 2016-11-02 | Basf Se | Reactor and method for production of hydrogen sulphide |
DE102008040544A1 (en) * | 2008-07-18 | 2010-01-21 | Evonik Degussa Gmbh | Reaction vessel and method of use |
JP5365708B2 (en) * | 2012-01-17 | 2013-12-11 | 住友金属鉱山株式会社 | Hydrogen sulfide gas production plant and method for recovering and using waste hydrogen sulfide gas |
JP5494754B2 (en) * | 2012-07-31 | 2014-05-21 | 住友金属鉱山株式会社 | Hydrogen sulfide gas production plant system and method of recovering and using hydrogen sulfide gas |
JP5682683B2 (en) * | 2013-09-06 | 2015-03-11 | 住友金属鉱山株式会社 | Hydrogen sulfide gas production plant and method for recovering and using waste hydrogen sulfide gas |
JP5708849B2 (en) * | 2014-02-27 | 2015-04-30 | 住友金属鉱山株式会社 | Hydrogen sulfide gas production plant system and method of recovering and using hydrogen sulfide gas |
FR3065718B1 (en) * | 2017-04-28 | 2021-12-31 | Eurecat Sa | METHOD FOR PRODUCTION OF HYDROGEN SULPHIDE IN A CIRCULATING CATALYTIC BED REACTOR |
JP6702472B1 (en) * | 2019-03-07 | 2020-06-03 | 住友金属鉱山株式会社 | Hydrogen sulfide gas production plant and hydrogen sulfide gas production method |
JP7674155B2 (en) * | 2021-05-31 | 2025-05-09 | 古河機械金属株式会社 | Hydrogen sulfide production apparatus and method for producing hydrogen sulfide |
JP7674156B2 (en) * | 2021-05-31 | 2025-05-09 | 古河機械金属株式会社 | Hydrogen sulfide production apparatus and method for producing hydrogen sulfide |
KR20240005076A (en) * | 2021-05-31 | 2024-01-11 | 후루카와 기카이 긴조쿠 가부시키가이샤 | Hydrogen sulfide production device and hydrogen sulfide production method |
JP7674157B2 (en) * | 2021-05-31 | 2025-05-09 | 古河機械金属株式会社 | Hydrogen sulfide production apparatus and method for producing hydrogen sulfide |
JP7365656B1 (en) * | 2022-02-18 | 2023-10-20 | Dic株式会社 | Method for producing sulfurized olefin |
WO2024147338A1 (en) * | 2023-01-06 | 2024-07-11 | 古河機械金属株式会社 | Method for producing hydrogen sulfide and hydrogen sulfide production device |
-
1988
- 1988-04-07 JP JP8608688A patent/JPH01257109A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH01257109A (en) | 1989-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0511045B2 (en) | ||
EP0233773B1 (en) | Production of chlorine | |
KR100471517B1 (en) | Method for producing high-purity sulphuric acid | |
CA1297911C (en) | Methanol production | |
JP3893206B2 (en) | Continuous production of methyl mercaptan | |
JPWO2006118071A1 (en) | Urea synthesizer and its modification method | |
US4280990A (en) | High pressure process for recovery of sulphur from gases | |
RU2762056C1 (en) | Apparatus and method for joint extraction of sulphur and hydrogen resources from a hydrogen sulphide-containing acid gas | |
US4376758A (en) | Process for synthesizing ammonia from hydrocarbons | |
CN105294414A (en) | Formaldehyde production system | |
US5110350A (en) | Method of reducing iron ore | |
EP1876170B1 (en) | Apparatus for urea synthesis | |
JPH04270111A (en) | Method for recovery of ammonia | |
US3525586A (en) | Production of sulfur trioxide and sulfuric acid | |
JPH0511046B2 (en) | ||
US5173285A (en) | Process for the manufacture of hydrogen sulfide | |
EP0230739B1 (en) | Sulphur trioxide absorption apparatus and process | |
US5089246A (en) | Process for converting carbon disulfide to hydrogen sulfide in hydrogen sulfide/carbon disulfide mixtures | |
US4212817A (en) | Control of highly exothermic chemical reactions | |
EP0339818B1 (en) | Process for the manufacture of hydrogen sulfide | |
KR20080007363A (en) | Method for Concentrating Aqueous Ammonium Carbamate Stream | |
US4365089A (en) | Synthesis of urea | |
JPH0420845B2 (en) | ||
RU2172311C2 (en) | Method of continuous preparation of methyl mercaptan | |
JP2507296B2 (en) | Method for producing hydrogen reforming methanol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080212 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090212 Year of fee payment: 16 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090212 Year of fee payment: 16 |