JPH05105987A - Retaining ring for power generator - Google Patents
Retaining ring for power generatorInfo
- Publication number
- JPH05105987A JPH05105987A JP29033191A JP29033191A JPH05105987A JP H05105987 A JPH05105987 A JP H05105987A JP 29033191 A JP29033191 A JP 29033191A JP 29033191 A JP29033191 A JP 29033191A JP H05105987 A JPH05105987 A JP H05105987A
- Authority
- JP
- Japan
- Prior art keywords
- toughness
- retaining ring
- based alloy
- high strength
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 35
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 17
- 239000000956 alloy Substances 0.000 claims abstract description 17
- 229910052742 iron Inorganic materials 0.000 claims abstract description 16
- 239000012535 impurity Substances 0.000 claims abstract description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 8
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 7
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 238000005482 strain hardening Methods 0.000 abstract description 14
- 230000007797 corrosion Effects 0.000 abstract description 6
- 238000005260 corrosion Methods 0.000 abstract description 6
- 238000005336 cracking Methods 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 4
- 230000006866 deterioration Effects 0.000 abstract 1
- 238000010248 power generation Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 description 14
- 229910052761 rare earth metal Inorganic materials 0.000 description 11
- 230000007423 decrease Effects 0.000 description 9
- 229910000831 Steel Inorganic materials 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 229910001566 austenite Inorganic materials 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910019590 Cr-N Inorganic materials 0.000 description 1
- 229910019588 Cr—N Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000003009 desulfurizing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Insulation, Fastening Of Motor, Generator Windings (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
(57)【要約】
【目的】 高強度、高靱性の特性を兼ね備えた非磁性
鉄基合金からなるタービン発電機用リテーニングリング
を提供する。
【構成】 重量%で、Mn :17〜25%、Cr :1
7〜25%、N:0.5〜1%、REM:0.001〜
0.08%と、所望によりNi :3%以下を含有し、残
部がFe および不可避的不純物からなり、高強度で靱性
に優れた非磁性鉄基合金で構成された発電機用リテーニ
ングリング
【効果】 非磁性で耐応力腐食割れ性に優れていると
ともに、組織の改善によって靱性を向上させ、さらに加
工硬化に伴う靱性の低下を防止して、高強度、高靱性の
特性を兼ね備えたタービン発電機用リテーニングリング
が得られる。
(57) [Abstract] [Purpose] To provide a retaining ring for a turbine generator, which is made of a non-magnetic iron-based alloy having both high strength and high toughness characteristics. [Composition] By weight, Mn: 17 to 25%, Cr: 1
7-25%, N: 0.5-1%, REM: 0.001-
Retaining ring for generator, which contains 0.08% and optionally Ni: 3% or less, the balance is Fe and inevitable impurities, and is composed of a non-magnetic iron-based alloy with high strength and excellent toughness. [Effect] Turbine power generation that is both non-magnetic and has excellent resistance to stress corrosion cracking, as well as improved toughness by improving the structure and prevents deterioration of toughness due to work hardening, and has high strength and high toughness characteristics. A retaining ring for machines can be obtained.
Description
【0001】[0001]
【産業上の利用分野】この発明は、高強度で靱性に優れ
た非磁性鉄基合金からなるタービン発電機用リテーニン
グリングに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a retaining ring for a turbine generator, which is made of a nonmagnetic iron-based alloy having high strength and excellent toughness.
【0002】[0002]
【従来の技術】図1に示すように、タービン発電機のロ
ータ1の肩部2に焼バメして用いられるリテーニングリ
ング3は、電磁気的な理由から非磁性であること、ま
た、高速回転状態で使用されるため高い強度と靱性を具
備していることが必要である。従来、この種のリテーニ
ングリングの材料としては、18%Mn −5%Cr 鋼が
用いられていたが、この材料は、使用環境において応力
腐食割れを生じ易いため、耐応力腐食割れの観点から、
近年、この材料に替えて、18%Mn −18%Cr −N
系オーステナイト鋼が用いられている。2. Description of the Related Art As shown in FIG. 1, a retaining ring 3 used by shrink-fitting a shoulder portion 2 of a rotor 1 of a turbine generator is non-magnetic for electromagnetic reasons, and has a high rotation speed. Since it is used in the state, it must have high strength and toughness. Conventionally, 18% Mn-5% Cr steel has been used as the material for this type of retaining ring, but this material easily causes stress corrosion cracking in the use environment, so from the viewpoint of stress corrosion cracking resistance. ,
In recent years, this material has been replaced with 18% Mn-18% Cr-N
Austenitic steel is used.
【0003】[0003]
【発明が解決しようとする課題】しかし、従来のリテー
ニングリング材ではいずれも、冷間加工における拡管加
工による加工硬化によって所望の強度を付与している
が、その際、冷間加工による強度の上昇に伴い靱性が低
下する。この結果、耐力または引張強さは要求値を満足
するが、所望の靱性が得られないという問題点がある。
一般にオーステナイト鋼は低温でも安定した低温靱性を
示すため、低温用鋼として用いられることがあるが、十
分な強度を有する高強度ステンレス鋼では、衝撃吸収エ
ネルギーの遷移挙動に伴う、へき開破壊が生じ、脆性破
壊による靱性の低下を起こす。低合金鋼では、脆性破壊
を防止するためには、非金属介在物をコントロールして
亀裂の伝播抵抗性を増すことが有効であると認められて
いるが、オーステナイト鋼ではこのような報告はなく、
さらには、固溶強化と加工硬化によって強化したオース
テナイト鋼で、非金属介在物の形状、分布のコントロー
ルが靱性の改善にどの程度効果があるかは未知である。
本願発明者は、上記観点から、REM(希土類元素の1
種または2種以上)を添加することによって非金属介在
物の形状、分布のコントロールを行って、衝撃エネルギ
ー遷移挙動に及ぼす影響について研究し、本発明をする
に至ったものである。すなわち、本願発明は、上記事情
を背景としてなされたものであり、下記の化学成分によ
って、リテーニングリング特有の特性である非磁性、耐
応力腐食割れ性、高強度などの性質を確保するととも
に、REMを適量添加することによって非金属介在物を
調整して高靱性の特性を有するタービン発電機用リテー
ニングリングを提供することを目的とするものである。However, in all of the conventional retaining ring materials, the desired strength is imparted by the work hardening by the pipe expanding work in the cold working. The toughness decreases with increasing temperature. As a result, although the yield strength or tensile strength satisfies the required value, there is a problem that desired toughness cannot be obtained.
In general, austenitic steel exhibits stable low temperature toughness even at low temperatures, so it may be used as a low temperature steel, but in high strength stainless steel with sufficient strength, cleavage fracture occurs due to transition behavior of impact absorption energy, It causes a decrease in toughness due to brittle fracture. In low alloy steels, it is recognized that controlling non-metallic inclusions to increase crack propagation resistance is effective in preventing brittle fracture, but austenitic steels have no such reports. ,
Furthermore, in austenitic steel strengthened by solid solution strengthening and work hardening, it is unknown how effective the control of the shape and distribution of nonmetallic inclusions is in improving toughness.
From the above viewpoint, the inventor of the present application has found that REM (1 of rare earth elements
The shape and distribution of the non-metallic inclusions are controlled by adding one or two or more of them, and the effect on the impact energy transition behavior was studied, and the present invention was accomplished. That is, the present invention has been made against the background of the above circumstances, by the following chemical composition, while ensuring properties such as non-magnetic, stress corrosion cracking resistance, high strength, which is a characteristic peculiar to the retaining ring, It is an object of the present invention to provide a retaining ring for a turbine generator having high toughness by adjusting non-metallic inclusions by adding an appropriate amount of REM.
【0004】[0004]
【課題を解決するための手段】上記課題を解決するた
め、本願発明のうち第1の発明の発電機用リテーニング
リングは、重量%で、Mn :17〜25%、Cr :17
〜25%、N:0.5〜1%、REM:0.001〜
0.08%を含有し、残部がFe および不可避的不純物
からなり、高強度で靱性に優れた非磁性鉄基合金から構
成されていることを特徴とする。さらに、第2の発明の
発電機用リテーニングリングは、重量%で、Mn :17
〜25%、Cr :17〜25%、Ni :3%以下、N:
0.5〜1%、REM:0.001〜0.08%を含有
し、残部がFe および不可避的不純物からなり、高強度
で靱性に優れた非磁性鉄基合金から構成されたことを特
徴とする。In order to solve the above-mentioned problems, the retaining ring for a generator according to the first invention of the present invention is, by weight%, Mn: 17 to 25%, Cr: 17%.
-25%, N: 0.5-1%, REM: 0.001-
It is characterized by containing 0.08%, the balance being Fe and inevitable impurities, and being composed of a non-magnetic iron-based alloy having high strength and excellent toughness. Further, the retaining ring for a generator of the second invention has a weight percentage of Mn: 17.
-25%, Cr: 17-25%, Ni: 3% or less, N:
0.5 to 1%, REM: 0.001 to 0.08%, the balance consisting of Fe and unavoidable impurities, and composed of a non-magnetic iron-based alloy with high strength and excellent toughness And
【0005】[0005]
【作用】本願発明の発電機用リテーニングリングを構成
する鉄基合金は冷間加工によって強化されるが、同時に
靱性は必然的に低下する。この靱性は、REMの添加に
よって改善される。すなわち、REMは、脱酸ならびに
脱硫作用を有し、金属溶湯にREMを添加することによ
り酸化物、硫化物が生成され、これを除去することによ
り清浄度が向上し、内在する非金属介在物の形状、分布
のコントロールを計ることができる。この結果、衝撃吸
収エネルギーが向上し、靱性が改善されるまた、靱性の
低下は、冷間加工によって導入された転位の分布にも依
存しており、この転位の分布を左右する要因としては、
積層欠陥エネルギー(γS )と、転位の導入に直接影響
する塑性変形条件とがある。本願発明者は、冷間加工後
の強度に大きな影響を与えない範囲内にて、積層欠陥エ
ネルギー(γS )におよぼす成分の影響を調査し、その
結果適当量のNi を含有させることにより、強度を損な
うことなく、加工硬化に伴う靱性低下を抑制することが
できた。次に、本願発明のリテーニングリングを構成す
る鉄基合金の成分含有量の限定理由を以下に述べる。な
お、以下の説明では、各成分の含有量は重量%で示す。The iron-based alloy forming the retaining ring for the generator of the present invention is strengthened by cold working, but at the same time, the toughness is inevitably lowered. This toughness is improved by the addition of REM. That is, REM has deoxidizing and desulfurizing effects, and oxides and sulfides are generated by adding REM to a molten metal, and removal of this improves cleanliness and internal non-metallic inclusions. The shape and distribution of can be controlled. As a result, the impact absorption energy is improved, the toughness is improved, and the decrease in toughness also depends on the distribution of dislocations introduced by cold working.
There are stacking fault energy (γ S ) and plastic deformation conditions that directly affect the introduction of dislocations. The inventor of the present application investigated the influence of the components on the stacking fault energy (γ S ) within a range that does not significantly affect the strength after cold working, and as a result, by containing an appropriate amount of Ni, The decrease in toughness due to work hardening could be suppressed without impairing the strength. Next, the reasons for limiting the component contents of the iron-based alloy constituting the retaining ring of the present invention will be described below. In addition, in the following description, the content of each component is shown by weight%.
【0006】Mn :17〜25% Mn は、本鉄基合金の基本構成成分の一つであって、オ
ーステナイト相を安定化させ、強度、靱性、冷間加工性
を向上させるためには、17%以上含有させることが必
要であるが、25%を超えて含有させると、加工硬化係
数が低下するため上記範囲とした。 Mn: 17-25% Mn is one of the basic constituent components of the iron-based alloy of the present invention. To stabilize the austenite phase and improve strength, toughness, and cold workability, Mn is 17 % Or more, it is necessary to contain it, but if it is contained in excess of 25%, the work hardening coefficient decreases, so the above range was made.
【0007】Cr :17〜25% Cr もMn 同様に、本鉄基合金の基本構成成分の一つで
ある。Mn 含有量17〜25%、N含有量0.5〜1%
の範囲において、安定なオーステナイト相を形成し、耐
応力腐食割れ性を付与させるためには、17%以上のC
r を含有させる必要がある。しかし、25%を超えてC
r を含有させると、フェライトを析出して非磁性が保た
れなくなるので上記範囲に限定した。 Cr: 17 to 25% Cr, like Mn, is also one of the basic constituent components of the iron-based alloy. Mn content 17-25%, N content 0.5-1%
In order to form a stable austenite phase and to impart stress corrosion cracking resistance, the C content of 17% or more is preferable.
r must be included. However, C exceeds 25%
When r is contained, ferrite is precipitated and the nonmagnetic property cannot be maintained, so the content is limited to the above range.
【0008】N :0.5〜1% Nも本鉄基合金の基本構成成分の一つである。Nは、オ
ーステナイト安定化元素であって、0.5%以上含有さ
せてオーステナイト組織中に固溶させると強度及び靱性
が向上するが、1%を超えて含有させると強度は向上す
るが、靱性は低下するため、上記範囲に限定した。 N: 0.5 to 1% N is also one of the basic constituent components of the iron-based alloy. N is an austenite stabilizing element, and if it is contained in an amount of 0.5% or more to form a solid solution in the austenite structure, the strength and toughness are improved, but if it exceeds 1%, the strength is improved, but the toughness is improved. Since it decreases, it is limited to the above range.
【0009】Ni :3%以下 Ni はオーステナイト安定化元素であり、本鉄基合金に
Ni を添加した場合、Ni 含有量の増加とともに冷間加
工材の衝撃靱性は向上するが、溶体化処理のままの材料
ではNi 添加による衝撃靱性への影響は認められない。
すなわち、Niを添加することにより、加工硬化に伴っ
て生じる靱性の低下を防止することができる。しかし、
3%を超えて含有させると、加工硬化係数が低下して冷
間加工材の強度が低下するのでNi の含有量の上限を3
%に限定した。 Ni: 3% or less Ni is an austenite stabilizing element, and when Ni is added to the iron-based alloy of the present invention, the impact toughness of the cold-worked material is improved as the Ni content increases, but As it is, no effect of Ni addition on impact toughness was observed.
That is, by adding Ni, it is possible to prevent a decrease in toughness caused by work hardening. But,
If the content exceeds 3%, the work hardening coefficient decreases and the strength of the cold-worked material decreases, so the upper limit of the Ni content is set to 3
Limited to%.
【0010】REM:0.001〜0.08% REMは非金属介在物の形状、分布をコントロールして
靱性を向上させる。しかし、0.001%未満の含有で
は上記作用効果が認められない。また、0.08%を超
えて含有させると酸化物が過剰に生成されて、かえって
清浄度が低下し、この結果衝撃靱性が低下してしまう。
このため、REMの含有量を上記範囲に限定した。 REM: 0.001 to 0.08% REM controls the shape and distribution of nonmetallic inclusions to improve toughness. However, if the content is less than 0.001%, the above-mentioned effects cannot be observed. Further, if the content exceeds 0.08%, an oxide is excessively generated, rather the cleanliness is lowered, and as a result, the impact toughness is lowered.
Therefore, the content of REM is limited to the above range.
【0011】不可避的不純物 本鉄基合金における不可避的不純物としては、C、S
i、P、S、Cu、Alなどが挙げられるが、これらの不
純物は、溶解原材料から、あるいは精錬過程で混入する
ものであり、極力低減することが望ましい。なお、C
は、靱性の向上、耐食性の観点から極力低減することが
望ましいが、現状の精錬技術レベルでは、最大0.08
%程度まで不可避的不純物として含有する。また、Si
は、脱酸剤として添加されるため、0.6%以下で、不
可避的不純物として残留する。 Inevitable Impurities : Inevitable impurities in the iron-based alloy include C and S.
Examples of the impurities include i, P, S, Cu, and Al. These impurities are mixed in from the raw material for melting or in the refining process, and it is desirable to reduce them as much as possible. Note that C
It is desirable to reduce as much as possible from the viewpoints of improving toughness and corrosion resistance, but at the current refining technology level, maximum 0.08
Up to about%, it is contained as an unavoidable impurity. Also, Si
Is added as a deoxidizer, and therefore remains as an unavoidable impurity at 0.6% or less.
【0012】[0012]
【実施例】表1に示す組成の合金を高周波誘導炉にて溶
解し、1トンのエレクトロスラグ再溶解用電極を鋳造し
た。本電極をエレクトロスラグ再溶解して供試材用の鋳
塊を溶製した。上記工程により得られた表1の供試材N
o.1〜No.8は、本発明を構成するエンドリング材
であり、No.9〜11は本発明の範囲外の比較材であ
る。これらの鋳塊を1200℃に加熱後、リテーニング
リングに鍛造成形し、粗削り後、1100℃に加熱して
固溶化処理を施した。引続き孔拡げ加工により、ほぼ限
界(38%)の冷間加工を施し、材料の強度を高めた。Example An alloy having the composition shown in Table 1 was melted in a high frequency induction furnace to cast a 1 ton electroslag remelting electrode. This electrode was remelted by electroslag to make a slab for the test material. Specimen N of Table 1 obtained by the above process
o. 1-No. No. 8 is an end ring material which constitutes the present invention. 9-11 are comparative materials outside the scope of the present invention. These ingots were heated to 1200 ° C., forged into a retaining ring, rough-cut, and then heated to 1100 ° C. for solution treatment. Subsequent hole expansion was performed to achieve almost the limit of cold working (38%), increasing the strength of the material.
【0013】冷間加工後の肉厚中央部の機械的性質を表
2に示す。表中から明らかなように、比較材No.9、
10は、強度は高いが、靱性は低く、比較材11は、靱
性は高いが、強度が低い。これに対して、本願発明に係
るリテーニング材であるNo.1〜No.8の供試材
は、高強度でかつ高靱性であることが確認された。Table 2 shows the mechanical properties of the central portion of the wall thickness after cold working. As is clear from the table, the comparative material No. 9,
No. 10 has high strength but low toughness, and Comparative material 11 has high toughness but low strength. On the other hand, No. 6 which is the retaining material according to the present invention. 1-No. It was confirmed that the test material of No. 8 had high strength and high toughness.
【0014】[0014]
【表1】 [Table 1]
【0015】[0015]
【表2】 [Table 2]
【0016】[0016]
【発明の効果】以上説明したように、重量%で、Mn :
17〜25%、Cr :17〜25%、N:0.5〜1%
を主要組成とする非磁性の鉄基合金に、REM:0.0
01〜0.08%を含有させ、さらに所望によりNi を
3%まで含有させることにより、組織を改善して靱性を
向上させ、また加工硬化に伴う靱性の低下を防止して、
高強度、高靱性を兼ね備えたタービン発電機用リテーニ
ングリングを提供することが可能となった。As described above, in% by weight, Mn:
17-25%, Cr: 17-25%, N: 0.5-1%
A non-magnetic iron-based alloy whose main composition is
By adding 0.01 to 0.08% and, if desired, Ni up to 3%, the structure is improved and the toughness is improved, and the toughness is prevented from lowering due to work hardening.
It has become possible to provide a retaining ring for a turbine generator that has both high strength and high toughness.
【図1】図1は、リテーニングリングの使用状態を示す
一部断面図である。FIG. 1 is a partial cross-sectional view showing a usage state of a retaining ring.
1 ロ−タ 2 肩部 3 リテ−ニングリング 1 Rotor 2 Shoulder 3 Retaining Ring
【手続補正書】[Procedure amendment]
【提出日】平成3年12月11日[Submission date] December 11, 1991
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0014[Correction target item name] 0014
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0014】[0014]
【表1】 [Table 1]
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0015[Correction target item name] 0015
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0015】[0015]
【表2】 [Table 2]
Claims (2)
17〜25%、N:0.5〜1%、REM:0.001
〜0.08%を含有し、残部がFe および不可避的不純
物からなり、高強度で靱性に優れた非磁性鉄基合金から
構成されたことを特徴とする発電機用リテーニングリン
グ1. Mn: 17 to 25% by weight, Cr:
17-25%, N: 0.5-1%, REM: 0.001
Retaining ring for generator, characterized by containing 0.08% to 0.08% and the balance Fe and unavoidable impurities, and composed of a non-magnetic iron-based alloy with high strength and excellent toughness.
17〜25%、Ni:3%以下、N:0.5〜1%、R
EM:0.001〜0.08%を含有し、残部がFe お
よび不可避的不純物からなり、高強度で靱性に優れた非
磁性鉄基合金から構成されたことを特徴とする発電機用
リテーニングリング2. By weight%, Mn: 17-25%, Cr:
17-25%, Ni: 3% or less, N: 0.5-1%, R
EM: Retaining for a generator characterized by containing 0.001 to 0.08%, the balance being Fe and inevitable impurities, and composed of a non-magnetic iron-based alloy having high strength and excellent toughness ring
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29033191A JPH05105987A (en) | 1991-10-11 | 1991-10-11 | Retaining ring for power generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29033191A JPH05105987A (en) | 1991-10-11 | 1991-10-11 | Retaining ring for power generator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05105987A true JPH05105987A (en) | 1993-04-27 |
Family
ID=17754690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29033191A Pending JPH05105987A (en) | 1991-10-11 | 1991-10-11 | Retaining ring for power generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05105987A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1990439A2 (en) | 2007-05-06 | 2008-11-12 | Daido Tokushuko Kabushiki Kaisha | High-strength nonmagnetic stainless steel, and high-strength nonmagnetic stainless steel part and process for producing the same |
-
1991
- 1991-10-11 JP JP29033191A patent/JPH05105987A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1990439A2 (en) | 2007-05-06 | 2008-11-12 | Daido Tokushuko Kabushiki Kaisha | High-strength nonmagnetic stainless steel, and high-strength nonmagnetic stainless steel part and process for producing the same |
US8900511B2 (en) | 2007-05-06 | 2014-12-02 | Daido Tokushuko Kabushiki Kaisha | High-strength nonmagnetic stainless steel, and high-strength nonmagnetic stainless steel part and process for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0175075B1 (en) | Rotor for steam turbine and manufacturing method | |
CN118389950A (en) | Precipitation hardening steel and its manufacture | |
CN105132803A (en) | High-intensity controlled-expansion alloy | |
JP2947913B2 (en) | Rotor shaft for high temperature steam turbine and method of manufacturing the same | |
JP7223210B2 (en) | Precipitation hardening martensitic stainless steel sheet with excellent fatigue resistance | |
JPH0443977B2 (en) | ||
JPH09249940A (en) | High-strength steel material excellent in sulfide stress cracking resistance and method for producing the same | |
JP6776469B1 (en) | Duplex stainless steel and its manufacturing method | |
JP2002161342A (en) | Structural steel superior in strength, fatigue resistance and corrosion resistance | |
CN105132823A (en) | High-intensity controlled-expansion alloy containing Cr | |
JPS61238942A (en) | Heat resisting alloy | |
JPH05105987A (en) | Retaining ring for power generator | |
JPH02197550A (en) | High purity heat resistant steel | |
JPH05113106A (en) | High-purity heat-resistant steel and method for manufacturing high-low pressure integrated turbine rotor made of high-purity heat-resistant steel | |
JPS62274052A (en) | Case-hardening steel for bearing | |
JPH05195155A (en) | Retaining ring material for generator | |
JPH1036944A (en) | Martensitic heat resistant steel | |
CN113201697A (en) | High-temperature concentrated sulfuric acid corrosion resistant austenitic stainless steel with excellent hot-working performance and hot-piercing method thereof | |
JPH059656A (en) | Retaining ring for generator | |
JPH05195154A (en) | Retaining ring material | |
JPH04111962A (en) | Production of high-speed tool steel | |
JP2004018897A (en) | High-chromium alloy steel and turbine rotor using this | |
JP3245097B2 (en) | High temperature steam turbine rotor material | |
JP2003055743A (en) | Steel for cold die having excellent machinability | |
JP3539120B2 (en) | Austenitic stainless steel with excellent hot workability |