JPH05104536A - Coated mirror surface mold and method of manufacturing the same - Google Patents
Coated mirror surface mold and method of manufacturing the sameInfo
- Publication number
- JPH05104536A JPH05104536A JP29792791A JP29792791A JPH05104536A JP H05104536 A JPH05104536 A JP H05104536A JP 29792791 A JP29792791 A JP 29792791A JP 29792791 A JP29792791 A JP 29792791A JP H05104536 A JPH05104536 A JP H05104536A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- coating layer
- ceramic coating
- molding
- coated mirror
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 239000011247 coating layer Substances 0.000 claims abstract description 36
- 238000000465 moulding Methods 0.000 claims abstract description 33
- 230000003746 surface roughness Effects 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 22
- 238000005524 ceramic coating Methods 0.000 claims abstract description 21
- 239000000463 material Substances 0.000 claims abstract description 19
- 238000010884 ion-beam technique Methods 0.000 claims abstract description 16
- 238000005240 physical vapour deposition Methods 0.000 claims abstract description 10
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 9
- 239000000956 alloy Substances 0.000 claims abstract description 9
- 230000001678 irradiating effect Effects 0.000 claims abstract description 5
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 238000007730 finishing process Methods 0.000 claims 1
- 230000003287 optical effect Effects 0.000 abstract description 14
- 239000000758 substrate Substances 0.000 description 19
- 239000000919 ceramic Substances 0.000 description 11
- 238000007740 vapor deposition Methods 0.000 description 7
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 6
- 238000005498 polishing Methods 0.000 description 6
- 229910052582 BN Inorganic materials 0.000 description 5
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 4
- 229910000423 chromium oxide Inorganic materials 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910018104 Ni-P Inorganic materials 0.000 description 2
- 229910018536 Ni—P Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- ZOCHARZZJNPSEU-UHFFFAOYSA-N diboron Chemical compound B#B ZOCHARZZJNPSEU-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Landscapes
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
(57)【要約】
【目的】 加工性が良好な合金製の金型の表面に緻密で
平滑なセラミック被覆層を形成し、セラミック被覆層の
成膜後も何ら表面仕上げ加工を施すことなく、そのまま
光学素子等のモールド金型として使用出来る被覆型鏡面
モールド金型、及びその製造方法を提供する。
【構成】 金型形状をなす合金製の基材1の金型として
の成形面に、加速電圧が1〜100kVのイオンビーム6を照
射しながら物理的気相析出法(PVD法)により蒸発元
素4を析出させ、表面仕上げ加工を施さないままの表面
粗さ(Rmax)が300Å以下の極めて平滑性に優れたセラ
ミック被覆層を有する被覆型鏡面モールド金型を製造す
る。
(57) [Abstract] [Purpose] A dense and smooth ceramic coating layer is formed on the surface of an alloy mold with good workability, and no surface finishing is applied after the ceramic coating layer is formed. Provided are a coated mirror surface mold which can be used as it is as a mold for an optical element and the like, and a manufacturing method thereof. [Structure] A vaporized element is formed by a physical vapor deposition method (PVD method) while irradiating an ion beam 6 with an accelerating voltage of 1 to 100 kV on a molding surface of a mold base alloy base material 1 as a mold. 4 is deposited, and a coated mirror-like mold having a ceramic coating layer having a surface roughness (R max ) of 300 Å or less and having an extremely smooth surface without surface finishing is manufactured.
Description
【0001】[0001]
【産業上の利用分野】本発明は、レンズ等の光学素子や
光学的な記録媒体等の、極めて平滑な表面を必要とする
物品のモールド成形に用いられる、成形面を平滑な被覆
層で覆った被覆型鏡面モールド金型及びその製造方法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention covers a molding surface used for molding an article such as an optical element such as a lens or an optical recording medium which requires an extremely smooth surface with a smooth coating layer. And a method of manufacturing the same.
【0002】[0002]
【従来の技術】樹脂あるいはガラスからなる光学素子の
製造方法として、軟化させた素材を金型内部に閉じ込め
て加圧成形する、いわゆるモールド成形が脚光を浴びて
いる。その理由は、モールド成形においては金型の形状
が精度良く被加工物に転写されるため、同じ品質の光学
素子を大量生産でき、製造コストが著しく低減できるか
らである。又、コンパクトディスクに代表される光学的
な記録媒体の製造においても、このモールド成形が広く
利用されている。2. Description of the Related Art As a method of manufacturing an optical element made of resin or glass, so-called molding, in which a softened material is enclosed in a mold and pressure-molded, has been in the limelight. The reason is that in molding, the shape of the mold is accurately transferred to the workpiece, so that optical elements of the same quality can be mass-produced and the manufacturing cost can be significantly reduced. This molding is also widely used in the production of optical recording media represented by compact discs.
【0003】光学素子又は光学的記録媒体のいずれにお
いても、光の散乱を抑えるために被成形面の表面粗さが
光の波長の数分の1以下であることが必要であり、かか
る被成形面の表面粗さを左右するモールド金型の成形面
にも同程度あるいはそれ以上の平滑性が要求される現状
から、成形面が極めて平滑な、いわゆる鏡面状態になっ
ているモールド金型のニーズが急速に高まっている。In either the optical element or the optical recording medium, the surface roughness of the surface to be molded needs to be a fraction of the wavelength of light or less in order to suppress light scattering. Since the molding surface of the molding die that affects the surface roughness of the surface is required to have the same or higher smoothness, there is a need for a molding die in which the molding surface is in a so-called mirror surface state. Is increasing rapidly.
【0004】一般に、モールド金型の材質(型材)とし
ては、アルミニウム合金、銅合金、鋼、超硬合金、セラ
ミック、グラッシーカーボン等が従来から用いられてい
るが、被成形材料の種類や成形条件等によっては表面の
平滑性、耐腐食性、離型性、耐酸化性、耐スクラッチ性
(傷付きにくいこと、即ち硬度が高いこと)、耐反応性
等の特性のうちいずれかが不十分な場合が多い。このた
め、金型の成形面に上記特性を満足するような被覆層を
形成することが提案されている。Generally, aluminum alloys, copper alloys, steels, cemented carbides, ceramics, glassy carbon, etc. have been conventionally used as the material (mold material) of the molding die, but the type of molding material and molding conditions Some of the characteristics such as surface smoothness, corrosion resistance, releasability, oxidation resistance, scratch resistance (hard to be scratched, that is, high hardness), and reaction resistance are insufficient depending on the conditions such as In many cases. Therefore, it has been proposed to form a coating layer on the molding surface of the mold so as to satisfy the above characteristics.
【0005】かかる被覆層の代表的なものは、Ni−Pメ
ッキ、貴金属の蒸着膜、セラミックの蒸着膜等である。
しかし、Ni−Pメッキは耐腐食性に優れ、硬度も比較的
高く耐スクラッチ性にも優れているが、表面の平滑性が
十分ではないため、メッキ後に成形面を研削及び研磨な
どにより仕上げ加工する必要がある。又、貴金属の蒸着
膜はガラスに対する離型性の点で注目されるが、硬度が
低いために耐スクラッチ性に劣り、金型の寿命が不十分
である。Typical examples of such a coating layer are Ni-P plating, a noble metal vapor deposition film, a ceramic vapor deposition film, and the like.
However, Ni-P plating has excellent corrosion resistance, relatively high hardness, and excellent scratch resistance, but since the surface smoothness is not sufficient, the molding surface is finished by grinding and polishing after plating. There is a need to. Further, the deposited film of a noble metal is noted for its releasability from glass, but it has poor scratch resistance due to its low hardness, and the life of the mold is insufficient.
【0006】これに対してセラミックの蒸着膜は、硬度
が高く化学的に安定であることから有望視されている
が、平滑性が一般的に不十分であるため研磨等の表面仕
上げ加工が不可欠であった。しかるに、セラミックはそ
の優れた耐摩耗性のために極めて加工性が悪く、金型の
形状並びに精度を維持しながら表面仕上げ加工すること
が極めて困難であった。このような理由から、光学素子
等の成形に用いるモールド金型への、セラミック被覆層
の適用は進んでいない実情であった。On the other hand, ceramic vapor-deposited films are promising because they have high hardness and are chemically stable, but surface finish processing such as polishing is indispensable because the smoothness is generally insufficient. Met. However, ceramics have extremely poor workability due to their excellent wear resistance, and it has been extremely difficult to perform surface finishing while maintaining the shape and precision of the mold. For these reasons, the ceramic coating layer has not been applied to a molding die used for molding an optical element or the like.
【0007】尚、セラミック蒸着膜に関する上記の問題
は、型材自体が焼結セラミックである金型にもあてはま
るが、加えてこの場合には焼結セラミックの結晶粒の大
きさやバインダー(結合層)の存在による面粗れの問題
があり、平滑性の優れた金型を得ることは非常に困難で
あった。The above-mentioned problems concerning the ceramic vapor-deposited film also apply to a mold in which the mold material itself is a sintered ceramic. In this case, however, the size of the crystal grains of the sintered ceramic and the binder (bonding layer) There is a problem of surface roughness due to the existence, and it is very difficult to obtain a die having excellent smoothness.
【0008】[0008]
【発明が解決しようとする課題】本発明はかかる従来の
事情に鑑み、最終的な形状並びに精度に仕上げられた金
型の表面に緻密で平滑なセラミック被覆層を形成し、セ
ラミック被覆層の成膜後も何ら表面仕上げ加工を施すこ
となく、そのまま光学素子等のモールド金型として使用
出来る被覆型鏡面モールド金型、及びその製造方法を提
供することを目的とする。In view of the above conventional circumstances, the present invention forms a ceramic coating layer by forming a dense and smooth ceramic coating layer on the surface of a mold finished to a final shape and precision. An object of the present invention is to provide a coated mirror surface mold which can be used as it is as a mold for an optical element or the like without performing any surface finishing after the film, and a manufacturing method thereof.
【0009】[0009]
【課題を解決するための手段】上記目的を達成するた
め、本発明の被覆型鏡面モールド金型の製造方法におい
ては、金型形状をなす合金製の基材の金型としての成形
面に、加速電圧が1〜100kVのイオンビームを照射しなが
らセラミック被覆層を物理的気相析出法(PVD法)に
より形成する。In order to achieve the above object, in the method for producing a coated mirror-surface mold according to the present invention, the molding surface of the base material made of an alloy having a mold shape is used as a mold. A ceramic coating layer is formed by a physical vapor deposition method (PVD method) while irradiating an ion beam with an accelerating voltage of 1 to 100 kV.
【0010】上記本発明方法においては、基材における
金型としての成形面上に形成されるセラミック被覆層が
成形面の平滑性を損なうことなく、即ち成形面の平滑性
を反映して形成される。そのため、特に合金製の基材の
金型としての成形面の表面粗さ(Rmax)を300Å以下と
することにより、その成形面上に得られるセラミック被
覆層を表面仕上げ加工を施さないままの表面粗さ
(Rmax)で300Å以下とすることが出来る。In the above-mentioned method of the present invention, the ceramic coating layer formed on the molding surface of the substrate as a mold is formed without impairing the smoothness of the molding surface, that is, reflecting the smoothness of the molding surface. It Therefore, especially by setting the surface roughness (R max ) of the molding surface as a mold of the alloy base material to 300 Å or less, the ceramic coating layer obtained on the molding surface can be treated without surface finishing. The surface roughness (R max ) can be less than 300Å.
【0011】従って、本発明による被覆型鏡面モールド
金型としては、金型形状をなす合金製の基材と、該基材
の金型としての成形面に物理的気相析出法により形成さ
れたセラミック被覆層とからなり、表面仕上げ加工を施
さないままのセラミック被覆層の表面粗さ(Rmax)が30
0Å以下であることを特徴とするものである。Therefore, the coated mirror-finish mold according to the present invention is formed by a physical vapor deposition method on an alloy base material having a mold shape and a molding surface of the base material as a mold. The surface roughness (R max ) of the ceramic coating layer, which is composed of the ceramic coating layer and is not subjected to surface finishing, is 30.
It is characterized by being 0 or less.
【0012】[0012]
【作用】一般に、真空蒸着やスパッタリング等の物理的
気相析出法(PVD法)により形成されたセラミック蒸
着膜の構造は、その析出時の基材温度によって決まる
が、殆どの温度領域において柱状に成長することが知ら
れている。この結果、セラミック蒸着膜の表面には柱状
結晶の先端が現れるため、表面の平滑性が低下するので
ある。In general, the structure of a ceramic vapor deposition film formed by a physical vapor deposition method (PVD method) such as vacuum vapor deposition or sputtering is determined by the substrate temperature at the time of deposition, but it is columnar in most temperature regions. Known to grow. As a result, since the tips of the columnar crystals appear on the surface of the ceramic vapor deposition film, the smoothness of the surface deteriorates.
【0013】本発明者は、セラミック蒸着膜が柱状に成
長する原因を検討する中から、析出物の基材表面での拡
散を促進させることが出来れば、成長が均一に起こり、
極めて平滑な表面が得られることを見いだし、本発明に
至ったものである。更に、表面での拡散を促進させるた
めには、方向性を持ち且つ粒子のエネルギー(加速電
圧)の揃ったイオンビームを基材表面に照射(アシス
ト)する方法が最も有効であり、これにより結晶成長及
び表面平滑性の制御が可能となり、緻密で平滑なセラミ
ック被覆層(蒸着膜)が得られることが分かった。The present inventor is examining the cause of columnar growth of a ceramic vapor deposition film, and if the diffusion of precipitates on the substrate surface can be promoted, the growth will occur uniformly,
It was found that an extremely smooth surface can be obtained, and the present invention has been completed. Furthermore, in order to promote diffusion on the surface, the most effective method is to irradiate (assist) an ion beam having directionality and uniform particle energy (accelerating voltage) to the surface of the base material, which results in crystal It was found that the growth and the surface smoothness can be controlled, and a dense and smooth ceramic coating layer (deposition film) can be obtained.
【0014】照射するイオンビームの加速電圧について
は、1kV未満では析出物の表面での拡散が促進されず、
光学素子等のモールド金型として満足すべき表面平滑性
が得られない。又、加速電圧が100kVを越えるとイオン
ビームの大部分が基材内部に注入されてしまい、やはり
表面拡散の促進効果が得られない。従って、イオンビー
ムの加速電圧は1〜100kVの範囲とするが、イオンビーム
発生装置(イオン源)の構成及びイオンビーム照射によ
る基材の温度上昇を考慮すると5〜40kVの範囲が最も好
ましい。Regarding the accelerating voltage of the ion beam for irradiation, if it is less than 1 kV, diffusion of the precipitate on the surface is not promoted,
Satisfactory surface smoothness cannot be obtained as a mold for optical elements. Further, when the acceleration voltage exceeds 100 kV, most of the ion beam is injected into the base material, and the effect of promoting surface diffusion cannot be obtained. Therefore, the accelerating voltage of the ion beam is set in the range of 1 to 100 kV, but the range of 5 to 40 kV is most preferable in view of the configuration of the ion beam generator (ion source) and the temperature rise of the substrate due to ion beam irradiation.
【0015】上記方法により極めて平滑なセラミック被
覆層が得られるが、その表面平滑性が基材表面の平滑性
に影響されることは当然である。特にレンズ等の光学素
子においては、Rmaxで300Å(0.03μm)又はそれ以下の
表面粗さが要求されるので、加工性の悪いセラミック製
の基材は不適当であり、合金製の基材を用い且つその金
型としての成形面を研削や研磨等の方法により望ましい
表面粗さに表面仕上げ加工することが必要である。Although an extremely smooth ceramic coating layer can be obtained by the above method, it goes without saying that the surface smoothness thereof is affected by the smoothness of the substrate surface. In the optical element of the particular lens, since 300Å at R max (0.03 .mu.m) or less surface roughness is required, workability poor ceramic substrate is inadequate, alloy substrate And it is necessary to finish the molding surface as a mold to a desired surface roughness by a method such as grinding or polishing.
【0016】この様に、金型としての成形面の表面粗さ
(Rmax)を300Å以下にした基材を用いることによっ
て、その成形面の形状及び平滑性を損なうことなく、表
面粗さ(Rmax)が300Å以下のセラミック被覆層を得る
ことが可能である。従って、本発明の平滑性に優れた被
覆型鏡面モールド金型は、表面仕上げ加工を施さないま
まのセラミック被覆層の表面粗さ(Rmax)が300Å以下
であるから、成膜後の後加工として研削や研磨等の表面
仕上げ加工を全く施す必要がなく、そのままモールド金
型として使用することが出来る。As described above, by using the base material having the surface roughness (R max ) of the molding surface as the mold of 300 Å or less, the surface roughness ( Rmax ) can be obtained without impairing the shape and smoothness of the molding surface. It is possible to obtain a ceramic coating layer with R max ) of 300 Å or less. Therefore, since the coated mirror-like mold having excellent smoothness of the present invention has a surface roughness (R max ) of the ceramic coating layer of 300 Å or less without surface finishing, post-processing after film formation. As it is, it is not necessary to perform surface finishing such as grinding or polishing at all, and the mold can be used as it is.
【0017】尚、本発明方法で用いるPVD法の具体的
内容については、真空蒸着、スパッタリング、イオンプ
レーティング等の公知のいずれの方法であっても良い。
又、イオンビーム発生装置の方式については、カフマン
型、フリーマン型、バケット型等の型式・手法を選ば
ず、上記加速電圧が得られる方式であれば良い。照射す
るイオン種については、セラミック被覆層を構成する元
素が最も好ましいが、反応に寄与しない不活性ガスを用
いることも可能である。The PVD method used in the method of the present invention may be any known method such as vacuum deposition, sputtering and ion plating.
As for the method of the ion beam generator, any method or method such as a Kuffman type, a Freeman type, or a bucket type may be used as long as the acceleration voltage can be obtained. As for the ion species for irradiation, the element forming the ceramic coating layer is most preferable, but it is also possible to use an inert gas that does not contribute to the reaction.
【0018】[0018]
【実施例1】表面粗さ(Rmax)が0.02μm(200Å)のス
タバックス製の基材表面に、本発明方法により窒化チタ
ン被覆層を形成した。即ち、図1の成膜装置を用い、上
記基材1を真空容器2内に配置して回転させながら、電
子ビーム蒸発装置3から蒸発元素4としてチタンを蒸発
させ、同時にイオンビーム発生装置5から加速電圧30kV
で窒素のイオンビーム6を基材1の表面に照射すること
により、窒化チタン被覆層を1μmの厚さに形成した。基
材1の表面上に形成された窒化チタン被覆層の表面粗さ
(Rmax)を測定したところ0.03μmであった。Example 1 A titanium nitride coating layer was formed by the method of the present invention on the surface of a Starbucks substrate having a surface roughness (R max ) of 0.02 μm (200 Å). That is, using the film forming apparatus of FIG. 1, while the substrate 1 is placed in the vacuum container 2 and rotated, titanium is evaporated as the evaporation element 4 from the electron beam evaporation device 3, and at the same time from the ion beam generation device 5. Accelerating voltage 30kV
By irradiating the surface of the substrate 1 with the ion beam 6 of nitrogen, a titanium nitride coating layer having a thickness of 1 μm was formed. The surface roughness (R max ) of the titanium nitride coating layer formed on the surface of the substrate 1 was measured and found to be 0.03 μm.
【0019】比較のため、同じ表面粗さのスタバックス
製の基材表面に、通常のスパッタリング法により基材に
マイナス500Vの直流電圧を印加しながら厚さ1μmの窒化
チタン被覆層を形成した。この窒化チタン被覆層の表面
粗さ(Rmax)は1.70μmであり、本発明によるものより
遥かに粗い表面しか得られなかった。結果を下記表1に
要約した。For comparison, a titanium nitride coating layer having a thickness of 1 μm was formed on the surface of a substrate made of Starbucks having the same surface roughness by applying a DC voltage of −500 V to the substrate by an ordinary sputtering method. The surface roughness (R max ) of this titanium nitride coating layer was 1.70 μm, and only a much rougher surface than that of the present invention was obtained. The results are summarized in Table 1 below.
【0020】[0020]
【表1】区 分 表面粗さ(Rmax) 基 材 0.02μm 本発明 0.03μm 従来法 1.70μm 従来法では基材表面の平滑性を維持できなかったが、本
発明によれば基材表面の平滑性を損なうことなく、窒化
チタンの被覆層を形成できる。In Table 1] Classification surface roughness (R max) substrate 0.02μm present invention 0.03μm conventional method 1.70μm conventional methods could not be maintained the smoothness of the substrate surface, the substrate surface according to the present invention The titanium nitride coating layer can be formed without impairing the smoothness.
【0021】[0021]
【実施例2】表面粗さ(Rmax)が0.022μmの超硬合金製
の基材表面に、本発明方法により図1の成膜装置を用い
て、実施例1と同様にして窒化ホウ素被覆層を形成し
た。ただし、窒素のイオンビームの加速電圧を5kVと
し、窒化ホウ素被覆層の厚さを0.5μmとした。Example 2 Coating of boron nitride on the surface of a cemented carbide substrate having a surface roughness (R max ) of 0.022 μm in the same manner as in Example 1 using the film forming apparatus of FIG. 1 according to the method of the present invention. Layers were formed. However, the acceleration voltage of the nitrogen ion beam was 5 kV, and the thickness of the boron nitride coating layer was 0.5 μm.
【0022】比較のため、同じ表面粗さの超硬合金製の
基材表面に、原料ガスとしてジボラン(B2H6)ガスとア
ンモニアガスを用いた通常のプラズマCVD法により、
蒸着温度500℃の条件で厚さ0.5μmの窒化ホウ素被覆層
を形成した。得られた各窒化ホウ素被覆層の表面粗さ
(Rmax)を測定し、下記表2に結果を要約した。For comparison, a base material made of a cemented carbide having the same surface roughness was subjected to an ordinary plasma CVD method using diborane (B 2 H 6 ) gas and ammonia gas as source gases.
A boron nitride coating layer having a thickness of 0.5 μm was formed under the condition of vapor deposition temperature of 500 ° C. The surface roughness (R max ) of each of the obtained boron nitride coating layers was measured, and the results are summarized in Table 2 below.
【0023】[0023]
【表2】区 分 表面粗さ(Rmax) 基 材 0.022μm 本発明 0.024μm 従来法 0.110μmTABLE 2 Classification surface roughness (R max) substrate 0.022μm present invention 0.024μm conventional method 0.110μm
【0024】本発明によれば、基材表面とほぼ同程度の
極めて平滑な窒化ホウ素被覆層を形成することが出来
る。According to the present invention, it is possible to form an extremely smooth boron nitride coating layer which is substantially the same as the surface of the substrate.
【0025】[0025]
【実施例3】基材として用いたのは超硬合金製の凸レン
ズ成形用金型であり、研削及び研磨により成形面の表面
粗さ(Rmax)を0.02μmに表面仕上げ加工してある。本
発明方法により図1の成膜装置を用い、酸化クロムを蒸
発させながら加速電圧20kVのアルゴンのイオンビームを
照射することにより、上記基材の成形面に厚さ0.8μmの
酸化クロム被覆層を形成した。得られた酸化クロム被覆
層の表面粗さ(Rmax)は0.03μmであり、元の金型の形
状及び面精度を損なうことなく、凸レンズ成形用として
充分な平滑性を有する被覆型鏡面モールド金型が得られ
た。[Example 3] A convex lens molding die made of cemented carbide was used as the base material, and the surface finish (R max ) of the molding surface was finished by grinding and polishing to 0.02 µm. According to the method of the present invention, by using the film forming apparatus of FIG. 1 and irradiating an ion beam of argon with an accelerating voltage of 20 kV while evaporating chromium oxide, a chromium oxide coating layer having a thickness of 0.8 μm is formed on the molding surface of the base material. Formed. The surface roughness (R max ) of the obtained chromium oxide coating layer is 0.03 μm, and the coated mirror-surface mold die has sufficient smoothness for forming convex lenses without impairing the shape and surface accuracy of the original die. The mold was obtained.
【0026】一方、酸化クロム焼結体を粗加工及び仕上
げ加工により凸レンズ成形用金型に加工したが、加工は
困難を極め、多大な労力が必要であっただけでなく、表
面に焼結の巣や研磨時の粒子の脱落等が見られ、凸レン
ズ成形用として必要な所定の面精度が得られなかった。On the other hand, the chromium oxide sintered body was processed into a convex lens molding die by roughing and finishing, but the processing was extremely difficult and required a lot of labor, and the surface was not sintered. Nests, particles falling off during polishing, etc. were observed, and the predetermined surface precision required for forming a convex lens could not be obtained.
【0027】[0027]
【発明の効果】本発明によれば、最終的な形状並びに精
度に仕上げられた良好な加工性を有する合金製の金型の
表面に、高硬度で化学的安定性等に優れるセラミック被
覆層を極めて平滑に形成することができ、従ってセラミ
ック被覆層を何ら表面仕上げ加工を施すことなく、その
まま被覆型鏡面モールド金型として光学素子や光学的記
録媒体等のモールド成形に使用出来る。According to the present invention, a ceramic coating layer having high hardness and excellent chemical stability is formed on the surface of a metal mold made of an alloy having a final shape and precision and having good workability. Since it can be formed extremely smooth, the ceramic coating layer can be used as it is as a coated mirror-finishing mold for molding optical elements, optical recording media, etc. without any surface finishing.
【図1】本発明方法を実施するための成膜装置の一具体
例を示す概略断面図である。FIG. 1 is a schematic sectional view showing a specific example of a film forming apparatus for carrying out the method of the present invention.
1 基材 2 真空容器 3 電子ビーム蒸発装置 4 蒸発元素 5 イオンビーム発生装置 6 イオンビーム 1 Base Material 2 Vacuum Container 3 Electron Beam Evaporator 4 Evaporative Element 5 Ion Beam Generator 6 Ion Beam
Claims (2)
の金型としての成形面に物理的気相析出法により形成さ
れたセラミック被覆層とからなり、表面仕上げ加工を施
さないままのセラミック被覆層の表面粗さ(Rmax)が30
0Å以下であることを特徴とする被覆型鏡面モールド金
型。1. A surface-finishing process, comprising a base material made of an alloy having a mold shape, and a ceramic coating layer formed on the molding surface of the base material as a mold by a physical vapor deposition method. The surface roughness (R max ) of the ceramic coating layer without coating is 30.
A coated mirror surface mold that is 0 Å or less.
ての成形面に、加速電圧が1〜100kVのイオンビームを照
射しながらセラミック被覆層を物理的気相析出法により
形成することを特徴とする被覆型鏡面モールド金型の製
造方法。2. A ceramic coating layer is formed by physical vapor deposition on a molding surface of an alloy base material having a mold shape while irradiating an ion beam with an accelerating voltage of 1 to 100 kV. A method of manufacturing a coated mirror-surface mold die, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29792791A JPH05104536A (en) | 1991-10-18 | 1991-10-18 | Coated mirror surface mold and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29792791A JPH05104536A (en) | 1991-10-18 | 1991-10-18 | Coated mirror surface mold and method of manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05104536A true JPH05104536A (en) | 1993-04-27 |
Family
ID=17852896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29792791A Pending JPH05104536A (en) | 1991-10-18 | 1991-10-18 | Coated mirror surface mold and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05104536A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005199454A (en) * | 2004-01-13 | 2005-07-28 | National Institute Of Advanced Industrial & Technology | Fine mold and manufacturing method thereof |
JP2007001181A (en) * | 2005-06-24 | 2007-01-11 | Sony Corp | Apparatus and method for molding |
WO2008035521A1 (en) * | 2006-09-20 | 2008-03-27 | Konica Minolta Opto, Inc. | Method for manufacturing mold for molding optical element |
DE102007002806A1 (en) | 2007-01-18 | 2008-07-24 | Sms Demag Ag | Mold with coating |
JP2013003156A (en) * | 2011-06-10 | 2013-01-07 | Hoya Corp | Lens manufacturing method and spectacle lens manufacturing system |
-
1991
- 1991-10-18 JP JP29792791A patent/JPH05104536A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005199454A (en) * | 2004-01-13 | 2005-07-28 | National Institute Of Advanced Industrial & Technology | Fine mold and manufacturing method thereof |
JP2007001181A (en) * | 2005-06-24 | 2007-01-11 | Sony Corp | Apparatus and method for molding |
WO2008035521A1 (en) * | 2006-09-20 | 2008-03-27 | Konica Minolta Opto, Inc. | Method for manufacturing mold for molding optical element |
US8318058B2 (en) | 2006-09-20 | 2012-11-27 | Konica Minolta Opto, Inc. | Method for manufacturing mold for molding optical element |
TWI382920B (en) * | 2006-09-20 | 2013-01-21 | Konica Minolta Opto Inc | Method for manufacturing mold for optical element forming |
DE102007002806A1 (en) | 2007-01-18 | 2008-07-24 | Sms Demag Ag | Mold with coating |
WO2008086862A1 (en) | 2007-01-18 | 2008-07-24 | Sms Siemag Ag | Die with coating |
JP2013003156A (en) * | 2011-06-10 | 2013-01-07 | Hoya Corp | Lens manufacturing method and spectacle lens manufacturing system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6277506B1 (en) | Thin film magnetic head thin film magnetic head substrate and method for fabricating such substrate | |
US5662999A (en) | Mold and method of manufacturing the same | |
JPH0461816B2 (en) | ||
US4990362A (en) | Method of manufacturing a titanium magnetic disk substrate | |
JPH05104536A (en) | Coated mirror surface mold and method of manufacturing the same | |
JP2000187837A (en) | Production of thin film magnetic disk | |
JP2000327344A (en) | Method for producing mold for molding optical element and mold for molding optical element | |
CN104193422A (en) | Silicon carbide ceramic mold core for glass modeling and preparation method thereof | |
JPS5855562A (en) | Polishing plate and its manufacturing method | |
JP3220315B2 (en) | Covering member | |
JP2971226B2 (en) | Method for manufacturing glass optical element molding die | |
JPH10231129A (en) | Mold for press molding and glass molded product by the mold | |
JP2555810B2 (en) | Mold for press-molding optical glass element and method for manufacturing the same | |
JP3841186B2 (en) | Mold for optical element molding | |
JPH1179759A (en) | Production of mold for forming optical element | |
US20040211221A1 (en) | Mold for press-molding glass optical articles and method for making the mold | |
JP2962905B2 (en) | Method for manufacturing glass optical element molding die | |
JP2571290B2 (en) | Mold for optical element molding | |
JPH01119664A (en) | Sputtering device | |
JPH0329012B2 (en) | ||
JPH0361615B2 (en) | ||
JP2661345B2 (en) | Mold for optical glass element | |
JP2740607B2 (en) | Glass forming mold and manufacturing method thereof | |
JPH0345448B2 (en) | ||
CN118922578A (en) | Coating member |