[go: up one dir, main page]

JPH0510426B2 - - Google Patents

Info

Publication number
JPH0510426B2
JPH0510426B2 JP60179025A JP17902585A JPH0510426B2 JP H0510426 B2 JPH0510426 B2 JP H0510426B2 JP 60179025 A JP60179025 A JP 60179025A JP 17902585 A JP17902585 A JP 17902585A JP H0510426 B2 JPH0510426 B2 JP H0510426B2
Authority
JP
Japan
Prior art keywords
film
hard carbon
carbon film
atm
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60179025A
Other languages
Japanese (ja)
Other versions
JPS6240375A (en
Inventor
Kenji Yamamoto
Takehisa Nakayama
Yoshihisa Oowada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP60179025A priority Critical patent/JPS6240375A/en
Publication of JPS6240375A publication Critical patent/JPS6240375A/en
Publication of JPH0510426B2 publication Critical patent/JPH0510426B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は硬質カーボン膜に関する。 〔従来の技術〕 最近、イオンビーム蒸着法、イオンビームスパ
ツター法、スパツター法、CVD法、プラズマ
CVD法などにより、ダイヤモンド状カーボン膜
といわれる高硬度のカーボン膜が形成され、切削
ブレイドの表面硬化用材料、半導体、赤外光学部
材の反射防止膜、硬質保護膜、絶縁材料、耐摩耗
性材料などとして注目されている(たとえば「エ
レクトロセラミツクス」1985年5月号48〜54頁の
「硬質カーボン膜」参照)。 たとえばプラズマCVD法により硬質カーボン
膜を成膜するばあい、通常CH4、C2H4、C2H2
C4H10、ベンゼンなどの炭化水素系の化合物と
H2、Ar、Heなどとの混合ガスがプラズマ分解せ
しめられ、基板上に堆積せしめられ、成膜され
る。 〔発明が解決しようとする問題点〕 従来の硬質カーボン膜を前記のごとき従来の方
法で成膜しようとすると、堆積速度は0.1〜5
Å/秒程度と小さく、堆積速度をあげると硬度が
低下し、さらに電極部以外のチヤンバー内に粉や
膜が付着し、ピンホールなどを生じる原因とな
り、生産性が低くなるという欠点がある。 本発明は堆積速度自体を向上させ、堆積速度を
向上させても膜の硬度低下がなく、かつ電極部以
外のチヤンバー内に粉や膜を付着させることが少
ない硬質カーボン膜をうることを目的とするもの
である。 〔問題点を解決するための手段〕 本発明は、従来の硬質カーボン膜を成膜する際
に、原料ガス中にフツ素を構成成分とする化合物
を混在せしめ、プラズマCVD法により成膜する
と、大きな堆積速度で生産性よく、しかも大きな
堆積速度で成膜しても硬度の低下をおこさないば
かりかさらに硬度が大きくなるという特徴を有す
る硬質カーボン膜が成膜されることが見出された
ことによりなされたものであり、基板上にプラズ
マCVD法により堆積せしめられたフツ素を0.1〜
30atm%含有する膜厚が1〜50μmで、表面ビツ
カース硬度が500以上である硬質カーボン膜に関
する。 〔実施例〕 本発明に用いる基板にはとくに限定はなく、プ
ラズマCVD法により硬質カーボン膜が成膜する
基板であればいずれの基板をも使用しうる。この
ような基板の具体例としては、たとえばMo、
Cu、W、Al、Zn、SUSなどの金属や合金製の基
板、単結晶シリコン、単結晶ゲルマニウム、
GaAs、GaPなどの半導体基板、SiC、Al2O3
SiO2などのセラミツク基板、あるいはAg、W、
Mo、Al、Cuなどの金属で表面処理された金属基
板、半導体基板、セラミツク基板などがあげられ
る。 本発明の硬質カーボン膜にはフツ素が0.1〜
30atm%、好ましくは1〜15atm%、さらに好ま
しくは1〜7atm%、炭素が50〜98atm%、好ま
しくは80〜95atm%、水素が0.1〜30atm%、好ま
しくは1〜15atm%含有されており、要すればシ
リコンを20atm%以下、好ましくは0.01〜5atm%
の範囲で含有していてもよい。 前記フツ素含量が0.1atm%未満になると、フ
ツ素を含まない炭素、水素のみを含む膜と堆積速
度、硬度、堆積速度と硬度との関係などがほとん
どかわらなくなり、30atm%をこえると、膜の剥
離が生じるようになる。 また炭素含量が50atm%未満になると、ポリマ
ー的になり、膜の硬度が小さくなる傾向が生じ、
98%をこえると、基板に対する膜の付着力が低下
しやすくなる傾向が生じる。 なお水素含量は炭素含量、フツ素含量、成膜条
件などにより変化し、上記範囲であれば本発明の
硬質カーボン膜の高硬度、耐摩耗性などの点で問
題はない。 さらにシリコンが前記範囲で含有されているば
あいには、本発明の硬質カーボン膜の高硬度、耐
摩耗性などの点で問題はなく、とくにSUS、Al、
Cuなどの金属基板を用いたばあい、基板と硬質
カーボン膜との付着性が向上する。フツ素を含ま
ない硬質カーボン膜についてシリコンを加えると
付着性が良好になることに関してはすでに出願済
(特願昭60−83137号)であるが、フツ素を含むば
あいにもフツ素を含まないばあいと同様の効果が
えられる。 本発明の硬質カーボン膜の膜厚、硬度などとし
ては通常1〜50μm程度の膜厚であり、硬度とし
ては一般に硬質膜の範囲とされる表面ビツカース
硬度で500以上、好ましくは1000以上程度のもの
である。硬度の上限についてはとくに限定はない
が、実際に製造しうる硬度としてはダイヤモンド
と同程度〜少し低めの値である7000〜8000であ
る。 本発明の硬質カーボン膜は前記のようにプラズ
マCVD法により成膜される。プラズマCVD法の
具体例としては、通常のDCプラズマCVD法、
RFプラズマCVD法、マイクロウエーブプラズマ
CVD法、DCおよびRF両者混合のプラズマCVD
法などがあげられる。とくに基板をカソードに設
置し、基板に約−200V〜−2KV、好ましくは−
300V〜−1KVの電圧を印加し、DC電流50mA〜
2A程度、好ましくは1〜2Aで原料ガスを直流放
電させ、さらに、0.001〜10W/cm2、好ましくは
15〜1000mW/cm2のRFを加えた両者の混合放電
により絶縁物を形成するばあいには、安定した放
電がえられ、堆積速度も増加する。また、えられ
る膜は、通常のRFプラズマCVD法でえられる膜
よりも硬度も大きく、電気抵抗率も大きくなる。 前記原料ガスの具体例としては、プラズマ
CVD法により硬質カーボン膜を成膜するばあい
に一般に使用するCH4、C2H4、C2H2、C4H10
ベンゼンなどの炭化水素系化合物と、要すれば使
用されるH2、Ar、Heなどの希釈ガスとの混合ガ
スに、さらにCF4、CF2H2、C2F4、C2F6、C6F6
C6F3H3などのフツ素含有化合物ガスを混在せし
めたものがあげられる。 つぎに原料ガスにおける炭化水素系化合物、フ
ツ素含有化合物ガスおよび要すれば使用されるガ
スの使用割合について説明する。 炭化水素系化合物およびフツ素含有化合物ガス
中のC:Fは100:1〜3:8であることが、成
膜速度を10〜20Å/秒と大きくし、形成された膜
中のフツ素含量を0.1〜30atm%にするために必
要であり、20:1〜1:2であることが好まし
い。必要により使用されるガスは希釈、圧力調整
などを主目的として用いられる成分であり、適宜
適用すればよい。 たとえばCH4、CF4、H2を用いて硬質カーボン
膜を成膜する際に、H2を50SCCM、CH4+CF4
40SCCMとし、その比率を変化させ、1Torrで
DC電圧−600V(DC電流800mA)、RF約50W
(100mW/cm2)なる条件で約50分間成膜すると、
第1図に示すような堆積速度で成膜され、第2図
に示すような硬度の膜がえられる。なお容量比で
CF4/(CH4+CF4)が0.3で前記条件のばあいに
えられる膜の組成は、およそHが8atm%、Fが
4atm%、Cが88atm%で、ビツカース硬度は約
6500である。 前記説明においてはCH4、CF4、H2を原料ガス
として用いたばあいについて説明したが、CH4
10〜50SCCM、C2F6 5〜40SCCM、H2 100〜
500SCCMなどの組合わせでもよく、またその成
膜条件もDC電圧−400V〜−1KV(電流200mA〜
1A)、RFパワー50〜200W(100〜400mW/cm2)、
圧力0.1〜10Torr程度の条件であれば本発明の硬
質カーボン膜を成膜しうる。 本発明の硬質カーボン膜中のフツ素含量はより
正確には、ESCAなどの方法により測定しうる
が、IR吸収スペクトラムによつても測定しうる。
すなわち膜中にC−F結合が存在するばあいには
1000〜1350cm-1にストレツチングモードによる吸
収があらわれるため、この大きさを測定すればよ
い。この測定はIR吸収スペクトラムからC−F
ストレツチングモードの振動子強度をAとする
と、A×∫α(C−F)/ωdω (式中、ωはC−Fの結合が存在する波数、α
(C−F)はC−F結合が存在する波数での吸収
係数)にて絶対含量として測定しうるが、硬質カ
ーボン膜中のC−Hストレツチングモードによる
吸収が2800〜3100cm-1にあらわれるため、それら
の積分強度(∫α/ωdω)の比 ∫α(C−F)/ωdω/∫α(C−H)/ωdω (ωは波数、α(C−H)およびα(C−F)はそ
れぞれ2800〜3100cm-1および1000〜1350cm-1に存
在するそれぞれのストレツチングモードによる吸
収)を算出して行なうのがより簡単で、吸収係数
を求める際の正確な膜厚を必要としないなどの点
から好ましい。 経験的に前記積分強度の比が0.001〜100のばあ
いに本発明の硬質カーボン膜中のフツ素含量が
0.1〜30atm%になることが知られており、0.01〜
50であることがフツ素含量が1〜20atm%になる
ため好ましい。 なお前記∫α(C−F)/ωdωおよび∫ α(C−H)/ωdωは、それぞれC−F、C−Hのス トレツチングモードの存在する波数(C−Fは
1000〜1350cm-1、C−Hは2800〜3100cm-1)に対
する吸収係数の積分により求められる。 本発明の硬質カーボン膜中のIR吸収スペクト
ラムによる水素含量、フツ素含量は、第1図にお
けるCF4/(CH4+CF4)の割合が大きくなるに
したがつて、2800〜3100cm-1付近のC−Hストレ
ツチングによる吸収が当然のことながら減少し、
1000〜1350cm-1付近のC−Fストレツチングによ
る吸収が増加し、CF4/(CH4+CF4)の割合が
0.6ではC−Hの吸収が非常に小さくなり、C−
Fの吸収が大きくなる0.4では、∫α(C−F)/ω dω/∫α(C−H)/ωdω≒20/1である。 上述のごとく、本発明の硬質カーボン膜は堆積
速度が速く、堆積速度が速いにもかかわらず硬度
が大きく、フツ素を含む化合物を用いているの
で、とくにチヤンバー壁ではエツチングの効果が
ありチヤンバー内に粉や膜が付着しにくいという
特徴を有するものであり、該膜は炭化水素系化合
物、フツ素含有化合物ガスおよび必要により使用
されるH2、Ar、Heなどからなる原料ガスをプラ
ズマCVD法により10〜20Å/秒という成膜速度
で形成しうるものである。 つぎに本発明の硬質カーボン膜を実施例にもと
づき説明する。 実施例 1 第3図に示すようなプラズマCVD装置の電極
(カソード)2上にステンレス製の基板1をセツ
トし、基板温度を300℃に調節し、H2 50SCCM、
CH4 32SCCM、CF4 8SCCMの混合ガスを流し、
反応室圧力1Torrで基板に−600Vの電圧をRFチ
ヨークコイル3を介して印加し、DC電流800mA
なる直流放電をおこした。この際同時に約50W
(100mW/cm2)のRFを印加し、DCおよびRF両
者混合の放電をおこした。このRFを印加するこ
とで絶縁物が堆積したばあいに生じる帯電の問題
が解決された。 約60分間放電をつづけ、厚さ約2.9μmの膜をう
ることができた。堆積速度は約8Å/秒であつ
た。 えられた膜の組成はESCAによるとおよそH
10atm%、F 3atm%、C 87atm%で、ビツカ
ース硬度は5200であつた。また電極部以外のチヤ
ンバー壁への膜、粉の付着はみとめられなかつ
た。 実施例2および比較例1 H2 50SCCM、CH4とCF4との合計流量を
40SCCMとし、CH4とCF4との合計流量に対する
CF4の流量の割合、つまり容量比(CF4/(CH4
+CF4))を変化させて膜を作製したばあいの容
量比と膜中のフツ素含量(ESCAによる)、膜の
堆積速度、ビツカーズ硬度との関係を測定した。
また容量比を変化させたばあいにえられた膜の∫
α(C−F)/ωdω/∫α(C−H)/ωdωを測定し
た。 これらの結果を第1表にあわせて示す。さらに容
量比と堆積速度との関係および容量比と膜の硬度
との関係をそれぞれ第1図および第2図に示す。 なお圧力、RF電力、基板温度、DC電圧などは
実施例1と同じであつた。
[Industrial Field of Application] The present invention relates to a hard carbon film. [Prior art] Recently, ion beam evaporation method, ion beam sputtering method, sputtering method, CVD method, plasma
A highly hard carbon film called a diamond-like carbon film is formed using CVD methods, etc., and is used as a surface hardening material for cutting blades, semiconductors, antireflection coatings for infrared optical components, hard protective films, insulating materials, and wear-resistant materials. (For example, see ``Hard Carbon Film'' in ``Electroceramics,'' May 1985 issue, pp. 48-54). For example, when forming a hard carbon film by plasma CVD method, usually CH 4 , C 2 H 4 , C 2 H 2 ,
Hydrocarbon compounds such as C 4 H 10 and benzene
A mixed gas of H 2 , Ar, He, etc. is plasma decomposed and deposited on the substrate to form a film. [Problems to be solved by the invention] When trying to form a conventional hard carbon film by the conventional method as described above, the deposition rate is 0.1 to 5.
The disadvantage is that the hardness decreases as the deposition rate increases, and powder and film adhere to the inside of the chamber other than the electrodes, causing pinholes and the like, which reduces productivity. The purpose of the present invention is to improve the deposition rate itself, and to obtain a hard carbon film that does not reduce the hardness of the film even if the deposition rate is increased, and that is less likely to cause powder or film to adhere to the inside of the chamber other than the electrode part. It is something to do. [Means for Solving the Problems] The present invention provides that when a conventional hard carbon film is formed, a compound containing fluorine as a constituent is mixed in the raw material gas and the film is formed by a plasma CVD method. It has been discovered that a hard carbon film can be formed with good productivity at a high deposition rate, and which has the characteristics that not only does the hardness not decrease even when the film is formed at a high deposition rate, but the hardness even increases. The fluorine deposited on the substrate by plasma CVD method is
It relates to a hard carbon film containing 30 atm%, a film thickness of 1 to 50 μm, and a surface Vickers hardness of 500 or more. [Example] The substrate used in the present invention is not particularly limited, and any substrate on which a hard carbon film can be formed by plasma CVD can be used. Specific examples of such substrates include Mo,
Substrates made of metals and alloys such as Cu, W, Al, Zn, SUS, single crystal silicon, single crystal germanium,
Semiconductor substrates such as GaAs and GaP, SiC, Al 2 O 3 ,
Ceramic substrates such as SiO 2 or Ag, W,
Examples include metal substrates, semiconductor substrates, and ceramic substrates whose surfaces are treated with metals such as Mo, Al, and Cu. The hard carbon film of the present invention contains fluorine from 0.1 to
Contains 30 atm%, preferably 1 to 15 atm%, more preferably 1 to 7 atm%, carbon 50 to 98 atm%, preferably 80 to 95 atm%, hydrogen 0.1 to 30 atm%, preferably 1 to 15 atm%, If necessary, silicon should be 20 atm% or less, preferably 0.01 to 5 atm%.
It may be contained within the range of. When the fluorine content is less than 0.1 atm%, the deposition rate, hardness, and the relationship between the deposition rate and hardness are almost the same as those of a film containing only carbon or hydrogen without fluorine, and when it exceeds 30 atm%, the film Peeling begins to occur. Furthermore, when the carbon content is less than 50 atm%, the film becomes polymer-like and the hardness of the film tends to decrease.
When it exceeds 98%, the adhesion of the film to the substrate tends to decrease. Note that the hydrogen content varies depending on the carbon content, fluorine content, film forming conditions, etc., and as long as it is within the above range, there is no problem in terms of high hardness, wear resistance, etc. of the hard carbon film of the present invention. Furthermore, when silicon is contained within the above range, there is no problem in terms of high hardness, wear resistance, etc. of the hard carbon film of the present invention.
When a metal substrate such as Cu is used, the adhesion between the substrate and the hard carbon film is improved. An application has already been filed (Japanese Patent Application No. 83137-1983) regarding the fact that the addition of silicon improves the adhesion of hard carbon films that do not contain fluorine; You can get the same effect if you don't have it. The thickness and hardness of the hard carbon film of the present invention are usually about 1 to 50 μm, and the hardness is about 500 or more, preferably about 1000 or more on the surface Vickers hardness, which is generally considered to be a hard film. It is. There is no particular limit on the upper limit of hardness, but the hardness that can actually be manufactured is 7000 to 8000, which is about the same level to slightly lower than that of diamond. The hard carbon film of the present invention is formed by the plasma CVD method as described above. Specific examples of plasma CVD methods include normal DC plasma CVD method,
RF plasma CVD method, microwave plasma
CVD method, plasma CVD mixed with DC and RF
Examples include laws. In particular, the substrate is placed on the cathode, and the substrate is supplied with about -200V to -2KV, preferably -
Apply voltage of 300V~-1KV, DC current 50mA~
The raw material gas is discharged with direct current at about 2A, preferably 1 to 2A, and further, 0.001 to 10W/cm 2 , preferably
When an insulator is formed by a mixed discharge of both with RF of 15 to 1000 mW/cm 2 applied, a stable discharge can be obtained and the deposition rate can be increased. Furthermore, the resulting film has greater hardness and electrical resistivity than films obtained by normal RF plasma CVD. As a specific example of the source gas, plasma
CH 4 , C 2 H 4 , C 2 H 2 , C 4 H 10 , which are commonly used when forming hard carbon films by CVD method ,
In addition to a mixed gas of a hydrocarbon compound such as benzene and a diluent gas such as H 2 , Ar, or He, which is used if necessary, CF 4 , CF 2 H 2 , C 2 F 4 , C 2 F 6 , C6F6 ,
Examples include those mixed with fluorine-containing compound gas such as C 6 F 3 H 3 . Next, the proportions of the hydrocarbon compound, fluorine-containing compound gas, and any gas used in the raw material gas will be explained. The ratio of C:F in the hydrocarbon compound and fluorine-containing compound gas is 100:1 to 3:8, which increases the film formation rate to 10 to 20 Å/sec and increases the fluorine content in the formed film. It is necessary to make it 0.1 to 30 atm%, and the ratio is preferably 20:1 to 1:2. The gas used as necessary is a component used mainly for dilution, pressure adjustment, etc., and may be applied as appropriate. For example, when forming a hard carbon film using CH 4 , CF 4 , and H 2 , 50 SCCM of H 2 and 50 SCCM of CH 4 + CF 4 are used.
40SCCM, change the ratio, and set it to 1Torr.
DC voltage -600V (DC current 800mA), RF approximately 50W
(100mW/cm 2 ) for about 50 minutes,
A film is formed at a deposition rate as shown in FIG. 1, and a film with hardness as shown in FIG. 2 is obtained. In addition, in terms of capacity ratio
The composition of the film obtained under the above conditions with CF 4 /(CH 4 + CF 4 ) of 0.3 is approximately 8 atm% H and 8 atm% F.
4atm%, C is 88atm%, and the Bitkers hardness is approx.
It is 6500. In the above explanation, the case where CH 4 , CF 4 , and H 2 were used as raw material gases was explained, but CH 4
10~50SCCM, C 2 F 6 5~40SCCM, H 2 100~
A combination such as 500SCCM may also be used, and the film forming conditions are DC voltage -400V to -1KV (current 200mA to
1A), RF power 50-200W (100-400mW/ cm2 ),
The hard carbon film of the present invention can be formed under pressure conditions of about 0.1 to 10 Torr. More accurately, the fluorine content in the hard carbon film of the present invention can be measured by a method such as ESCA, but it can also be measured by an IR absorption spectrum.
In other words, if a C-F bond exists in the membrane,
Absorption due to the stretching mode appears between 1000 and 1350 cm -1 , so it is sufficient to measure this magnitude. This measurement is based on the IR absorption spectrum of C-F.
If the oscillator strength in the stretching mode is A, then A×∫α(C-F)/ωdω (where ω is the wave number where the C-F bond exists, α
(C-F) can be measured as an absolute content using the absorption coefficient at the wave number where the C-F bond exists, but the absorption due to the C-H stretching mode in the hard carbon film is between 2800 and 3100 cm -1. Therefore, the ratio of their integrated intensities (∫α/ωdω) ∫α(C-F)/ωdω/∫α(C-H)/ωdω (ω is the wave number, α(C-H) and α(C- F) is easier to calculate by calculating the absorption due to each stretching mode that exists between 2800 and 3100 cm -1 and between 1000 and 1350 cm -1 , respectively, and requires accurate film thickness when calculating the absorption coefficient. This is preferable because it does not cause Empirically, when the ratio of the integrated intensities is 0.001 to 100, the fluorine content in the hard carbon film of the present invention is
It is known to be 0.1 to 30 atm%, and 0.01 to 30 atm%.
50 is preferable because the fluorine content is 1 to 20 atm%. Note that ∫α(C-F)/ωdω and ∫α(C-H)/ωdω are the wave numbers at which the C-F and C-H stretching modes exist (C-F is
1000 to 1350 cm -1 , C-H is determined by integrating the absorption coefficient over 2800 to 3100 cm -1 ). The hydrogen content and fluorine content according to the IR absorption spectrum of the hard carbon film of the present invention change as the ratio of CF 4 /(CH 4 +CF 4 ) in FIG . Absorption due to C-H stretching naturally decreases,
Absorption due to C-F stretching in the vicinity of 1000 to 1350 cm -1 increases, and the ratio of CF 4 /(CH 4 + CF 4 ) increases.
At 0.6, the absorption of C-H becomes very small, and C-
At 0.4, where the absorption of F increases, ∫α(C−F)/ω dω/∫α(C−H)/ωdω≒20/1. As mentioned above, the hard carbon film of the present invention has a fast deposition rate, and has high hardness despite the fast deposition rate.Since it uses a compound containing fluorine, it has an etching effect, especially on the chamber wall. This film is made by using a plasma CVD method using a raw material gas consisting of a hydrocarbon compound, a fluorine-containing compound gas, and H 2 , Ar, He, etc. used as necessary. Accordingly, the film can be formed at a deposition rate of 10 to 20 Å/sec. Next, the hard carbon film of the present invention will be explained based on examples. Example 1 A stainless steel substrate 1 was set on the electrode (cathode) 2 of a plasma CVD apparatus as shown in Fig. 3, the substrate temperature was adjusted to 300°C, and H 2 50SCCM,
Flow a mixed gas of CH 4 32SCCM, CF 4 8SCCM,
At a reaction chamber pressure of 1 Torr, a voltage of -600V was applied to the substrate via the RF chain coil 3, and a DC current of 800mA was applied.
A direct current discharge was generated. Approximately 50W at the same time
(100 mW/cm 2 ) of RF was applied to generate a mixed discharge of both DC and RF. By applying this RF, the charging problem that occurs when insulators are deposited was solved. The discharge continued for about 60 minutes, and a film with a thickness of about 2.9 μm was obtained. The deposition rate was approximately 8 Å/sec. According to ESCA, the composition of the obtained film is approximately H
The content was 10 atm%, F 3 atm%, C 87 atm%, and the Bitkers hardness was 5200. Further, no film or powder was observed to adhere to the chamber wall other than the electrode portion. Example 2 and Comparative Example 1 H 2 50SCCM, total flow rate of CH 4 and CF 4
40SCCM, and for the total flow rate of CH 4 and CF 4
The ratio of flow rate of CF 4 , that is, the capacity ratio (CF 4 / (CH 4
+CF 4 )) The relationship between the capacitance ratio, the fluorine content in the film (according to ESCA), the deposition rate of the film, and the Vickers hardness was measured.
Also, when the capacitance ratio is changed, the resulting film ∫
α(C-F)/ωdω/∫α(C-H)/ωdω was measured. These results are also shown in Table 1. Furthermore, the relationship between the capacitance ratio and the deposition rate and the relationship between the capacitance ratio and the hardness of the film are shown in FIGS. 1 and 2, respectively. Note that the pressure, RF power, substrate temperature, DC voltage, etc. were the same as in Example 1.

〔発明の効果〕〔Effect of the invention〕

フツ素含有化合物を含むガスを混入せしめてグ
ロー放電分解して本発明の硬質カーボン膜を形成
すると、上述のように膜の堆積速度が向上し、か
つ硬度の大きい膜が形成される。またチヤンバー
内への粉や膜の付着も少なく生産性が向上する。
When the hard carbon film of the present invention is formed by mixing a gas containing a fluorine-containing compound and performing glow discharge decomposition, the film deposition rate is improved as described above, and a highly hard film is formed. In addition, there is less adhesion of powder and film inside the chamber, and productivity is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は硬質カーボン膜を成膜する際の特定の
原料ガスの割合と堆積速度との関係を示すグラ
フ、第2図は硬質カーボン膜を成膜する際の特定
の原料ガスの割合とえられた膜のビツカース硬度
との関係を示すグラフ、第3図は本発明の硬質カ
ーボン膜の製造に用いる装置の一例に関する説明
図である。 (図面の主要符号)、1:基板。
Figure 1 is a graph showing the relationship between the ratio of a specific raw material gas and deposition rate when forming a hard carbon film, and Figure 2 is a graph showing the relationship between the ratio of a specific raw material gas and the deposition rate when forming a hard carbon film. FIG. 3 is an explanatory diagram of an example of the apparatus used for producing the hard carbon film of the present invention. (Main symbols in the drawing), 1: Substrate.

Claims (1)

【特許請求の範囲】 1 基板上にプラズマCVD法により堆積せしめ
られたフツ素を0.1〜30atm%含有する膜厚が1
〜50μmで、表面ビツカース硬度が500以上である
硬質カーボン膜。 2 プラズマCVD法がRFおよびDC両者混合の
プラズマCVD法である特許請求の範囲第1項記
載の硬質カーボン膜。 3 シリコンを20atm%以下の範囲で含有する特
許請求の範囲第1項記載の硬質カーボン膜。 4 IR吸収スペクトラムの積分強度 (∫α/ωdω)の比 ∫α(C−F)/ωdω/∫α(C−H)/ωdω (ωは波数、α(C−H)およびα(C−F)は
それぞれ2800〜3100cm-1および1000〜1350cm-1
存在するそれぞれのストレツチングモードによる
吸収を表わす)が0.001〜100である特許請求の範
囲第1項記載の硬質カーボン膜。
[Scope of Claims] 1 A film containing 0.1 to 30 atm% of fluorine deposited on a substrate by plasma CVD method has a thickness of 1
Hard carbon film with a diameter of ~50 μm and a surface Bitkers hardness of 500 or more. 2. The hard carbon film according to claim 1, wherein the plasma CVD method is a plasma CVD method in which both RF and DC are mixed. 3. The hard carbon film according to claim 1, which contains silicon in a range of 20 atm% or less. 4 Ratio of integrated intensity (∫α/ωdω) of IR absorption spectrum ∫α(C-F)/ωdω/∫α(C-H)/ωdω (ω is the wave number, α(C-H) and α(C- 2. The hard carbon film according to claim 1, wherein F) represents absorption due to each stretching mode existing in the ranges of 2800 to 3100 cm -1 and 1000 to 1350 cm -1 , respectively, is 0.001 to 100.
JP60179025A 1985-08-14 1985-08-14 Hard carbon film Granted JPS6240375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60179025A JPS6240375A (en) 1985-08-14 1985-08-14 Hard carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60179025A JPS6240375A (en) 1985-08-14 1985-08-14 Hard carbon film

Publications (2)

Publication Number Publication Date
JPS6240375A JPS6240375A (en) 1987-02-21
JPH0510426B2 true JPH0510426B2 (en) 1993-02-09

Family

ID=16058796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60179025A Granted JPS6240375A (en) 1985-08-14 1985-08-14 Hard carbon film

Country Status (1)

Country Link
JP (1) JPS6240375A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5275850A (en) * 1988-04-20 1994-01-04 Hitachi, Ltd. Process for producing a magnetic disk having a metal containing hard carbon coating by plasma chemical vapor deposition under a negative self bias
JPH0649645A (en) * 1992-07-31 1994-02-22 Yoshida Kogyo Kk <Ykk> Hard multilayer film forming body and method for producing the same
JP2000064047A (en) * 1998-06-26 2000-02-29 James A Mclaughlin Device and method for coating substrate with diamond- like carbon(dlc) or other vacuum deposition film
JP2007320142A (en) * 2006-05-31 2007-12-13 Meisho Kiko Kk Mold for nanoimprinting
CN113936997A (en) * 2017-06-08 2022-01-14 应用材料公司 High density low temperature carbon films for hardmask and other patterning applications

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145375A (en) * 1984-01-09 1985-07-31 Nippon Telegr & Teleph Corp <Ntt> Method for passivating surface of nb film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145375A (en) * 1984-01-09 1985-07-31 Nippon Telegr & Teleph Corp <Ntt> Method for passivating surface of nb film

Also Published As

Publication number Publication date
JPS6240375A (en) 1987-02-21

Similar Documents

Publication Publication Date Title
Berg et al. Diamond-like carbon films produced in a butane plasma
US4783368A (en) High heat conductive insulated substrate and method of manufacturing the same
EP0347727B1 (en) Process for deposition of a black coating on a substrate and black coating obtained by the process
JPS63239103A (en) Cubic boron nitride coated body and production thereof
JP4122387B2 (en) Composite hard coating, method for producing the same, and film forming apparatus
JPH0510426B2 (en)
JP5295102B2 (en) Conductive protective film and manufacturing method thereof
JPH02213474A (en) Manufacture of thin molybdenum sulfide film, manufacture of molybdenum sulfide film and self-lubricating layer, electro-optical layer, and catalytically acting layer
EP1239056A1 (en) Improvement of a method and apparatus for thin film deposition, especially in reactive conditions
JPH06952B2 (en) Hard carbon film
JP3931229B2 (en) Carbon oxide thin film and carbon oxynitride thin film and methods for producing these carbon oxide thin films
JPH02182880A (en) Coating film made of carbon or having carbon as main component via buffer layer and production thereof
JPH08288172A (en) Capacitor with silicon addition shapeless hydrogenated carbon dielectric
JPH0283816A (en) Magnetic recording medium
Lazar Influence of the substrate-electrode applied bias voltage on theproperties of sputtered aC: H thin films
JPH04103754A (en) Ceramic coating materials and their manufacturing methods
JPH0610135A (en) Production of carbon film
JPH04103777A (en) Base material having hard carbon film
WO1998059355A3 (en) Cold cathode and methods for producing the same
JP2004010741A (en) Method of forming water-repellent coating and water-repellent coating formed by the method
JP2898338B2 (en) Coating method of carbon hard film
JP3634460B2 (en) Coating film excellent in halogen-based gas corrosion resistance and halogen-based plasma corrosion resistance, and laminated structure provided with the coating film
Bewilogua et al. Microhardness and structure of reactive ion‐plated chromium/carbon films
Badrinarayanan et al. Evidence for a solid state reaction at the a-Si SnOx interface: An x-ray photoelectron spectroscopy study
RU2141006C1 (en) Method of production of alloyed carbon-containing coatings