JPH05103663A - Method for controlling culture of animal cell - Google Patents
Method for controlling culture of animal cellInfo
- Publication number
- JPH05103663A JPH05103663A JP3296501A JP29650191A JPH05103663A JP H05103663 A JPH05103663 A JP H05103663A JP 3296501 A JP3296501 A JP 3296501A JP 29650191 A JP29650191 A JP 29650191A JP H05103663 A JPH05103663 A JP H05103663A
- Authority
- JP
- Japan
- Prior art keywords
- culture
- gas
- cells
- cell
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 52
- 210000004102 animal cell Anatomy 0.000 title claims abstract description 23
- 210000004027 cell Anatomy 0.000 claims abstract description 111
- 239000007789 gas Substances 0.000 claims abstract description 72
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 38
- 239000001301 oxygen Substances 0.000 claims abstract description 38
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 38
- 230000000694 effects Effects 0.000 claims abstract description 25
- 238000012258 culturing Methods 0.000 claims abstract description 11
- 239000000203 mixture Substances 0.000 claims abstract description 4
- 238000001139 pH measurement Methods 0.000 abstract 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 32
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 17
- 238000004519 manufacturing process Methods 0.000 description 17
- 239000001569 carbon dioxide Substances 0.000 description 16
- 229910002092 carbon dioxide Inorganic materials 0.000 description 16
- 229910001882 dioxygen Inorganic materials 0.000 description 16
- 238000004113 cell culture Methods 0.000 description 10
- 238000009826 distribution Methods 0.000 description 8
- 239000013543 active substance Substances 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 235000015097 nutrients Nutrition 0.000 description 5
- 108010014173 Factor X Proteins 0.000 description 4
- 230000010261 cell growth Effects 0.000 description 4
- 210000003855 cell nucleus Anatomy 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 239000001963 growth medium Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 230000002503 metabolic effect Effects 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000000032 diagnostic agent Substances 0.000 description 2
- 229940039227 diagnostic agent Drugs 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 210000004408 hybridoma Anatomy 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 238000009629 microbiological culture Methods 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- PGSADBUBUOPOJS-UHFFFAOYSA-N neutral red Chemical compound Cl.C1=C(C)C(N)=CC2=NC3=CC(N(C)C)=CC=C3N=C21 PGSADBUBUOPOJS-UHFFFAOYSA-N 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 238000003969 polarography Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 238000004114 suspension culture Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Feedback Control In General (AREA)
- Control Of Non-Electrical Variables (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
(57)【要約】
【目的】 動物細胞を長時間安定して培養するための
培養制御方法の確立。
【構成】 動物細胞の培養をおこなうに際し、第一段
階として、培養中の細胞密度、及び細胞活性度の測定値
から、培養槽に供給する全ガス量をファジイ推論により
決定し、第二段階として、培養液の溶存酸素濃度、及び
pH測定値から該ガス組成をファジイ推論により決定
し、第一段階と第二段階で求めた値から各成分のガスの
量を決定して、培養槽にガスを供給しながら培養をおこ
なう。
(57) [Summary] [Objective] The establishment of a culture control method for stably culturing animal cells for a long time. [Structure] When culturing animal cells, the first step is to determine the total amount of gas to be supplied to the culture tank by fuzzy reasoning from the measured values of cell density and cell activity in the culture, and as the second step. , The dissolved oxygen concentration of the culture solution, and the pH measurement value is used to determine the gas composition by fuzzy reasoning, and the amount of each component gas is determined from the values obtained in the first step and the second step. The culture is performed while supplying.
Description
【0001】[0001]
【産業上の利用分野】本発明は、動物細胞の培養制御方
法に関するものである。TECHNICAL FIELD The present invention relates to a method for controlling culture of animal cells.
【0002】[0002]
【従来の技術】近年、動物細胞の遺伝子組替え技術の発
達により、動物細胞に特異的に生理活性物質を産生さ
せ、診断薬、医薬品等として使用する用途が開発されて
いる。このため、動物細胞の培養法が種々提案されてい
る。しかるに、動物細胞の培養においては、以下の様な
特徴が見られる。 1 細胞の代謝系が複雑であり、従って、生理活性物質
等の産生に影響を及ぼす要因間の関係を定量的に一定の
関係として把握しがたいこと。 2 細胞の代謝特性が増殖過程に従って変化し、その変
化の過程は、微生物培養等に比べて非常に遅いこと。 すなわち、細胞培養において一定品質の生理活性物質を
産生させるためには、培養時における培養状態の変化を
極めて少なくし、かつ、至適条件を維持することが必要
となる。従来、動物細胞の培養に際して、酸素ガスや、
栄養源の供給等に、公知の制御方法であるPID制御
や、ON−OFF制御が用いられて来たが、主として培
養状態の変化が適確に把握できないこと、又変化が非常
に遅いことに起因して、培養状態を長時間安定して維持
することが困難であった。実際には、この理由のため
に、培養経験者が自らの経験に基づいて、培養の制御を
手動で行なっていた。しかし、各経験者には、個人差が
あり、一定した安定な操作を得る方法が望まれていた。2. Description of the Related Art In recent years, with the development of gene recombination technology for animal cells, the use of animal cells to specifically produce physiologically active substances for use as diagnostic agents, pharmaceuticals, etc. has been developed. Therefore, various methods for culturing animal cells have been proposed. However, the following features are observed in the culture of animal cells. 1 The metabolic system of cells is complicated, so it is difficult to understand quantitatively the relationship between factors affecting the production of physiologically active substances as a constant relationship. 2 The metabolic characteristics of cells change according to the growth process, and the changing process is much slower than that of microbial culture. That is, in order to produce a physiologically active substance of a certain quality in cell culture, it is necessary to extremely reduce the change in the culture state during the culture and maintain the optimum conditions. Conventionally, when culturing animal cells, oxygen gas,
Known control methods such as PID control and ON-OFF control have been used to supply nutrients, but mainly because changes in the culture state cannot be accurately grasped and changes are very slow. Due to this, it was difficult to maintain the culture state stably for a long time. In fact, for this reason, a person who has experienced the culture has manually controlled the culture based on his own experience. However, each experienced person has individual differences, and a method of obtaining a constant and stable operation has been desired.
【0003】[0003]
【発明が解決しようとする課題】本発明の課題は、上述
の事情に鑑み、動物細胞を長時間、安定して培養し、細
胞に生理活性物質を産生させ、安定した品質の診断薬、
医薬品を製造するための培養制御方法を確立することに
ある。In view of the above-mentioned circumstances, an object of the present invention is to cultivate animal cells stably for a long period of time, to cause the cells to produce physiologically active substances, and to provide a diagnostic agent of stable quality,
It is to establish a culture control method for manufacturing a pharmaceutical.
【0004】[0004]
【課題を解決するための手段】本発明者等は、動物細胞
を安定して培養するため、鋭意研究した結果、動物細胞
の増殖に重大な影響を及ぼす酸素を主成分とする混合ガ
スの供給量を、ファジイ推論することによって決定し、
培養槽に供給することによって、長時間安定して、動物
細胞の培養をおこなわせる動物細胞の培養制御方法を発
明するに至った。すなわち、本発明の方法は、動物細胞
の培養を行なうに際し、第1段階として、培養中の細胞
密度、及び細胞活性度の測定値から供給する全ガス量を
ファジイ推論して決定し、第2段階として、培養液の溶
存酸素濃度及びpHの測定値から該ガス組成をファジイ
推論により決定し、第一段階と第二段階で求めた値から
培養槽に供給する各成分ガスの供給量を決定することを
特徴とする動物細胞の培養制御方法である。本発明の方
法は、長時間安定して動物細胞を増殖培養するのに適し
ており、特に、特定の生理活性物質を産生させるために
遺伝子工学的に操作された動物細胞を増殖培養する際の
制御方法として優れている。Means for Solving the Problems The inventors of the present invention have conducted extensive studies to stably cultivate animal cells, and as a result, as a result, supply of a mixed gas containing oxygen as a main component, which has a significant influence on the growth of animal cells. Determine the quantity by fuzzy reasoning,
The present invention has led to the invention of a method for controlling culture of animal cells, which is capable of stably culturing animal cells for a long period of time by supplying them to a culture tank. That is, in the method of the present invention, when culturing animal cells, as a first step, the total gas amount to be supplied is determined by fuzzy reasoning from the cell density in the culture and the measured value of the cell activity. As a step, the gas composition is determined by fuzzy reasoning from the measured values of dissolved oxygen concentration and pH of the culture solution, and the supply amount of each component gas to be supplied to the culture tank is determined from the values obtained in the first step and the second step. And a method for controlling culture of animal cells. INDUSTRIAL APPLICABILITY The method of the present invention is suitable for stably culturing animal cells for a long period of time, and particularly when culturing animal cells that have been genetically engineered to produce a specific physiologically active substance. Excellent control method.
【0005】培養の形態としては、細胞を、細胞増殖に
必要な栄養源を含む培地中に浮遊させつつおこなう方法
や、細胞の性質によってはマイクロキャリアーと呼ばれ
る微小球の表面に細胞を接着させて培養液に浮遊させ培
養する方法、多孔質物質から成る中空糸や、ハニカム構
造体に接着させて培養する方法、又細胞をマイクロカプ
セル状に包括して培養する方法等が知られており、いず
れの培養形態においても本発明の方法が適用できる。培
養液を構成する栄養源は、塩類、糖類、ビタミン、アミ
ノ酸等及び牛胎児血清成分が普通使用される。As a form of culture, cells are suspended in a medium containing nutrients necessary for cell growth, or the cells are adhered to the surface of microspheres called microcarriers depending on the nature of the cells. A method of culturing suspended in a culture solution, a method of culturing by adhering to a hollow fiber or a honeycomb structure made of a porous material, a method of encapsulating cells in a microcapsule form, etc. are known. The method of the present invention can also be applied to the above culture form. Salts, sugars, vitamins, amino acids, etc., and fetal bovine serum components are commonly used as nutrient sources constituting the culture solution.
【0006】本発明に用いられるファジイ推論の方法に
は、一般にMin−Max−重心法と呼ばれる手法が適
用できる。これは主として、各要因についての数値のあ
いまいさを表わすメンバーシップ関数と、各要因間の制
御の関係を表すプロダクションルールから成る。例を挙
げて説明すれば、要因X(2つの要因X1とX2につい
て説明する)のメンバーシップ関数は図1(A),及び
(B)のように表される。図にはそれぞれ3種類(N
M,ZR,PM)のメンバーシップ関数が示されてお
り、横軸には、要因の値(又は目標値からの偏差等の変
換された値)を、又縦軸は、各要因が上述の3種類のメ
ンバーシップ関数のそれぞれについて表されるグレード
を表している。3種類の関数については、ZRは要因が
ほぼ0に近いと培養のオペレーターが感ずる場合の要因
のグレードの分布を示し、NMは、負の側に中位いの数
値をとると感ずる場合の要因のグレードの分布をし、P
Mは逆に、正の側に、中位いの数値をとると感ずる場合
の要因のグレードの分布を示す。今、入力変数をX1、
X2とし、これに対応する出力変数をYとしたときのY
に対するメンバーシップ関数を図1(C)に示す。図中
の3種類の関数は、要因Xについてのべた場合と同じで
ある。要因Xに対するYの関係は、表1に示されたプロ
ダクションルールの表から選択し、図1(C)におい
て、そのYの程度に応じたグレードを知ることができ
る。こうして得られた出力から、確定的な一つの出力Y
(非ファジイ化という)を得るためには、Xのグレード
の最小値(Min)でYの関数の頭切りをし、得られた
Yの関数が示す残りの図形(この場合、台形)を投影
(Max)し、その重心を求めることにより、出力値Y
を得る。図1(D)は、図1(C)において頭切りによ
って得られたYの関数が示す残りの図形を投影し、その
重心を求める手法を図示したものである。具体的には、
図1(A)において、X1=aのときNMについてのグ
レードは0.5,X2=bのときNMについてのグレー
ドは0.3,及びZRについてのグレードは0.7であ
る。次に表1からX1がNMであり、X2がNM,及び
ZRについてのYの関数としてNM,及びZRを選びそ
れぞれの関数をX1,X2についての最小値すなわちN
Mの場合は、0.3,ZRの場合は、0.5でYの関数
を頭切りをし、残りの関数を投影し、重心を求める。本
発明の方法における各要因について、以下に説明する。As a fuzzy reasoning method used in the present invention, a method generally called Min-Max-centroid method can be applied. This mainly consists of a membership function that represents the ambiguity of numerical values for each factor, and a production rule that represents the control relationship between each factor. For example, the membership function of the factor X (the two factors X1 and X2 will be described) is represented as shown in FIGS. 1 (A) and 1 (B). There are 3 types (N
M, ZR, PM) membership functions are shown, and the horizontal axis shows the value of the factor (or the converted value such as the deviation from the target value), and the vertical axis shows the above-mentioned factors. The grades represented for each of the three types of membership functions are shown. For the three types of functions, ZR shows the grade distribution of factors when the operator feels that the factor is close to 0, and NM is the factor when it feels that the negative value takes a medium value. The grade distribution of P
On the contrary, M indicates the grade distribution of the factor on the positive side when it is felt that a medium value is taken. Now input variable X1,
Y when X2 and the output variable corresponding to this are Y
The membership function for is shown in FIG. The three types of functions in the figure are the same as in the case of the factor X. The relation of Y to the factor X can be selected from the table of production rules shown in Table 1, and the grade corresponding to the degree of Y can be known in FIG. 1 (C). From the output thus obtained, one deterministic output Y
To obtain (called defuzzification), the Y function is truncated at the minimum value (Min) of the grade of X, and the remaining figure (in this case, trapezoid) shown by the obtained Y function is projected. (Max), and by calculating the center of gravity, the output value Y
To get FIG. 1D illustrates a method of projecting the remaining figure indicated by the function of Y obtained by the head cutting in FIG. 1C and obtaining the center of gravity thereof. In particular,
In FIG. 1A, the grade for NM is 0.5 when X1 = a, the grade for NM is 0.3 when X2 = b, and the grade for ZR is 0.7. Next, from Table 1, X1 is NM, X2 is NM, and NM is selected as a function of Y for ZR, and ZR is selected.
In the case of M, the function of Y is truncated at 0.3 in the case of M, and in the case of ZR, the remaining function is projected, and the center of gravity is obtained. Each factor in the method of the present invention will be described below.
【0007】細胞密度とは、培養液1ml中に存在する
細胞の数である。細胞培養中における細胞密度の測定方
法は、培養液中に細胞が均一に浮遊しているとみなしう
る浮遊培養においては、培養液を一定量無菌的にサンプ
リングし、サンプル液中の細胞を単一に遊離させたあ
と、血球計算盤を用いて、一定体積の細胞数を測定する
ことによって得られる。また、電気式細胞数算定器を用
い、自動的に測定することも出来る。細胞を単一に遊離
させることが困難な場合には、細胞核を遊離させ、細胞
核数を血球計算盤等で測定することによって、細胞密度
を求めうる。通常おこなわれる細胞培養における細胞密
度は、培養開始時において、1×104 個/ml乃至5
×105 個/ml、培養終了時において1×105 個/
ml乃至1×108 個/ml、その中でも5×105 個
/ml乃至1×107 個/mlの範囲にあることがより
一般的である。測定された細胞数の中には、生細胞の他
に、死細胞も計測しているため、通常死細胞数を測定し
て生細胞数を算出し、細胞培養の制御情報として用い
る。死細胞数の測定方法は、直接的に、ある種の染料に
よって、細胞、もしくは、遊離させた細胞核を染色し、
その染まり具合いの差から、細胞の生死を判定しなが
ら、血球計算盤等で細胞数、又は細胞核数を測定するこ
とにより、死細胞数を測定する。染料としては、クリス
タルバイオレット、トリパンブルー、ニュートラルレッ
ド等が用いることが知られている。The cell density is the number of cells present in 1 ml of culture medium. The method of measuring cell density during cell culture is as follows: In suspension culture, where cells can be considered to be uniformly suspended in the culture solution, a certain amount of the culture solution is aseptically sampled and the cells in the sample solution are isolated. It is obtained by measuring the number of cells in a fixed volume using a hemocytometer after freeing the cells. In addition, it is possible to automatically measure using an electric cell counter. When it is difficult to release a single cell, the cell density can be determined by releasing the cell nucleus and measuring the cell nucleus number with a hemocytometer or the like. The cell density in the usual cell culture is 1 × 10 4 cells / ml to 5 at the start of the culture.
× 10 5 cells / ml, 1 × 10 5 cells in the end of the culture /
It is more general that it is in the range of ml to 1 × 10 8 cells / ml, of which 5 × 10 5 cells / ml to 1 × 10 7 cells / ml. Among the measured cell numbers, in addition to living cells, dead cells are also measured, and thus the number of dead cells is usually measured to calculate the number of living cells, which is used as control information for cell culture. The method for measuring the number of dead cells is to directly stain cells or liberated cell nuclei with a certain dye,
The number of dead cells is measured by measuring the number of cells or the number of cell nuclei with a hemocytometer or the like while determining the life or death of cells from the difference in the degree of staining. It is known to use crystal violet, trypan blue, neutral red or the like as the dye.
【0008】本発明でいう細胞活性度とは、細胞が分裂
・増殖する、もしくは目的生産物質を産生する際に、そ
れらとの間に何らかの因果関係を有し、間接的にそれら
の強さの尺度となりうるもので培養槽内の全細胞数中の
生細胞数の割合や、細胞当りの栄養源の消費速度(例え
ば、グルコース、アミノ酸などの消費速度、細胞当りの
老廃物の生産速度(例えば乳酸、アンモニアなどの生産
速度)あるいは前記消費速度と生産速度との比の値など
がその一例である。したがって細胞が増殖しているとき
の細胞密度の変化は細胞活性度と深く関わってくる。[0008] The term "cell activity" as used in the present invention means that when a cell divides / proliferates or produces a target product, it has some causal relationship with them and indirectly indicates their strength. It can be used as a measure and is the ratio of the number of living cells in the total number of cells in the culture tank, the consumption rate of nutrients per cell (for example, the consumption rate of glucose, amino acids, etc., the production rate of waste products per cell (for example, An example is the production rate of lactic acid, ammonia, etc. or the value of the ratio between the consumption rate and the production rate, etc. Therefore, changes in cell density when cells are proliferating are deeply related to cell activity.
【0009】本発明の方法は、培養槽中に吹込む酸素を
主要成分とするガスにより、培養液中の溶存酸素濃度等
を制御するものであるが、複数種類の混合ガスを吹込
む。吹込む方法として前記混合ガスを気相部に供給し、
気液界面より溶解させる方法(上面通気)、培養液内に
ガス供給管を配し、その先端に設けられた、ガス分散装
置から前記混合ガスを培養液中に直接供給して微小気泡
を形成させ、溶解させる方法、前記混合ガスを透過させ
るが、培養液は透過させない膜を介して、溶解させる方
法、などが一般的である。さらに、前記ガス成分を多量
に溶解しうるが培養液とは互いに混合しない液体を前記
ガス成分の供給媒体として供する方法もある。細胞が生
合成する上で、酸素は必須成分のうちの一つであり、前
記混合ガス中の主成分である。そのほかに、培養液のp
Hを一定に保つ目的で培養液に添加されている重炭酸ナ
トリウムと緩衝作用を有する炭酸ガスが用いられるため
に、吹き込みガスは酸素、炭酸ガス、ガス分圧を調整す
るための不活性ガス、で構成され、純酸素、純炭酸ガ
ス、純不活性ガス、もしくは空気の混合物として、供給
されることが多い。In the method of the present invention, the dissolved oxygen concentration in the culture solution is controlled by the gas containing oxygen as the main component, which is blown into the culture tank. As a method of blowing, the mixed gas is supplied to the gas phase part,
A method of dissolving from the gas-liquid interface (top ventilation), a gas supply pipe is arranged in the culture solution, and the mixed gas is directly supplied into the culture solution from a gas dispersion device installed at the tip of the gas supply tube to form micro bubbles. In general, a method of causing the mixed gas to permeate, and a method of allowing the mixed gas to permeate through the membrane that does not permeate the culture solution are used. Furthermore, there is also a method in which a liquid that can dissolve a large amount of the gas component but is not mixed with the culture solution is used as a supply medium for the gas component. Oxygen is one of the essential components for cell biosynthesis, and is the main component in the mixed gas. In addition, p of the culture solution
Since sodium bicarbonate added to the culture solution for the purpose of keeping H constant and carbon dioxide gas having a buffering action are used, the blowing gas is oxygen, carbon dioxide gas, an inert gas for adjusting the gas partial pressure, And is often supplied as a mixture of pure oxygen, pure carbon dioxide, pure inert gas, or air.
【0010】溶存酸素濃度は、一定培養液中に溶解して
いる酸素濃度のことである。動物細胞は一般に培養液中
に溶解した酸素を必要とし、溶存酸素量を枯渇しないよ
うに制御することは、目的生産物質を得るために、細胞
培養を継続させる上で大変重要な問題となる。溶存酸素
濃度の測定は、培養液中に無菌的に設置された酸素電極
により行われる。酸素電極はポーラログラフィー式、ガ
ルバニ電池式が一般に知られており、溶存酸素濃度に応
じた還元電流値の大きさより、溶存酸素濃度を測定す
る。溶存量は、0〜20ppmの範囲が一般に測定可能
であるが、過剰の酸素供給は、細胞生育が阻害されるこ
とが知られており、より狭い範囲、例えば0.5〜6p
pm前後で培養されることが多い。The dissolved oxygen concentration is the concentration of oxygen dissolved in a fixed culture solution. Animal cells generally require dissolved oxygen in the culture medium, and controlling the amount of dissolved oxygen so as not to deplete it is a very important problem in continuing cell culture in order to obtain a target product. The dissolved oxygen concentration is measured with an oxygen electrode aseptically installed in the culture solution. The polarography type and the galvanic cell type are generally known as the oxygen electrode, and the dissolved oxygen concentration is measured from the magnitude of the reduction current value according to the dissolved oxygen concentration. The dissolved amount can be generally measured in the range of 0 to 20 ppm, but excess oxygen supply is known to inhibit cell growth, and a narrower range, for example, 0.5 to 6 p
Often cultured around pm.
【0011】培養液のpH変化に対する動物細胞の受け
る影響は、微生物に比べてより大きく、至適pHは細胞
によって異なるが一般的6.8〜7.8程度しかなく、
この範囲からはずれると、細胞の生育は著しく阻害され
る。このために、細胞培養においては、溶存酸素濃度と
同様、pHは重要な要因となる。pHの測定も、溶存酸
素濃度と同様に、培養液中に無菌的に設置されたpH電
極によって行なわれる。pH0〜14の範囲で測定可能
な電極が一般に用いられているが、より狭い範囲例えば
pH4〜10を測定する電極等を用いることもある。培
養中のpHの値は、前述のとおり至適pHが大変に狭い
範囲にあるため、通常前記至適pHの±0.5以内程度
であることが多い。The influence of animal cells on the pH change of the culture solution is larger than that of microorganisms, and the optimum pH is generally about 6.8 to 7.8 although it varies depending on the cell.
Outside this range, cell growth is significantly inhibited. Therefore, in cell culture, pH is an important factor as well as dissolved oxygen concentration. Similarly to the dissolved oxygen concentration, the pH is also measured by a pH electrode aseptically installed in the culture solution. An electrode that can measure in the range of pH 0 to 14 is generally used, but an electrode that measures a narrower range such as pH 4 to 10 may be used. The pH value during the culture is usually within ± 0.5 of the optimum pH because the optimum pH is in a very narrow range as described above.
【0012】[0012]
【実施例】次に、実施例によって、さらに詳しく本発明
の方法を説明する。図2は、本発明の方法を実施する通
常の細胞培養槽の概略図である。撹拌機4を有する槽型
の培養槽1は加熱ジャケット3を備え温度制御器9によ
り温度制御され、又、圧力制御器8によって培養液が一
定の圧力に保持されている。又該培養槽は、操作を始め
るに当って、槽内を滅菌し、外部からの微生物の侵入を
防ぐため、通常は蒸気供給管を備え、又、配管の接続口
においても、滅菌するための蒸気供給管を備えている。
該培養槽内に、培地を無菌状態で供給し、かつ、増殖培
養すべき細胞を供給する。培養初期に供給する細胞量
は、通常1×104 個/ml乃至5×105 個/mlの
細胞密度を形成する細胞を供給し、温度を35℃乃至3
7℃に保持し、ほぼ常圧にて細胞の培養をおこなう。培
養液の撹拌は、細胞を破裂しない程度にゆるやかにおこ
なう。培養液は、最初に供給した状態で保持する場合も
あり、又細胞の増殖の程度に応じて供給する場合もあ
る。いずれの方法をとるかは細胞の増殖の程度、細胞に
よる栄養源の消費程度、代謝生成物の濃度等により決め
られる。該培養槽には酸素を主成分とする混合ガスを供
給する。従って、各ガスの供給管、流量測定器及び流量
調節弁を備えている。EXAMPLES Next, the method of the present invention will be described in more detail by way of examples. FIG. 2 is a schematic view of a general cell culture tank for carrying out the method of the present invention. A tank-type culture tank 1 having an agitator 4 is equipped with a heating jacket 3 and is temperature-controlled by a temperature controller 9, and a pressure controller 8 keeps a culture solution at a constant pressure. In addition, the culture tank is usually equipped with a steam supply pipe in order to sterilize the inside of the culture tank and prevent invasion of microorganisms from the outside at the beginning of operation, and also for sterilizing the connection port of the pipe. Equipped with a steam supply pipe.
A medium is aseptically supplied to the culture tank, and cells to be subjected to growth culture are supplied. The amount of cells to be supplied at the initial stage of culture is usually such that cells forming a cell density of 1 × 10 4 cells / ml to 5 × 10 5 cells / ml are supplied, and the temperature is 35 ° C. to 3 ° C.
The cells are maintained at 7 ° C. and cultured at almost normal pressure. Agitation of the culture medium should be carried out gently so as not to rupture the cells. The culture solution may be maintained in the state of being initially supplied, or may be supplied depending on the degree of cell growth. Which method is used is determined by the degree of cell proliferation, the degree of consumption of nutrients by the cells, the concentration of metabolites, and the like. A mixed gas containing oxygen as a main component is supplied to the culture tank. Therefore, each gas supply pipe, a flow rate measuring device, and a flow rate control valve are provided.
【0013】図3は本発明の方法を具体化するプロセス
構成図である。培養槽1からの測定値として、細胞密
度、細胞活性度が得られる。通常これらの値は、培養液
の一部をサンプリングし、前述の方法により、測定さ
れ、その測定値がファジイ推論部を有するコンピュータ
ー10に入力される。溶存酸素濃度、pH値は、通常培
養槽に挿入したセンサーにより、オンラインで測定さ
れ、コンピューター10に直接入力される。本発明の方
法は第一段階として、細胞密度及び細胞活性度の測定値
から、供給する全ガス量をファジイ推論により決定す
る。図4(A)は細胞密度のメンバーシップ関数であ
る。図の横軸は、細胞密度の測定値のその設定値に対す
る偏差を表す。図の縦軸は、各メンバーシップ関数のグ
レードを示す。細胞密度偏差とは[(測定値−設定値)
/設定値]の値である。測定値の設定値に対する偏差が
0を中心にとり、−0.3〜0.3の範囲でつまり、
[設定値×0.7<測定値<設定値×1.3]の値のと
き、培養のオペレータが細胞密度偏差に対して感じるグ
レードを示している。ZRは、培養のオペレータが設定
値と測定値にあまり差がないと感じるグレードの分布
で、これをさかいに正の方向にPM(細胞密度偏差がや
や大きい)、PL(細胞密度偏差が大きい)、また負の
方向にNM(細胞密度偏差がやや小さい)、NL(細胞
密度偏差が小さい)をとっている。メンバーシップ関数
は1変数に対して、一般に5ないし7つ定義するのが収
束しやすい。以下同様に定義した。FIG. 3 is a process block diagram embodying the method of the present invention. Cell density and cell activity are obtained as the measured values from the culture tank 1. Usually, these values are measured by the method described above after sampling a part of the culture solution, and the measured values are input to the computer 10 having a fuzzy inference unit. The dissolved oxygen concentration and pH value are usually measured online by a sensor inserted in the culture tank and directly input to the computer 10. As a first step of the method of the present invention, the total amount of gas supplied is determined by fuzzy reasoning from the measured values of cell density and cell activity. FIG. 4 (A) is a membership function of cell density. The horizontal axis of the figure represents the deviation of the measured value of the cell density from the set value. The vertical axis of the figure shows the grade of each membership function. What is cell density deviation [(measured value-set value)
/ Set value]. The deviation of the measured value from the set value is centered at 0, that is, in the range of -0.3 to 0.3,
The value [set value × 0.7 <measured value <set value × 1.3] indicates the grade that the operator of the culture feels with respect to the cell density deviation. ZR is the distribution of grades that the operator of the culture feels that there is not much difference between the set value and the measured value, and PM (cell density deviation is large), PL (cell density deviation is large) in the positive direction by using this Further, NM (the cell density deviation is slightly small) and NL (the cell density deviation is small) are taken in the negative direction. Generally, defining 5 to 7 membership functions is easy to converge for one variable. The same definition applies hereinafter.
【0014】一方、生細胞率を示す細胞活性度のメンバ
ーシップ関数を図4(B)に示す。図の横軸は細胞活性
度、縦軸はメンバーシップ関数のグレードを示す。細胞
活性度は70〜100%付近の制御が重要である。従っ
て、培養のオペレータの感じ方のグレードを表すメンバ
シップ関数を密にしている。ZRは、培養のオペレータ
がふつうだと感じるグレードの分布で、これをさかいに
正の方向にPM(細胞活性度がやや多い)、PL(細胞
活性度が多い)、また負の方向にNM(細胞活性度がや
や少ない)、NL(細胞活性度が少ない)をとってい
る。On the other hand, FIG. 4 (B) shows the membership function of the cell activity indicating the viable cell rate. The horizontal axis of the figure shows the cell activity, and the vertical axis shows the grade of the membership function. It is important to control the cell activity around 70 to 100%. Therefore, the membership function that indicates the grade of the feeling of the culture operator is made dense. ZR is a distribution of grades that a culture operator feels normal, and using this as a scale, PM (slightly high cell activity), PL (high cell activity), and NM (negative cell activity) in the positive direction. The cell activity is a little low) and NL (the cell activity is low).
【0015】次に、これら2種類のファジイ推論値を用
いて、第一段階である全ガス量を決定する。表2は細胞
密度(CDと記す)と細胞活性度(CVと記す)から全
ガス量(GTと記す)を決定するプロダクションルール
である。例えば、CDのメンバーシップ関数がCD=N
M,細胞活性度がCV=ZRのとき、GT=NMとな
る。全ガス量のメンバーシップ関数を図4(C)に示
す。図の横軸は、全ガス流量の設定値に対する偏差を示
し、縦軸はメンバーシップ関数のグレードを示す。全ガ
ス流量偏差とは[(全ガス流量−基準値)/基準値]の
値である。全ガス流量の基準値に対する偏差が0を中心
にとり、−0.3〜0.3つまり[基準値×0.7<全
ガス流量<基準値×1.3]の値を培養のオペレータが
全ガス流量偏差に対して感じるグレードを示している。
ZRは、培養のオペレータが基準値と操作する全ガス流
量にあまり差がないと感じるグレードの分布で、これを
さかいに正の方向にPM(全ガス流量が基準値よりやや
多い)、PL(全ガス流量が基準値より多い)、また負
の方向にNM(全ガス流量が基準値よりやや少ない)、
NL(全ガス流量が基準値より少ない)をとっている。
ファジイ推論値から全ガス量を確定するのは、前述のM
in−Max−重心法による。プロダクションルールの
決定については、細胞密度偏差が正の方向に大きくなる
と、細胞が呼吸その他の活動に必要なガスの流量を増や
していかなければならない。また、細胞活性度がNLの
ときは、生細胞を増やすためにガス流量を上げる方向へ
制御する。細胞密度偏差が正の方向に非常に大きい場合
は、細胞活性度の大小に関係なくガス流量を増やす制御
をする。Next, using these two types of fuzzy inference values, the total gas amount, which is the first step, is determined. Table 2 is a production rule for determining the total gas amount (denoted by GT) from the cell density (denoted by CD) and cell activity (denoted by CV). For example, the membership function of CD is CD = N
M, when the cell activity is CV = ZR, GT = NM. The membership function of the total gas amount is shown in FIG. The horizontal axis of the figure shows the deviation of the total gas flow rate from the set value, and the vertical axis shows the grade of the membership function. The total gas flow rate deviation is the value of [(total gas flow rate-reference value) / reference value]. The deviation of the total gas flow rate from the reference value is centered at 0, and -0.3 to 0.3, that is, the value of [reference value x 0.7 <total gas flow rate <reference value x 1.3] is set by the culture operator. It shows the grade felt for the gas flow deviation.
ZR is a grade distribution in which the operator of the culture feels that there is not much difference between the reference value and the total gas flow rate to be manipulated, and in the positive direction PM (total gas flow rate is slightly higher than the reference value), PL ( Total gas flow rate is higher than the reference value), or NM in the negative direction (total gas flow rate is slightly lower than the reference value),
NL (total gas flow rate is less than the reference value).
To determine the total amount of gas from the fuzzy inference value, the above M
According to the in-Max-centroid method. For production rule determination, as the cell density deviation increases in the positive direction, the cells must increase the flow of gas required for respiration and other activities. Further, when the cell activity is NL, the gas flow rate is controlled to increase in order to increase the number of viable cells. When the cell density deviation is very large in the positive direction, the gas flow rate is controlled to increase regardless of the cell activity.
【0016】次に、第二段階として、各ガスの混合割合
を決定する手法について述べる。図5(A)は、培養槽
から直接測定される溶存酸素濃度の測定値、(DOと記
す)のメンバーシップ関数を示す。又、図5(B)は、
pHの測定値(pHと記す)のメンバーシップ関数であ
る。図5(A)のメンバーシップ関数について、図の横
軸は溶存酸素濃度、縦軸はメンバーシップ関数のグレー
ドを示す。溶存酸素濃度は20%前後を目標に制御する
ので、オペレータの感じ方のグレードを表すメンバシッ
プ関数は20%を中心にZR、つまりオペレータが目標
にほぼ近いと感じるグレードの分布をとっている。これ
をさかいに、正の方向にPM(溶存酸素濃度が目標より
やや多い)、PL(溶存酸素濃度が目標より多い)、ま
た負の方向にNM(溶存酸素量がやや少ない)、NL
(溶存酸素濃度が少ない)、NL(溶存酸素濃度が少な
い)をとっている。図5(B)のメンバーシップの関数
について、図の横軸はpH値、縦軸はメンバーシップ関
数のグレードを示す。pH値は7.2前後を目標に制御
するので、オペレータの感じ方のグレードを表すメンバ
シップ関数は、7.2を中心にZR、つまりオペレータ
が目標にほぼ近いと感じるグレードの分布をとってい
る。これをさかいに、正の方向にPM(pH値が目標よ
りやや大きい)、PL(pH値が目標より大きい)、ま
た負の方向にNM(pH値が目標よりやや小さい)、N
L(pH値が目標より小さい)をとっている。Next, as a second step, a method of determining the mixing ratio of each gas will be described. FIG. 5 (A) shows a measured value of the dissolved oxygen concentration directly measured from the culture tank, which is a membership function (denoted as DO). In addition, FIG.
It is a membership function of the measured value of pH (referred to as pH). Regarding the membership function of FIG. 5 (A), the horizontal axis of the figure shows the dissolved oxygen concentration and the vertical axis shows the grade of the membership function. Since the dissolved oxygen concentration is controlled to be around 20% as a target, the membership function representing the grade of how the operator feels has a ZR around 20%, that is, the distribution of grades that the operator feels to be close to the target. Based on this, PM (dissolved oxygen concentration is slightly higher than the target), PL (dissolved oxygen concentration is higher than the target) in the positive direction, and NM (dissolved oxygen amount is slightly lower), NL in the negative direction.
(Dissolved oxygen concentration is low) and NL (dissolved oxygen concentration is low). Regarding the membership function in FIG. 5B, the horizontal axis of the figure shows the pH value, and the vertical axis shows the grade of the membership function. Since the pH value is controlled to be around 7.2, the membership function that represents the operator's feeling grade is ZR centered at 7.2, that is, the distribution of grades that the operator feels to be close to the target is taken. There is. Taking this into consideration, PM (pH value is slightly larger than the target), PL (pH value is larger than the target) in the positive direction, and NM (pH value is slightly smaller than the target), N in the negative direction.
L (pH value is lower than the target).
【0017】表3(A)のプロダクションルールについ
て、溶存酸素濃度が目標値から外れたときは、酸素ガス
流量割合は溶存酸素濃度の値に応じて変化する。目標値
に対して溶存酸素濃度が大きな値をとっているときは、
酸素ガス割合を小さくすることで、また目標値に対して
溶存酸素濃度が小さな値をとっているときは、酸素ガス
の割合を大きくすることによって、溶存酸素濃度を目標
値に近づけることができる。例えば、DOのメンバーシ
ップ関数がDO=NMであり、pHのメンバーシップ関
数がpH=ZRのとき、酸素ガスの割合を示すメンバー
シップ関数はプロダクションルールからGO=PMとな
る。酸素ガスの割合を示すメンバーシップ関数を図5
(C)に示す。図の横軸は酸素ガスの割合であり、縦軸
にメンバーシップ関数のグレードを示す。オペレータの
感じ方のグレードを表すメンバシップ関数は左端からN
L(ほとんど酸素ガスは流さない)、NM(少しだけ流
す)、ZR(3分の1くらい流す)、PM(もう少し割
合を上げる)、PL(割合を多めにする)をとってい
る。酸素ガスの割合の決定は前述のMin−Max−重
心法による。In the production rule of Table 3 (A), when the dissolved oxygen concentration deviates from the target value, the oxygen gas flow rate ratio changes according to the value of the dissolved oxygen concentration. When the dissolved oxygen concentration is higher than the target value,
The dissolved oxygen concentration can be brought close to the target value by decreasing the oxygen gas ratio or by increasing the oxygen gas ratio when the dissolved oxygen concentration has a smaller value than the target value. For example, when the DO membership function is DO = NM and the pH membership function is pH = ZR, the membership function indicating the proportion of oxygen gas is GO = PM from the production rule. Figure 5 shows the membership function that shows the proportion of oxygen gas.
It shows in (C). The horizontal axis of the figure shows the proportion of oxygen gas, and the vertical axis shows the grade of the membership function. The membership function that represents the operator's feeling grade is N from the left end.
L (almost no oxygen gas flow), NM (slight flow), ZR (flow about 1/3), PM (raise a little more ratio), PL (a larger ratio) are taken. The oxygen gas ratio is determined by the Min-Max-centroid method described above.
【0018】次に、他のガス成分の割合についても同様
に推論できる。図5(A)、図5(B)から得られるD
OとPHのメンバシップ関数を用いて、表3(B)のプ
ロダクションルールにより他のガス成分の割合を決定す
る。他のガス成分が炭酸ガスの場合、DOとPHから炭
酸ガスの割合を(GCと記す)を決定するプロダクショ
ンルールは、PH値が目標値から外れたときは、炭酸ガ
ス流量割合はPHの値に応じて変化する。目標値に対し
てPH値が大きな値をとっているときは、炭酸ガス流量
割合を大きくすることで、また、目標値に対してPH値
が小さな値をとっているときは、炭酸ガス流量割合を小
さくすることによって、PH値を目標値に近づけること
ができる。例えば、DOのメンバーシップ関数がDO=
PMであり、PHのメンバーシップ関数がPH=ZRの
とき、GC=ZRとなる。炭酸ガスの割合を示すメンバ
ーシップ関数を図5(D)に示す。図の横軸は、炭酸ガ
スの割合であり、縦軸はメンバーシップ関数のグレード
を示す。炭酸ガス流量割合を全ガス流量の20%以上と
することは定常状態では非常に稀であるので上限を20
%をとっている。オペレータの感じ方のグレードを表す
メンバシップ関数は左端からNL(ほとんど酸素ガスは
流さない)、NM(少しだけ流す)、ZR(5%くらい
流す)、PM(もう少し割合を上げる)、PL(割合を
多めにする)をとっている。炭酸ガス量の割合の決定は
前述のMin−Max−重心法による。供給ガス成分が
酸素ガス、炭酸ガス及び窒素ガスであるとき、窒素ガス
の割合は、全体から酸素ガスと炭酸ガスの割合を差し引
いた残りの割合として算出し各ガス量を決定する。Next, the ratios of other gas components can be similarly inferred. D obtained from FIGS. 5A and 5B
Using the membership functions of O and PH, the proportions of other gas components are determined according to the production rule in Table 3 (B). When the other gas component is carbon dioxide gas, the production rule that determines the ratio of carbon dioxide gas from DO and PH (referred to as GC) is that when the PH value deviates from the target value, the carbon dioxide gas flow rate ratio is the value of PH value. Change according to. When the PH value is larger than the target value, increase the carbon dioxide gas flow rate ratio, and when the PH value is smaller than the target value, the carbon dioxide gas flow rate ratio. The PH value can be brought closer to the target value by decreasing. For example, the membership function of DO is DO =
If PM and the membership function of PH is PH = ZR, then GC = ZR. A membership function indicating the proportion of carbon dioxide is shown in FIG. The horizontal axis of the figure is the proportion of carbon dioxide, and the vertical axis is the grade of the membership function. Since it is extremely rare in the steady state to set the carbon dioxide gas flow rate ratio to 20% or more of the total gas flow rate, the upper limit is set to 20.
% Is taken. From the left end, the membership function that represents the operator's feeling grade is NL (almost no oxygen gas flow), NM (a little flow), ZR (around 5% flow), PM (a slightly higher ratio), PL (a ratio). To increase). The ratio of the amount of carbon dioxide is determined by the Min-Max-centroid method described above. When the supply gas components are oxygen gas, carbon dioxide gas and nitrogen gas, the ratio of nitrogen gas is calculated as the remaining ratio after subtracting the ratio of oxygen gas and carbon dioxide gas from the whole to determine each gas amount.
【0019】上記の細胞培養制御方法を用いて20lの
培養液によるマウス−マウス ハイブリドーマ細胞の培
養を、培養温度37℃、培養圧力0.2kg/cm2 ・
Gのもとにおこなった。初期細胞密度を2.0×105
個/mlで培養を始め、140時間後細胞密度が2.5
×106個/mlとなったとき、供給するガス流量の決
定は、細胞密度設定値3.0×106 個/ml、細胞活
性度92%、pH値7.1、溶存酸素濃度18%のとき
以下のごとくであった。Cultivation of mouse-mouse hybridoma cells with 20 l of culture medium using the above cell culture control method was performed at a culture temperature of 37 ° C. and a culture pressure of 0.2 kg / cm 2 ·.
It was done under G. Set the initial cell density to 2.0 x 10 5
The culture started at 140 cells / ml and the cell density was 2.5 after 140 hours.
When the gas flow rate becomes × 10 6 cells / ml, the gas flow rate to be supplied is determined by setting the cell density at 3.0 × 10 6 cells / ml, cell activity 92%, pH value 7.1, dissolved oxygen concentration 18% At that time it was as follows.
【0020】細胞密度とその設定値から細胞密度偏差を
求めると−0.17となる。これは図4(A)のメンバ
ーシップ関数からNL,MM,また、図4(B)のメン
バーシップ関数から細胞活性度についてはZR,PMに
属する。この2つの入力に対して、該当するプロダクシ
ョンルールは表2から式1として「細胞活性度(CV)
がZR,かつ細胞密度偏差(CD)がNLならば、全ガ
ス量偏差(GT)がNL」,式2として「CVがZR,
かつ、CDがNMならば、GTがNM」,式3として
「CVがPM,かつCDがNLならば、GTがNL」,
及び式4として「CVがPM,かつCDがNMならば,
GTがNM」となる。The cell density deviation obtained from the cell density and its set value is -0.17. This belongs to NL and MM from the membership function of FIG. 4 (A), and ZR and PM with respect to cell activity from the membership function of FIG. 4 (B). For these two inputs, the corresponding production rule from Table 2 is Equation 1 "Cell activity (CV)"
Is ZR, and the cell density deviation (CD) is NL, the total gas quantity deviation (GT) is NL.
And, if CD is NM, then GT is NM ", and as Equation 3," CV is PM, and if CD is NL, GT is NL ",
And as Equation 4, “If CV is PM and CD is NM,
GT becomes NM ".
【0021】式1の場合を例として説明すると、細胞密
度偏差についてはグレード0.69、細胞活性度につい
てはグレード0.59であるから最小値である0.59
をとり、これらの値から前述したMin−Max−重心
法によりファジイ推論し、全ガス流量偏差として−0.
186を得る。同様に、pH値及び溶存酸素濃度から、
酸素ガスの割合、及び炭酸ガスの割合はそれぞれ44
%,3.6%となる。この結果から、酸素ガス7.6m
l/min、炭酸ガス0.62ml/min,窒素ガス
9.0ml/minを培養槽へ供給した。この培養を2
日間おこない、細胞密度が3.1×106 個/mlにな
るまで安定して細胞を培養することができた。なお、上
記のメンバーシップ関数やプロダクションルールは、具
体的には培養する細胞、培養条件等により変更されるも
のであり、本発明の方法は上記の具体的なメンバーシッ
プ関数やプロダクションルールの実施例に限定されるも
のではない。又、上記の具体的なガス量等は培養細胞、
又は培養環境によって異なるため本発明の方法は上記の
実施例に限定されるものではない。The case of equation 1 will be described as an example. The cell density deviation is grade 0.69, and the cell activity is grade 0.59. Therefore, the minimum value is 0.59.
Then, fuzzy inference is performed from these values by the above-described Min-Max-centroid method, and the total gas flow rate deviation is -0.
To get 186. Similarly, from the pH value and the dissolved oxygen concentration,
The oxygen gas ratio and carbon dioxide gas ratio are 44
%, 3.6%. From this result, oxygen gas 7.6m
l / min, carbon dioxide gas 0.62 ml / min, and nitrogen gas 9.0 ml / min were supplied to the culture tank. 2 this culture
It was carried out for a day, and the cells could be stably cultured until the cell density reached 3.1 × 10 6 cells / ml. The above membership function and production rule are specifically changed depending on the cells to be cultured, culture conditions, etc., and the method of the present invention is an example of the above specific membership function and production rule. It is not limited to. In addition, the above specific amount of gas, etc.
Alternatively, the method of the present invention is not limited to the above-mentioned examples because it depends on the culture environment.
【0022】[0022]
【発明の効果】本発明の培養制御方法は細胞培養中に得
られる測定値により、酸素ガスを主成分とするガスの供
給量をファジイ推論して決定することにより、定量的に
把握しがたい動物細胞を、安定に維持して培養できるた
め、その代謝特性を安定に保ちながら、安定した品質の
医薬品等を製造することができる。INDUSTRIAL APPLICABILITY The culture control method of the present invention is difficult to quantitatively grasp by determining the supply amount of gas containing oxygen gas as a main component by fuzzy reasoning based on the measurement values obtained during cell culture. Since animal cells can be stably maintained and cultivated, it is possible to manufacture a pharmaceutical product or the like with stable quality while maintaining stable metabolic characteristics.
【0023】[0023]
【図1】(A)及び(B)は要因Xのメンバーシップ関
数を示す。(C)は出力変数Yのメンバーシップ関数を
示す。(D)は出力値Yを決定するための重心を求める
手法を図示したものである。1A and 1B show the membership function of factor X. FIG. (C) shows the membership function of the output variable Y. (D) illustrates a method of obtaining the center of gravity for determining the output value Y.
【図2】本発明の方法を実施する通常の細胞培養槽の概
略図である。FIG. 2 is a schematic view of an ordinary cell culture tank for carrying out the method of the present invention.
【図3】本発明の方法を具体化するプロセス構成図であ
る。FIG. 3 is a process block diagram embodying the method of the present invention.
【図4】(A)は細胞密度偏差のメンバーシップ関数、
(B)は細胞活性度のメンバーシップ関数、(C)は全
ガス量のメンバーシップ関数を示す。FIG. 4 (A) is a membership function of cell density deviation,
(B) shows the membership function of cell activity, and (C) shows the membership function of the total amount of gas.
【図5】(A)は溶存酸素濃度の測定値のメンバーシッ
プ関数、(B)はpHの測定値のメンバーシップ関数、
(C)は酸素ガスの割合を示すメンバーシップ関数、
(D)は炭酸ガスの割合を示すメンバーシップ関数を表
す。FIG. 5 (A) is a membership function of measured values of dissolved oxygen concentration, (B) is a membership function of measured values of pH,
(C) is a membership function indicating the proportion of oxygen gas,
(D) represents a membership function indicating the ratio of carbon dioxide.
1.培養槽 2.ガス供給管 3.加熱ジャケ
ット 4.撹拌機 5.モーター 6.溶存酸素計 7.pH計
8.圧力制御器 9.温度制御器 10.コンピューター1. Culture tank 2. Gas supply pipe 3. Heating jacket 4. Stirrer 5. Motor 6. Dissolved oxygen meter 7. pH meter
8. Pressure controller 9. Temperature controller 10. computer
【表1】 [Table 1]
【表2】 [Table 2]
【表3】 [Table 3]
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G05D 21/00 A 7314−3H // G06F 9/44 330 W 9193−5B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location G05D 21/00 A 7314-3H // G06F 9/44 330 W 9193-5B
Claims (1)
段階として、培養中の細胞密度、及び細胞活性度の測定
値から培養槽に供給する全ガス量をファジイ推論により
決定し、第二段階として、培養液の溶存酸素濃度、及び
pHの測定値から該ガス組成をファジイ推論により決定
し、第一段階と第二段階で求めた値から各成分のガス量
を決定して培養槽に供給することを特徴とする動物細胞
の培養制御方法。1. When culturing animal cells, the first step is to determine the total gas amount supplied to the culture tank from the measured values of cell density and cell activity in the culture by fuzzy reasoning as the first step, and then the second step. As a result, the gas composition is determined by fuzzy reasoning from the measured values of dissolved oxygen concentration and pH of the culture solution, and the gas amount of each component is determined from the values obtained in the first and second steps and supplied to the culture tank. A method for controlling culture of animal cells, which comprises:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3296501A JPH05103663A (en) | 1991-10-15 | 1991-10-15 | Method for controlling culture of animal cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3296501A JPH05103663A (en) | 1991-10-15 | 1991-10-15 | Method for controlling culture of animal cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05103663A true JPH05103663A (en) | 1993-04-27 |
Family
ID=17834370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3296501A Pending JPH05103663A (en) | 1991-10-15 | 1991-10-15 | Method for controlling culture of animal cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05103663A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003235544A (en) * | 2002-02-20 | 2003-08-26 | Hitachi Ltd | Biological cell culture control method, culture device control device, and culture device |
EP1816188A1 (en) * | 2006-02-03 | 2007-08-08 | Hitachi Plant Technologies, Ltd. | Operation controller of culture tank |
JP2018057378A (en) * | 2016-10-03 | 2018-04-12 | 株式会社バイオジェノミクス | Method of producing good gut bacteria producing substances and food product |
CN117890550A (en) * | 2024-01-31 | 2024-04-16 | 广东芯阅科技有限公司 | Dissolved oxygen water quality sensor calibration system and method capable of achieving long-time stability of dissolved oxygen concentration |
WO2024084779A1 (en) * | 2022-10-17 | 2024-04-25 | Phcホールディングス株式会社 | Culture control device and culture control method |
US11999939B2 (en) | 2017-11-20 | 2024-06-04 | Lonza Ltd | Process and system for propagating cell cultures while preventing lactate accumulation |
-
1991
- 1991-10-15 JP JP3296501A patent/JPH05103663A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003235544A (en) * | 2002-02-20 | 2003-08-26 | Hitachi Ltd | Biological cell culture control method, culture device control device, and culture device |
EP1816188A1 (en) * | 2006-02-03 | 2007-08-08 | Hitachi Plant Technologies, Ltd. | Operation controller of culture tank |
JP2007202500A (en) * | 2006-02-03 | 2007-08-16 | Hitachi Ltd | Operation control device for culture tank |
JP2018057378A (en) * | 2016-10-03 | 2018-04-12 | 株式会社バイオジェノミクス | Method of producing good gut bacteria producing substances and food product |
US11999939B2 (en) | 2017-11-20 | 2024-06-04 | Lonza Ltd | Process and system for propagating cell cultures while preventing lactate accumulation |
WO2024084779A1 (en) * | 2022-10-17 | 2024-04-25 | Phcホールディングス株式会社 | Culture control device and culture control method |
CN117890550A (en) * | 2024-01-31 | 2024-04-16 | 广东芯阅科技有限公司 | Dissolved oxygen water quality sensor calibration system and method capable of achieving long-time stability of dissolved oxygen concentration |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cacciuttolo et al. | Hyperoxia induces DNA damage in mammalian cells | |
Inloes et al. | Hollow‐fiber membrane bioreactors using immobilized E. coli for protein synthesis | |
US8741638B2 (en) | In vitro expansion of postpartum-derived cells in roller bottles | |
Li | The glucose distribution in 9L rat brain multicell tumor spheroids and its effect on cell necrosis | |
Martin et al. | A method for the regulation of microbial population density during continuous culture at high growth rates | |
Kyung et al. | High density culture of mammalian cells with dynamic perfusion based on on-line oxygen uptake rate measurements | |
JPS61202684A (en) | Method and apparatus for controlling dissolved oxygen and phof medium | |
JPH05103663A (en) | Method for controlling culture of animal cell | |
Eyer et al. | On‐line estimation of viable cells in a hybridoma culture at various DO levels using ATP balancing and redox potential measurement | |
Behrendt et al. | Mass spectrometry: a tool for on-line monitoring of animal cell cultures | |
Bleckwenn et al. | Large‐scale cell culture | |
Dorresteijn et al. | On‐line estimation of the biomass activity during animal‐cell cultivations | |
Daniels et al. | Controlled pH and oxidation–Reduction potential with a new glass tissue‐culture fermentor | |
CN104974933A (en) | Device and method of continuously and repeatedly suspending transient transfection expression recombination protein on large scale | |
Kresnowati et al. | Model-based analysis and optimization of bioreactor for hematopoietic stem cell cultivation | |
Kong et al. | Long-term stable production of monocyte-colony inhibition factor (M-CIF) from CHO microcarrier perfusion cultures | |
Fassnacht et al. | Long-term cultivation of immortalised mouse hepatocytes in a high cell density, fixed-bed reactor | |
Fleischaker et al. | Instrumentation for process control in cell culture | |
Rapala et al. | Small-scale perfusion mimic cultures in the ambr250 HT bioreactor system | |
Zhou et al. | Effect of insulin on a serum‐free hybridoma culture | |
GB2154246A (en) | Improved method of culturing cells | |
Kong et al. | Development of a versatile computer integrated control system for bioprocess controls | |
Sureshkumar et al. | Intracellular pH‐based controlled cultivation of yeast cells: II. Cultivation methodology | |
Tao et al. | Kinetics of prourokinase production by human kidney cells in culture | |
Drapeau et al. | Extracellular insulin degrading activity creates instability in a CHO-based batch-refeed continuous process |