[go: up one dir, main page]

JPH05101885A - Protection of electroluminescent element - Google Patents

Protection of electroluminescent element

Info

Publication number
JPH05101885A
JPH05101885A JP3287256A JP28725691A JPH05101885A JP H05101885 A JPH05101885 A JP H05101885A JP 3287256 A JP3287256 A JP 3287256A JP 28725691 A JP28725691 A JP 28725691A JP H05101885 A JPH05101885 A JP H05101885A
Authority
JP
Japan
Prior art keywords
layer
transport layer
light emitting
diamond
organic light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3287256A
Other languages
Japanese (ja)
Other versions
JP3197305B2 (en
Inventor
Masanori Shibahara
正典 柴原
Kenji Nakatani
賢司 中谷
Tetsuji Inoue
鉄司 井上
Masatoshi Nakayama
正俊 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP28725691A priority Critical patent/JP3197305B2/en
Publication of JPH05101885A publication Critical patent/JPH05101885A/en
Application granted granted Critical
Publication of JP3197305B2 publication Critical patent/JP3197305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

(57)【要約】 【目的】 電界発光素子の保護を行ない耐久性を向上す
ること。 【構成】 有機発光層、正孔輸送層、電子輸送層又は電
極である基体層の表面に、ビッカース硬度3000〜8
000の以上を有するイオン化蒸着法によるダイヤモン
ド様薄膜を形成する。 【効果】 保護膜の遮蔽性及び熱伝導率が大きいので耐
久性の電界発光素子が得られた。
(57) [Abstract] [Purpose] To protect an electroluminescent device and improve its durability. [Structure] Vickers hardness of 3000 to 8 is formed on the surface of a substrate layer which is an organic light emitting layer, a hole transport layer, an electron transport layer or an electrode.
A diamond-like thin film is formed by an ionization vapor deposition method having 000 or more. [Effect] Since the protective film has a high shielding property and a high thermal conductivity, a durable electroluminescent device was obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は有機電界発光素子の保護
に関し、より詳しくは基体に対して結合性の良い保護膜
を有する有機電界発光素子及び保護方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to protection of an organic electroluminescence device, and more particularly to an organic electroluminescence device having a protective film having a good bonding property to a substrate and a protection method.

【0002】[0002]

【従来の技術】有機電界発光素子は、基本的には有機発
光層を正負電極で挟んだ形を有する。正負電極からキャ
リアーとして注入された電子と正孔が再結合する際に形
成される励起子(エキシトン)が励起状態から基底状態
に戻る時に発光を生じさせる。また、輝度を向上させる
ために更に正電極と有機発光層の間に正孔輸送層を介在
させ、あるいは負電極と有機発光層の間に電子輸送層を
介在さることも知られている(特開昭63−26469
2号、特開昭63−295695号、特開平2−250
292号、J.J.Appl.Phys.,27,L2
69(1988)等)。すなわち、図1に示した様にガ
ラス基板1、透明正電極2、正孔輸送層3、有機発光層
4、電子輸送層5及び負電極6をこの順に積層する。そ
して直流電源7から電圧を加えて発光させる。もちろ
ん、電子輸送層及び正孔輸送層の一方又は両方が省略さ
れることもある。また、電子輸送層や正孔輸送層には有
機化合物だけでなく無機化合物を用いてもよい。
2. Description of the Related Art An organic electroluminescent device basically has a form in which an organic light emitting layer is sandwiched between positive and negative electrodes. Excitons (excitons) formed when electrons and holes injected as carriers from the positive and negative electrodes are recombined, and emit light when the excited state returns to the ground state. It is also known that a hole transport layer is further interposed between the positive electrode and the organic light emitting layer or an electron transport layer is interposed between the negative electrode and the organic light emitting layer in order to improve brightness (special feature). Kaisho 63-26469
2, JP-A-63-295695, JP-A-2-250.
292, J. J. Appl. Phys. , 27, L2
69 (1988) etc.). That is, as shown in FIG. 1, the glass substrate 1, the transparent positive electrode 2, the hole transport layer 3, the organic light emitting layer 4, the electron transport layer 5, and the negative electrode 6 are laminated in this order. Then, a voltage is applied from the DC power supply 7 to emit light. Of course, one or both of the electron transport layer and the hole transport layer may be omitted. Further, not only an organic compound but also an inorganic compound may be used for the electron transport layer and the hole transport layer.

【0003】[0003]

【発明が解決すべき課題】有機発光層、正孔輸送層、電
子輸送層、又は電極は、水分、酸素、その他の使用環境
中のある種の分子の影響を受けて劣化し易いので、完全
に外気から遮断する必要がある。図1に示した様に、有
機発光層、正孔輸送層、あるいは電子輸送層には電極が
積層されるが、電極も含めてこれらの層が直接露出する
部分があるので、そこから水分、酸素等が侵入して、有
機発光層、正孔輸送層、電子輸送層、又は電極の劣化が
生じて輝度、色彩等の発光特性が低下する。これを防ぐ
保護膜としては、酸化物、炭化物、窒化物等の無機被
覆、エポキシ樹脂等の樹脂被覆が考えられるが、発光時
に素子の発熱により畜熱が起こり、素子自身を劣化させ
るからこのような熱伝導率の低い物質の使用は回避しな
ければならない。従って本発明の目的は、有機電界発光
素子において、正孔輸送層、有機発光層、電子輸送層、
電極及び支持基板(例えばガラス)に対する密着耐久性
の大きい、しかも熱伝導率の高い保護膜を提供すること
にある。
The organic light emitting layer, the hole transporting layer, the electron transporting layer, or the electrode is liable to be deteriorated under the influence of moisture, oxygen, or some kind of molecules in the use environment. It is necessary to shut off the outside air. As shown in FIG. 1, an electrode is laminated on the organic light emitting layer, the hole transport layer, or the electron transport layer. However, since there is a portion where these layers are directly exposed including the electrode, moisture, The entry of oxygen and the like causes deterioration of the organic light emitting layer, the hole transporting layer, the electron transporting layer, or the electrode, which deteriorates the light emitting characteristics such as brightness and color. Inorganic coatings such as oxides, carbides, and nitrides, and resin coatings such as epoxy resins can be considered as protective films to prevent this, but heat generation of the element during light emission causes storage heat and deteriorates the element itself. The use of materials with low thermal conductivity must be avoided. Therefore, an object of the present invention is to provide a hole transport layer, an organic light emitting layer, an electron transport layer,
Another object of the present invention is to provide a protective film having high adhesion durability to electrodes and a supporting substrate (for example, glass) and having high thermal conductivity.

【0004】[0004]

【課題を解決するための手段】本発明は、有機発光層、
正孔輸送層、電子輸送層または電極である基体層の表面
に、ビッカース硬度3000〜8000kg/mm2
上のイオン化蒸着法によるダイヤモンド様薄膜を形成し
たことを特徴とする有機電界発光素子及び保護方法を提
供する。ダイヤモンド様薄膜は酸素や水分に対するすぐ
れた遮蔽体であると共に、熱伝導度が大きいのですぐれ
た排熱手段(ヒートシンク)として作用する。より具体
的には、本発明は少なくとも一方が透明である一対の電
極の間に有機発光層、正孔輸送層、及び電子輸送層を設
けた有機電界発光素子において、前記有機発光層、正孔
輸送層、電子輸送層、及び電極の露出する部分の全体
に、ビッカース硬度3000〜8000kg/mm2
上のイオン化蒸着法によるダイヤモンド様薄膜を形成し
たことを特徴とする有機電界発光素子とその保護方法を
提供する。
The present invention provides an organic light emitting layer,
An organic electroluminescent device and a protection method, wherein a diamond-like thin film having a Vickers hardness of 3000 to 8000 kg / mm 2 is formed on the surface of a hole transport layer, an electron transport layer or a base layer which is an electrode by an ionization deposition method. I will provide a. The diamond-like thin film is an excellent shield against oxygen and moisture, and since it has high thermal conductivity, it acts as an excellent heat sink. More specifically, the present invention relates to an organic electroluminescent device having an organic light emitting layer, a hole transport layer, and an electron transport layer between a pair of electrodes, at least one of which is transparent, wherein the organic light emitting layer, the hole An organic electroluminescent device characterized by forming a diamond-like thin film having a Vickers hardness of 3000 to 8000 kg / mm 2 by an ionization deposition method on the entire exposed portion of the transport layer, the electron transport layer, and the electrode, and a method for protecting the same. I will provide a.

【0005】必須ではないが、場合により前記基体層の
表面をプラズマ又は逆スパッタした後、空気に露呈する
ことなく引き続いて前記基体層の表面にダイヤモンド様
薄膜を気相成膜する。
Although not essential, the surface of the substrate layer is optionally plasma- or reverse-sputtered, and subsequently a diamond-like thin film is vapor-deposited on the surface of the substrate layer without being exposed to air.

【0006】図2は本発明の適用例を示す図であり、ガ
ラス基板1の表面に透明正電極(例えばITO)2、正
孔輸送層(例えばトリフェニルジアミン誘導体)3、有
機発光層(例えばペリレン誘導体或いはキノリンオキサ
イドとAlの錯体)4よりなり、場合により更に電子輸
送層(例えばオキサジアゾール誘導体)5(図1参照)
を順に従来の方法により形成した後、負電極(例えばM
g−Ag合金)6を形成する。更に、全面にダイヤモン
ド様薄膜8を保護膜として形成する。あるいは単に層
3、4または5の露出部分にダイヤモンド様薄膜保護膜
を形成してもよい。
FIG. 2 is a diagram showing an application example of the present invention. A transparent positive electrode (eg ITO) 2, a hole transport layer (eg triphenyldiamine derivative) 3, an organic light emitting layer (eg Perylene derivative or a complex of quinoline oxide and Al) 4 and optionally an electron transport layer (eg oxadiazole derivative) 5 (see FIG. 1)
Are sequentially formed by a conventional method, and then a negative electrode (for example, M
g-Ag alloy) 6. Further, a diamond-like thin film 8 is formed on the entire surface as a protective film. Alternatively, the diamond-like thin film protective film may be simply formed on the exposed portion of the layers 3, 4 or 5.

【0007】必須ではないが、必要に応じて前処理とし
てプラズマ処理を行なっても良い。この場合には、公知
のダイヤモンド成膜装置の内部にこの積層体を収容し、
電子輸送層5、または電子輸送層がない場合には有機発
光層4、あるいは負電極6を所定の負電源8に接続す
る。しかし積層体の一部の層の導電性は充分でないから
更にメッシュ状等のグリッド(図示せず)を負電極6あ
るいは層5(または層5がない場合には層4)に近接さ
せて配置し同じ負電位にする。グリッドと基体層との距
離は数mmが好ましく、又電位は例えば約−150ボル
ト以下〜−10kV程度の負電位を加える。使用するプ
ラズマガスとしてはHe、Ar、Ne、Xe等の不活性
ガスや、水素、窒素等のガスをプラズマ化する。プラズ
マガス中の正イオンはグリッドに印加された負電位によ
り加速されて負電極あるいは有機発光層または電子輸送
層の表面を活性化することにより、次に形成される保護
膜との結合力を向上させる。プラズマ処理の代わりに同
じ配置で周知の逆スパッタ法により基体の表面を活性化
しても良い。同様の処理を各層の形成時に行なっても良
い。
Although not essential, plasma treatment may be performed as a pretreatment, if necessary. In this case, the laminate is housed inside a known diamond film forming apparatus,
The electron transport layer 5 or the organic light emitting layer 4 or the negative electrode 6 when there is no electron transport layer is connected to a predetermined negative power source 8. However, since the conductivity of a part of the layers of the laminate is not sufficient, a mesh-shaped grid (not shown) is further arranged close to the negative electrode 6 or the layer 5 (or the layer 4 if the layer 5 is not present). Then set the same negative potential. The distance between the grid and the base layer is preferably several millimeters, and the potential is, for example, a negative potential of about −150 V or less to about −10 kV. As a plasma gas to be used, an inert gas such as He, Ar, Ne and Xe, or a gas such as hydrogen and nitrogen is made into plasma. The positive ions in the plasma gas are accelerated by the negative potential applied to the grid to activate the surface of the negative electrode or the organic light emitting layer or the electron transport layer, thereby improving the binding force with the protective film to be formed next. Let Instead of the plasma treatment, the surface of the substrate may be activated by the well-known reverse sputtering method with the same arrangement. You may perform the same process at the time of forming each layer.

【0008】なお、負電極の材料は4eV以下の仕事関
数を有する金属又は少なくとも1種が4eV以下の仕事
関数を有する金属を含有する合金より選択される。例え
ば、Mg、Al、及びMg−Ag合金等が使用出来る。
電極の成膜は蒸着、スパッタ等の任意の手法が使用出来
る。透明正電極としてはIn−Sn酸化物、正孔輸送層
としてトリフェニルジアミン誘導体、スチルベン誘導
体、ピラゾリン誘導体等があり、電子輸送層としてはオ
キサジアゾール誘導体等がある。有機発光層としては縮
合多環型芳香族炭化水素色素、O、N、S等のヘテロ原
子を含む縮合多環型色素、金属錯体色素等がある。その
例としては、ペリノン誘導体、キノリン錯体誘導体、チ
アジアゾロピリジン誘導体、テトラフェニルブタジエン
類、ビススチリルベンゼン誘導体等が挙げられる(特開
平1−245087号、同2−88689号、同2−2
50292号、同2−261889号参照)。
The material of the negative electrode is selected from a metal having a work function of 4 eV or less or an alloy containing at least one metal having a work function of 4 eV or less. For example, Mg, Al, and Mg-Ag alloy can be used.
Any method such as vapor deposition and sputtering can be used for forming the electrodes. The transparent positive electrode is an In—Sn oxide, the hole transport layer is a triphenyldiamine derivative, a stilbene derivative, a pyrazoline derivative, and the like, and the electron transport layer is an oxadiazole derivative. Examples of the organic light emitting layer include a condensed polycyclic aromatic hydrocarbon dye, a condensed polycyclic dye containing a hetero atom such as O, N and S, and a metal complex dye. Examples thereof include perinone derivatives, quinoline complex derivatives, thiadiazolopyridine derivatives, tetraphenylbutadienes, bisstyrylbenzene derivatives and the like (JP-A-1-245087, JP-A-2-88689, JP-A-2-88689).
50292, 2-261889).

【0009】ダイヤモンド様薄膜を形成するためのイオ
ン化蒸着法は特開平1−234396号、同1−234
396号等で周知であり、低分子量炭化水素ガスを熱フ
ィラメントで熱分解し同時に電界を加えてイオン化し、
蒸着基板との間で加速電界を加えて加速し、基板上にダ
イヤモンドを析出させる。この方法によるとビッカース
硬度Hvが保護目的に適する約3000〜8000kg
/mm2 の比較的大きい硬度で緻密な膜が得られる。3
000kg/mm2 未満では緻密性に欠けるので酸素や
水分の遮蔽が十分でない。また8000kg/mm2
成膜可能な上限である。
The ionization vapor deposition method for forming a diamond-like thin film is described in JP-A-1-234396 and 1-234.
No. 396, etc., a low molecular weight hydrocarbon gas is thermally decomposed with a hot filament and at the same time an electric field is applied to ionize it.
An acceleration electric field is applied between the vapor deposition substrate and the substrate to accelerate the deposition and deposit diamond on the substrate. According to this method, the Vickers hardness Hv is about 3000 to 8000 kg suitable for protection purposes.
A dense film can be obtained with a relatively large hardness of / mm 2 . Three
If it is less than 000 kg / mm 2 , the denseness is insufficient, so that the shielding of oxygen and water is not sufficient. 8000 kg / mm 2 is the upper limit of film formation.

【0010】[0010]

【実施例の説明】以下に実施例を説明する。以下の例で
は図2の構成に従いガラス基板の面にITO層(インジ
ウム−錫合金層)、トリフェニルジアミン誘導体よりな
る正孔輸送層、トリキノリンオキサイド−アルミニウム
錯体よりなる有機発光層を形成し、更に負電極としてM
g−Ag合金膜を形成した後、ダイヤモンド様薄膜をこ
れらの層の面に成膜した。成膜は、真空室を10-6To
rrに排気してからメタンガスを導入しガス圧を10-1
Torrとし、フィラメント電流If=25A、基体電
圧Va=−500V、フィラメント電圧Vd=−30
V、電磁コイルの磁束密度400ガウスの条件で成膜を
行った。フィラメントはコイル状としその幅3mm、そ
の周りを取り囲む陽極電極との隙間8mmとした。比較
のため、従来の熱硬化性エポキシ樹脂被覆の場合を併記
する。耐久性を大気中にて25℃、50%RHの条件で
輝度が100cd/m2 以上が得られる時間長を測定し
た。また水分透過性をJIS Z0208に規定された
条件で試験した。比較例を100とした場合の相対評価
を表1に示す。
Description of Embodiments Embodiments will be described below. In the following example, an ITO layer (indium-tin alloy layer), a hole transport layer made of a triphenyldiamine derivative, and an organic light-emitting layer made of a triquinoline oxide-aluminum complex are formed on the surface of a glass substrate according to the configuration of FIG. Furthermore, as a negative electrode, M
After forming the g-Ag alloy film, diamond-like thin films were formed on the surfaces of these layers. The film is formed in a vacuum chamber at 10 -6 To
After exhausting to rr, introduce methane gas and adjust the gas pressure to 10 -1.
Torr, filament current If = 25 A, substrate voltage Va = -500 V, filament voltage Vd = -30
The film formation was performed under the conditions of V and the magnetic flux density of the electromagnetic coil of 400 gauss. The filament had a coil shape with a width of 3 mm and a gap of 8 mm with the surrounding anode electrode. For comparison, the case of the conventional thermosetting epoxy resin coating is also shown. The durability was measured in the atmosphere under the conditions of 25 ° C. and 50% RH, and the time length over which a luminance of 100 cd / m 2 or more was obtained was measured. Further, the water permeability was tested under the conditions specified in JIS Z0208. Table 1 shows the relative evaluation when the comparative example was set to 100.

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【発明の効果】本発明によると、有機電界発光素子が保
護され、耐久性の向上及び水分透過性の低下が達成でき
た。耐久性の向上は有機電界発光素子が水分や酸素等の
影響を受けないほか、ダイヤモンド様薄膜の保護膜が熱
伝導性が良いことと電極の剥離を抑えることが出来たこ
とによる。
According to the present invention, the organic electroluminescent device is protected, and the durability and the moisture permeability can be improved. The improvement in durability is due to the fact that the organic electroluminescent element is not affected by moisture, oxygen, etc., and that the diamond-like thin protective film has good thermal conductivity and that peeling of the electrode can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】有機電界発光素子の構成の一例を示す断面図で
ある。
FIG. 1 is a cross-sectional view showing an example of the configuration of an organic electroluminescent device.

【図2】本発明の実施例を説明する図である。FIG. 2 is a diagram illustrating an example of the present invention.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 透明正電極 3 正孔輸送層 4 有機発光層 5 電子輸送層 8 ダイヤモンド様薄膜による保護膜 1 Glass Substrate 2 Transparent Positive Electrode 3 Hole Transport Layer 4 Organic Light Emitting Layer 5 Electron Transport Layer 8 Diamond-like Thin Film Protective Film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中山 正俊 東京都中央区日本橋一丁目13番1号テイー デイーケイ株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Masatoshi Nakayama 1-13-1 Nihonbashi, Chuo-ku, Tokyo TDK Corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 有機発光層、正孔輸送層、電子輸送層又
は電極である基体層の表面に、ビッカース硬度3000
〜8000kg/mm2 以上のダイヤモンド様薄膜を形
成したことを特徴とする有機電界発光素子。
1. A Vickers hardness of 3000 is formed on the surface of a substrate layer which is an organic light emitting layer, a hole transport layer, an electron transport layer or an electrode.
An organic electroluminescence device characterized in that a diamond-like thin film of 8000 kg / mm 2 or more is formed.
【請求項2】 少なくとも一方が透明である一対の電極
の間に有機発光層、正孔輸送層、及び電子輸送層を設け
た有機電界発光素子において、前記有機発光層、正孔輸
送層、電子輸送層、及び電極の露出する部分に、ビッカ
ース硬度3000〜8000kg/mm2 以上のイオン
化蒸着法によるダイヤモンド様薄膜を形成したことを特
徴とする有機電界発光素子。
2. An organic electroluminescent device comprising an organic light emitting layer, a hole transport layer, and an electron transport layer provided between a pair of electrodes, at least one of which is transparent, wherein the organic light emitting layer, the hole transport layer, and the electron. An organic electroluminescent device comprising a diamond-like thin film having a Vickers hardness of 3000 to 8000 kg / mm 2 and formed by an ionization deposition method on the exposed portion of the transport layer and the electrode.
【請求項3】有機発光層、正孔輸送層、または電子輸送
層である基体層の表面に、ビッカース硬度3000〜8
000kg/mm2 以上のダイヤモンド様薄膜を成膜す
ることを特徴とする有機電界発光素子の保護方法。
3. Vickers hardness of 3000 to 8 on the surface of a substrate layer which is an organic light emitting layer, a hole transport layer or an electron transport layer.
A method for protecting an organic electroluminescence device, which comprises forming a diamond-like thin film of 000 kg / mm 2 or more.
【請求項4】 少なくとも一方が透明である一対の電極
の間に有機発光層、正孔輸送層、及び電子輸送層を設け
た有機電界発光素子において、前記有機発光層、正孔輸
送層、電子輸送層、及び電極の露出する全ての部分に、
ビッカース硬度3000〜8000kg/mm2 以上の
イオン化蒸着法によるダイヤモンド様薄膜を形成するこ
とを特徴とする有機電界発光素子の保護方法。
4. An organic electroluminescent device comprising an organic light emitting layer, a hole transporting layer, and an electron transporting layer between a pair of electrodes, at least one of which is transparent, wherein the organic light emitting layer, the hole transporting layer, and the electron are provided. On the transport layer and all exposed parts of the electrode,
A method for protecting an organic electroluminescence device, which comprises forming a diamond-like thin film having a Vickers hardness of 3000 to 8000 kg / mm 2 or more by an ionization vapor deposition method.
【請求項5】 ダイヤモンド様薄膜を形成する前に、前
記基体層の表面をプラズマ処理又は逆スパッタ処理した
後、空気に露呈することなく引き続いて前記基体層の表
面にダイヤモンド様薄膜を気相成膜することを特徴とす
る、請求項3又は4に記載の有機電界発光素子の保護方
法。
5. Before forming the diamond-like thin film, the surface of the base layer is plasma-treated or reverse-sputtered, and then the diamond-like thin film is vapor-phased on the surface of the base layer without being exposed to air. The method for protecting an organic electroluminescence device according to claim 3, wherein the organic electroluminescence device is protected by a film.
JP28725691A 1991-10-08 1991-10-08 Protection of electroluminescent element Expired - Fee Related JP3197305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28725691A JP3197305B2 (en) 1991-10-08 1991-10-08 Protection of electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28725691A JP3197305B2 (en) 1991-10-08 1991-10-08 Protection of electroluminescent element

Publications (2)

Publication Number Publication Date
JPH05101885A true JPH05101885A (en) 1993-04-23
JP3197305B2 JP3197305B2 (en) 2001-08-13

Family

ID=17715049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28725691A Expired - Fee Related JP3197305B2 (en) 1991-10-08 1991-10-08 Protection of electroluminescent element

Country Status (1)

Country Link
JP (1) JP3197305B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001524575A (en) * 1997-11-26 2001-12-04 ミネソタ マイニング アンド マニュファクチャリング カンパニー Diamond-like carbon coating on inorganic phosphor
JP2002093586A (en) * 2000-09-19 2002-03-29 Semiconductor Energy Lab Co Ltd Luminescence equipment and its producing method
JP2002158090A (en) * 2000-09-08 2002-05-31 Semiconductor Energy Lab Co Ltd Light-emitting device, its production method and thin film forming device
JP2002208477A (en) * 2000-11-10 2002-07-26 Semiconductor Energy Lab Co Ltd Light emission device
US6555253B2 (en) 1997-05-08 2003-04-29 Sanyo Electric Co., Ltd. Organic electroluminescent device
KR20030036089A (en) * 2001-11-02 2003-05-09 세이코 엡슨 가부시키가이샤 Electro-optical device, manufacturing method thereof and electronic equipment
US6583557B2 (en) 2000-04-26 2003-06-24 Canon Kabushiki Kaisha Organic luminescent element
WO2007023789A1 (en) * 2005-08-25 2007-03-01 Tokki Corporation Organic el device
JP2007188890A (en) * 1999-06-04 2007-07-26 Semiconductor Energy Lab Co Ltd Manufacturing method of electro-optical device
US7462372B2 (en) * 2000-09-08 2008-12-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, method of manufacturing the same, and thin film forming apparatus
US7633223B2 (en) 2000-11-10 2009-12-15 Semiconductor Energy Laboratory Co., Ltd. Organic light emitting device provided with drying agent at side surfaces of a sealing member
US7854640B2 (en) 2000-08-04 2010-12-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method therefor
US8890172B2 (en) 1999-06-04 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing an electro-optical device
JP2014239252A (en) * 1999-09-17 2014-12-18 株式会社半導体エネルギー研究所 Light-emitting device
CN110117731A (en) * 2019-05-17 2019-08-13 北京科技大学 A kind of preparation method of superelevation thermal conductivity diamond particles reinforced aluminum matrix composites

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6555253B2 (en) 1997-05-08 2003-04-29 Sanyo Electric Co., Ltd. Organic electroluminescent device
US6743526B2 (en) 1997-05-08 2004-06-01 Sanyo Electric Co., Ltd. Organic electroluminescent device
JP2001524575A (en) * 1997-11-26 2001-12-04 ミネソタ マイニング アンド マニュファクチャリング カンパニー Diamond-like carbon coating on inorganic phosphor
US9293726B2 (en) 1999-06-04 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing an electro-optical device
JP2007188890A (en) * 1999-06-04 2007-07-26 Semiconductor Energy Lab Co Ltd Manufacturing method of electro-optical device
US8890172B2 (en) 1999-06-04 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing an electro-optical device
US9735218B2 (en) 1999-09-17 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. EL display device and method for manufacturing the same
US9431470B2 (en) 1999-09-17 2016-08-30 Semiconductor Energy Laboratory Co., Ltd. Display device
US9059049B2 (en) 1999-09-17 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. EL display device
JP2014239252A (en) * 1999-09-17 2014-12-18 株式会社半導体エネルギー研究所 Light-emitting device
US6583557B2 (en) 2000-04-26 2003-06-24 Canon Kabushiki Kaisha Organic luminescent element
US7854640B2 (en) 2000-08-04 2010-12-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method therefor
US7462372B2 (en) * 2000-09-08 2008-12-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, method of manufacturing the same, and thin film forming apparatus
US7744949B2 (en) 2000-09-08 2010-06-29 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing method thereof and thin film forming apparatus
JP2002158090A (en) * 2000-09-08 2002-05-31 Semiconductor Energy Lab Co Ltd Light-emitting device, its production method and thin film forming device
JP2002093586A (en) * 2000-09-19 2002-03-29 Semiconductor Energy Lab Co Ltd Luminescence equipment and its producing method
US7633223B2 (en) 2000-11-10 2009-12-15 Semiconductor Energy Laboratory Co., Ltd. Organic light emitting device provided with drying agent at side surfaces of a sealing member
JP2002208477A (en) * 2000-11-10 2002-07-26 Semiconductor Energy Lab Co Ltd Light emission device
KR20030036089A (en) * 2001-11-02 2003-05-09 세이코 엡슨 가부시키가이샤 Electro-optical device, manufacturing method thereof and electronic equipment
WO2007023789A1 (en) * 2005-08-25 2007-03-01 Tokki Corporation Organic el device
CN110117731A (en) * 2019-05-17 2019-08-13 北京科技大学 A kind of preparation method of superelevation thermal conductivity diamond particles reinforced aluminum matrix composites

Also Published As

Publication number Publication date
JP3197305B2 (en) 2001-08-13

Similar Documents

Publication Publication Date Title
JP3524711B2 (en) Organic electroluminescence device and method of manufacturing the same
US6794278B2 (en) Method for producing organic thin-film device by use of facing-targets-type sputtering apparatus
JP3197305B2 (en) Protection of electroluminescent element
US6551725B2 (en) Inorganic buffer structure for organic light-emitting diode devices
TW497283B (en) Improved cathode layer in organic light-emitting diode devices
Ding et al. Modification of the hole injection barrier in organic light-emitting devices studied by ultraviolet photoelectron spectroscopy
US20020011782A1 (en) Organic electroluminescent device with improved hole injecting structure
JP2003115387A (en) Organic light emitting element and its manufacturing method
JP3197306B2 (en) Protection of electroluminescent element
JP2002033186A (en) Organic light emitting device
JPH08185982A (en) Organic electroluminescent device
JPH10255987A (en) Manufacturing method of organic EL element
JP2003217845A (en) Manufacturing method for light emitting device
JP3231816B2 (en) Electrode manufacturing method for electroluminescent device
JP2004152590A (en) Organic electroluminescent element
JP2000223265A (en) Light-emitting device
JP4507305B2 (en) Organic EL device and method for manufacturing the same
JP3856510B2 (en) Manufacturing method of organic EL element
KR100787460B1 (en) Method for manufacturing organic light emitting device and organic light emitting device manufactured thereby
JP2000208253A (en) Organic electroluminescent element and manufacture thereof
KR100806704B1 (en) Method for forming transparent conductive electrode for organic electroluminescent device
JP3172555B2 (en) Electrode manufacturing method for electroluminescent device
JP3868061B2 (en) Organic electroluminescence device
JP2001326070A (en) Organic EL device
Kho et al. Effects of N2 plasma treatment of the Al bottom cathode on the characteristics of top-emission-inverted organic-light-emitting diodes

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010515

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080608

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees