JPH0510052B2 - - Google Patents
Info
- Publication number
- JPH0510052B2 JPH0510052B2 JP60083960A JP8396085A JPH0510052B2 JP H0510052 B2 JPH0510052 B2 JP H0510052B2 JP 60083960 A JP60083960 A JP 60083960A JP 8396085 A JP8396085 A JP 8396085A JP H0510052 B2 JPH0510052 B2 JP H0510052B2
- Authority
- JP
- Japan
- Prior art keywords
- dough
- temperature
- bread
- kneading
- fermentation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 235000008429 bread Nutrition 0.000 claims description 27
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 26
- 238000004898 kneading Methods 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 15
- 230000002745 absorbent Effects 0.000 claims description 13
- 239000002250 absorbent Substances 0.000 claims description 13
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 13
- 239000001569 carbon dioxide Substances 0.000 claims description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 238000004321 preservation Methods 0.000 claims 1
- 238000000855 fermentation Methods 0.000 description 23
- 230000004151 fermentation Effects 0.000 description 23
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 12
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 12
- 239000002994 raw material Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 239000000796 flavoring agent Substances 0.000 description 8
- 235000019634 flavors Nutrition 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 235000012471 refrigerated dough Nutrition 0.000 description 7
- 235000013312 flour Nutrition 0.000 description 6
- 235000012470 frozen dough Nutrition 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 238000007710 freezing Methods 0.000 description 4
- 230000008014 freezing Effects 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 230000008961 swelling Effects 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 235000014594 pastries Nutrition 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- 241000394761 Blumea lacera Species 0.000 description 1
- 240000001548 Camellia japonica Species 0.000 description 1
- 108010068370 Glutens Proteins 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 235000014121 butter Nutrition 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 235000018597 common camellia Nutrition 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000010855 food raising agent Nutrition 0.000 description 1
- 230000007914 freezing tolerance Effects 0.000 description 1
- 235000021312 gluten Nutrition 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 235000012830 plain croissants Nutrition 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 235000012794 white bread Nutrition 0.000 description 1
Landscapes
- Bakery Products And Manufacturing Methods Therefor (AREA)
Description
〔産業上の利用分野〕
本発明は、イースト発酵によるパン生地の冷蔵
保存法に関し、更に詳しくは、温度5〜−5℃、
特に、いわゆる「氷温」下で少なくとも4〜5週
間保存可能であり、保存後の焼成により、テクス
チユア、風味、外観において、常法即ち、保存期
間を経ずに焼き上げた高品質のパンと同等以上の
品質のパンを提供可能なパン類生地の保存法に関
する。
〔従来の技術〕
パン生地の製造法には、大別して、直捏法と中
種法とがある。直捏法は、前処理した原料を29℃
付近に混捏し、一時発酵后ガス抜きを行ない分
割、丸め、型詰め等々成形し2次発酵をへて仕上
げる工程が標準であり、中種法は、前処理した中
種原料を24〜25℃付近に混捏し、発酵させた中種
生地に残りの原料を加えて27〜28℃付近に混捏し
た本捏生地を発酵後仕上げる工程が一般的であ
る。
従来、直捏法、中種法のいずれも発酵条件は、
生地の混捏温度、即ち、27〜29℃程度を保持し、
かつ、湿度約75%で所定時間行われ、更にガス抜
き成形工程を経た生地は、2次発酵を行つて焼き
上げられており、特に発酵条件は、製品品質を大
きく左右するため、熟練と厳重な管理とを必要と
されている。
一方、近年、いわゆる焼きたてのパンに対する
需要が高まつており、家庭における製パンも普及
している。このような需要に応じるべく、冷凍或
いは冷蔵生地等の保存生地が市販されているが、
従来の保存パン生地は、以下の如き種々の問題点
を抱えている。
1 冷凍生地
パン原料を混捏した後、若干の発酵を行うか又
は発酵を行わずに冷凍保存する生地をいうが、パ
ン酵母の冷凍耐性が低く、従つて、焼成した製品
の比容が低い。これに対応するために、冷凍耐性
の高い酵母を用いる方法(特公昭59−25584、特
開昭59−203441、特開昭59−203442等)、パン酵
母を油脂と混合して用いる方法(特公昭59−
48608)等が提案されているが、常用の非冷凍生
地に比べ、焼き上げた製品の品質は必ずしも満足
できないことに加え、冷凍に要するエネルギーコ
ストの増加、冷凍生地の解凍焼成に要する時間が
長い等の欠点を有する。
2 冷蔵生地
イースト発酵生地の冷蔵は、その発酵条件管理
の困難さから、中種をせいぜい3日間位まで冷蔵
するのが限度であり、従つて、冷蔵生地として
は、化学膨剤による生地を容器等により圧力管理
し、保存性を持たせたもの等が一般的である。し
かしながら、パンにおけるパン様のテクスチユ
ア、風味等を得るには、酵母による発酵の関与す
るところが大きく、化学膨剤により、従来のパン
の品質を達成することは極めて困難である。従つ
て、エネルギーコスト、保存後の迅速な製品化等
の観点において、明らかなメリツトがあるにもか
かわらず、冷凍ドウに比べ冷蔵ドウの普及は遅れ
ているのが現状である。
〔発明が解決しようとする問題点〕
本発明は、温度その他の発酵〜保存条件管理の
困難さ等に由来する、発酵の過剰又は不足による
テクスチユアの劣化、風味の劣化に代表される冷
蔵生地の問題点を解決し、冷蔵保存で少なくとも
4〜5週間のシエルライフを有し、保存後の焼成
により、常法の生の生地を焼き上げたと同等の乃
至はそれ以上のテクスチユア、風味、外観を有す
るパン生地を得ることを目的とする。
〔問題点を解決するための手段〕
本発明者らは、上記パン生地の冷蔵保存におけ
る問題点を解決すべく鋭意研究を重ねた結果、パ
ン生地を25℃以下の温度で捏ね上げ、炭酸ガス吸
収剤の存在下で5〜−5℃で保存することによ
り、上記課題が達成できるとの知見に至り、本発
明を完成したものである。
本発明においては、直捏法乃至は中種法によ
り、生地を混捏・発酵させるが、混捏及び発酵
(一次発酵)の条件は各々25℃以下(ただし、中
種法においては本捏生地の品温)及び5〜−5℃
の低温下で行う。
混捏温度は、原料の品温、混捏時の温度管理等
により変化するが、概ね、主原料である水(及
び/又は牛乳その他の水分)と粉体(小麦粉及び
その他の穀粉等)との組成比、混捏中の温度変化
等の要素により定まる。本発明における混捏は、
混捏終了時の生地の品温が25℃以下、好ましく
は、10〜25℃となるように設定する必要がある
が、具体例として、直捏法では混捏開始時の原料
品温と混捏中の温度変化を次式等により求めるこ
とができる。
(水:粉体=a:bを主原料とする生地)
W=(D−U)×b/a−F
W:水温、D:捏ね水の温度、U:混捏による
温度変化、F:粉体の温度、
従つて、一般に室温下(15〜20℃)で保存した
粉体原料の使用において、混捏時添加する水の温
度が25℃以下好ましくは10〜25℃であれば、混捏
時の温度上昇を加味しても、捏ね上り時の品温
は、本発明の範囲に設定できる。一方、中種法の
場合には、中種生地の品温が与える影響が大であ
り、中種生地の品温と添加する残りの副原料の温
度との関係で水温を設定すればよい。勿論、主原
料の保存温度等により添加する水の温度を調整す
るその他各種の例が存在する。
混捏終了時の生地の品温が10℃より低温の場
合、1週間程度の短期間保存では当初の膨化は不
十分であるが、5〜−5℃の冷蔵保存により若干
の発酵が進行し、一応の商品価値を備えた冷蔵生
地として提供できる。
混捏終了時の生地の品温が25℃より高温では炭
酸ガスの発生量が多くなり、炭酸ガス吸収剤の存
在下で5〜−5℃の冷蔵保存を行つても、膨化力
の長期間の保存は困難であり、シエルフライフは
短くなる。
一方、生地品温を10〜25℃に捏ね上げた場合に
は、混捏終了時の膨化状態は、従来法による場合
とさほど変わらないが、5〜−5℃の冷蔵保存に
おいて一次発酵が進行し、2週間程度経過後に膨
化がピークに達する。従つて、2〜3週間の保存
では非冷蔵の従来法の生地と同等以上の製品が得
られ、4週間を経過しても、商品価値が失われな
いが、冷蔵に際し、炭酸ガス吸収剤を共存させる
ことにより、更にシエルフライフが延長可能で、
5週間を経過しても、従来法の生地と同等の品質
の製品が取得できる。
本発明において使用する炭酸ガス吸収剤は常用
のものであればその種類の如何を問わず用いるこ
とができる。具体的には、例えば、「AGELESS
C」(三菱瓦斯化学(株)製)、鮮度保持剤C−CVタ
イプ(凸版印刷(株)製)等が挙げられる。炭酸ガス
吸収剤は混捏を終了した生地と共に、容器・包材
等に封入すればよくその使用量も、常用の範囲、
吸収量3〜15ml/g程度でよい。
また、本発明においては、常用の酸素吸収剤を
炭酸ガスである吸収剤と併用することにより、更
に好ましい結果が得られる。
混捏は、常法に従い、全部の原料を生地中へ均
一に分散させ、かつ、グルテンを十分に形成させ
るように行う。
混捏を終了した生地は、好ましくは直ちに冷却
し、温度5〜−5℃、より好ましくは−3℃付近
で保存し、この保存中に一次発酵を段階的に進行
させる。尚、10℃以下の混捏終了温度の場合に
は、冷却前に予め一次発酵を行うことも可能であ
るが、品質的には直ちに冷却したものに劣る。
冷蔵保存温度は5〜−5℃である。この温度範
囲は、いわゆる「氷温」領域を含み、食品は半凍
結状態にあるのが一般的である。生地の保存温度
が5℃より高いと発酵が進みすぎ風味劣化の原因
になると共に微生物的にも悪い状態となる。ま
た、−5℃より低い場合、保存中の熟成が抑制さ
れ、部分凍結等を生じ、生地にムラが生じ充分な
風味が得難く、又、膨化し難い。
本発明の対象となるパン類としては、食パン、
バケツト、バタール、ガレツト、グラハムブレツ
ド、ライブレツド、バターロール、バンズ、グリ
ツシーニ、クロワツサン、ブリオツシユ、ペイス
トリーその他イースト発酵によるものであればす
べて含まれるが、特に、従来保存生地としても提
供が困難であつたリーンブレツド類についてもリ
ツチブレツド類と同様に、高品質の保存生地とし
て提供し得る点が本発明の特徴である。
従つて、原料配合等についても目的とするパン
類に応じて選択すればよく特に限定はない。使用
パン酵母についても制限はないが、パン風味、香
気等の品質並びに操作性の点からは、生イースト
に比べ、ドライイーストの方が良好な結果が得ら
れる。
本発明の冷蔵生地を保存後焼成する場合、冷蔵
室からとり出した生地を二次発酵させ、オーブ
ン、蒸し器、フライヤー等で加熱焼成する。二次
発酵の条件は、一般的には、温度27〜38℃、湿度
65〜85%の雰囲気で30〜60分間程度で十分であ
る。
〔発明の効果〕
本発明は、生地原料を温度25℃以下、好ましく
は10〜25℃で混捏後、炭酸ガス吸収剤の存在下で
5〜−5℃で保存することにより、低温下で変販
等の原因となる雑菌等の増殖を抑制する一方、イ
ーストによる発酵を促し、4〜5週間以上に亘つ
て、常法による製造直後のパンと同等以上の膨化
後、テクスチユア、風味を有するパン生地が得ら
れる。
さらに+5〜−5℃に保存することにより、炭
酸ガスの発生があり包装容器の膨張が見られる。
それらを解決するために、ガス透過性のある容器
のくふうが必要であつたが、炭酸ガス吸収剤を封
入することにより簡便にその膨張を防止すること
ができる。
次に、実施例により本発明を更に説明する。
実施例 1
生地の配合
強力粉(「カメリア」日本製粉(株)製) 1Kg
食 塩 15g
砂 糖 50g
ドライイースト 15g
水 580cc
上記配合に従い、強力粉、食塩、砂糖及びドラ
イイーストを秤量し、ホバートミキサー(低速
度)で1.5分間混合した(品温15℃)。この粉体混
合物に、温度各20℃及び40℃の水を添加し、ホバ
ートミキサー中で低速度で4.5分間及び中速度に
切り替えて6分間混捏し、品温が各15℃及び30℃
の生地を得た。
得られた2種類の生地を各2等分し、各品温の
生地について、炭酸ガス吸収剤「AGELESS C」
(三菱瓦斯化学(株)製)を封入したものと、無封入
のものとを調整し、−3℃で5週間保存し、保存
中における生地の変化、ガス発生量を測定し、評
価した。なお、包装容器はガス透過性のないレト
ルトアルミパウチを使用したヒートシールで密封
した。結果を第1表に示す。
[Industrial Application Field] The present invention relates to a method for refrigerating bread dough by yeast fermentation, and more specifically, at a temperature of 5 to -5°C,
In particular, it can be stored for at least 4 to 5 weeks at so-called "ice temperature", and by baking after storage, the texture, flavor, and appearance are comparable to high-quality bread baked by the conventional method, that is, without a shelf life. This invention relates to a method for preserving bread dough that can provide bread of the above quality. [Prior Art] Bread dough manufacturing methods can be broadly classified into the direct kneading method and the dough method. In the direct kneading method, pretreated raw materials are heated to 29°C.
The standard process is to knead the dough, temporarily ferment it, degas it, divide it, round it, fill it into molds, etc., and then finish it after a secondary fermentation. A common process is to add the remaining raw materials to the medium-dough dough that has been kneaded and fermented, and then knead the dough at around 27 to 28°C, which is then finished after fermentation. Conventionally, the fermentation conditions for both the direct kneading method and the medium dough method are as follows:
Maintain the kneading temperature of the dough, that is, around 27-29℃,
In addition, the dough is processed for a specified period of time at a humidity of about 75%, and the dough is then subjected to a degassing forming process, which undergoes secondary fermentation and is baked.The fermentation conditions in particular have a great influence on product quality, so they must be highly skilled and rigorous. Management is needed. On the other hand, in recent years, the demand for so-called freshly baked bread has been increasing, and bread making at home has become popular. In order to meet this demand, preserved dough such as frozen or refrigerated dough is commercially available.
Conventional preserved bread dough has various problems as described below. 1. Frozen dough This refers to dough that is kneaded with bread ingredients and then subjected to some fermentation or frozen storage without fermentation.Baker's yeast has low freezing resistance, and therefore the baked product has a low specific volume. In order to cope with this, methods using yeast with high freezing tolerance (Japanese Patent Publication No. 59-25584, Japanese Patent Application Publication No. 59-203441, Japanese Patent Application Publication No. 59-203442, etc.), methods using baker's yeast mixed with fats and oils (Japanese Patent Publication No. 59-25584, Japanese Patent Application Publication No. 59-203442, etc.), Kosho 59-
48608) have been proposed, but the quality of the baked product is not necessarily satisfactory compared to conventional non-frozen dough, and in addition, the energy cost required for freezing increases, and the time required to thaw and bake frozen dough is long. It has the following disadvantages. 2. Refrigerated dough Due to the difficulty of controlling the fermentation conditions, refrigerating yeast-fermented dough is limited to refrigerating the middle dough for at most three days. Commonly used products are those that are pressure-controlled and have a long shelf life. However, in order to obtain the bread-like texture, flavor, etc. of bread, fermentation by yeast is largely involved, and it is extremely difficult to achieve the quality of conventional bread using chemical leavening agents. Therefore, although there are clear advantages in terms of energy costs and rapid commercialization after storage, the popularity of refrigerated dough is currently slower than that of frozen dough. [Problems to be Solved by the Invention] The present invention solves the problem of texture deterioration and flavor deterioration due to excessive or insufficient fermentation of refrigerated dough due to difficulties in controlling temperature and other fermentation to storage conditions. Solve the problem, have a shell life of at least 4 to 5 weeks when stored in a refrigerator, and when baked after storage, have a texture, flavor, and appearance that are equivalent to or better than those obtained by baking conventional raw dough. The purpose is to obtain bread dough. [Means for Solving the Problems] As a result of intensive research in order to solve the above-mentioned problems in refrigerated storage of bread dough, the present inventors kneaded the bread dough at a temperature of 25°C or less and added carbon dioxide absorbent to the dough. The present invention has been completed based on the finding that the above object can be achieved by storing the product at 5 to -5°C in the presence of. In the present invention, the dough is kneaded and fermented by the direct kneading method or the dough method, but the conditions for kneading and fermentation (primary fermentation) are each below 25°C (however, in the dough method, the quality of the dough is temperature) and 5 to -5℃
Perform at low temperature. The kneading temperature varies depending on the temperature of the raw materials, temperature control during kneading, etc., but it generally depends on the composition of the main raw materials, water (and/or milk and other moisture) and powder (wheat flour and other grain flour, etc.) It is determined by factors such as ratio and temperature change during kneading. The kneading in the present invention is
It is necessary to set the temperature of the dough at the end of kneading to be 25℃ or less, preferably 10 to 25℃, but as a specific example, in the direct kneading method, the temperature of the raw materials at the start of kneading and the temperature during kneading are The temperature change can be determined by the following equation, etc. (Water: Powder = a: Dough made from b as the main raw material) W = (D-U) x b/a-F W: Water temperature, D: Temperature of kneading water, U: Temperature change due to kneading, F: Flour Therefore, when using powder raw materials stored at room temperature (15-20℃), if the temperature of the water added during kneading is 25℃ or less, preferably 10-25℃, the Even taking into account the temperature rise, the product temperature during kneading can be set within the range of the present invention. On the other hand, in the case of the filling method, the temperature of the filling dough has a large influence, and the water temperature may be set based on the relationship between the temperature of the filling dough and the temperature of the remaining auxiliary materials to be added. Of course, there are various other examples in which the temperature of the added water is adjusted depending on the storage temperature of the main raw material, etc. If the temperature of the dough at the end of kneading is lower than 10℃, the initial swelling will not be sufficient if stored for a short period of about one week, but some fermentation will progress if stored refrigerated at 5 to -5℃. It can be provided as refrigerated dough with some commercial value. If the temperature of the dough at the end of kneading is higher than 25°C, the amount of carbon dioxide gas generated will increase, and even if it is refrigerated at 5 to -5°C in the presence of a carbon dioxide absorbent, the swelling power will not be maintained for a long time. Difficult to preserve and short shelf life. On the other hand, when kneading the dough at a temperature of 10 to 25°C, the state of swelling at the end of kneading is not much different from that of the conventional method, but primary fermentation progresses when kept refrigerated at 5 to -5°C. The swelling reaches its peak after about two weeks. Therefore, when stored for 2 to 3 weeks, a product that is equivalent to or better than the conventional non-refrigerated dough can be obtained, and even after 4 weeks, the product value is not lost. By allowing them to coexist, the shelf life can be further extended.
Even after 5 weeks, a product with the same quality as the conventional fabric can be obtained. As the carbon dioxide absorbent used in the present invention, any type of commonly used carbon dioxide absorbent can be used. Specifically, for example, "AGELESS
C'' (manufactured by Mitsubishi Gas Chemical Co., Ltd.), freshness preserving agent C-CV type (manufactured by Toppan Printing Co., Ltd.), and the like. The carbon dioxide absorbent can be sealed in a container, packaging material, etc. together with the dough that has been kneaded, and the amount used is within the range of regular use.
The absorption amount may be about 3 to 15 ml/g. Further, in the present invention, more preferable results can be obtained by using a commonly used oxygen absorbent together with an absorbent that is carbon dioxide gas. Kneading is carried out according to a conventional method so that all the ingredients are uniformly dispersed in the dough and gluten is sufficiently formed. The dough that has been kneaded is preferably immediately cooled and stored at a temperature of 5 to -5°C, more preferably around -3°C, and primary fermentation is allowed to proceed step by step during this storage. If the kneading end temperature is 10° C. or lower, it is possible to carry out primary fermentation before cooling, but the quality is inferior to that obtained by immediately cooling. Refrigerated storage temperature is 5 to -5°C. This temperature range includes the so-called "freezing temperature" region, where food is typically in a semi-frozen state. If the storage temperature of the dough is higher than 5°C, fermentation will proceed too much, causing flavor deterioration and also resulting in poor microbial conditions. If the temperature is lower than -5°C, ripening during storage is inhibited, partial freezing occurs, the dough becomes uneven, and it is difficult to obtain a sufficient flavor and it is difficult to expand. Breads to which the present invention applies include white bread,
This includes baguettes, batards, galettes, graham breads, live breads, butter rolls, buns, grissini, croissants, briolets, pastries, and other pastries made by yeast fermentation, but especially those that are traditionally difficult to provide as preserved dough. A feature of the present invention is that lean breads can also be provided as high-quality preserved dough in the same way as rich breads. Therefore, there are no particular limitations on the composition of raw materials, etc., as long as they are selected depending on the intended bread. Although there are no restrictions on the baker's yeast used, dry yeast provides better results than fresh yeast in terms of quality such as bread flavor and aroma as well as operability. When baking the refrigerated dough of the present invention after storage, the dough taken out from the refrigerator is subjected to secondary fermentation, and heated and baked in an oven, steamer, fryer, etc. The conditions for secondary fermentation are generally a temperature of 27-38℃ and a humidity of 27-38℃.
Approximately 30 to 60 minutes in an atmosphere of 65 to 85% is sufficient. [Effects of the Invention] The present invention allows dough raw materials to be kneaded at a temperature of 25°C or lower, preferably 10 to 25°C, and then stored at 5 to -5°C in the presence of a carbon dioxide absorbent, so that the material can be denatured at low temperatures. Bread dough that suppresses the growth of bacteria, etc. that cause sales, etc., while promoting fermentation by yeast, and has a texture and flavor that is equal to or higher than that of bread immediately after manufacturing by conventional methods over a period of 4 to 5 weeks. is obtained. Furthermore, when stored at +5 to -5°C, carbon dioxide gas is generated and the packaging container expands.
In order to solve these problems, it was necessary to create a gas-permeable container, but expansion can be easily prevented by enclosing a carbon dioxide absorbent. Next, the present invention will be further explained by examples. Example 1 Blend of dough Strong flour (“Camellia” manufactured by Nippon Flour Mills Co., Ltd.) 1 kg Salt 15 g Sugar 50 g Dry yeast 15 g Water 580 cc According to the above recipe, weighed strong flour, salt, sugar and dry yeast, and mixed them with a Hobart mixer (low The mixture was mixed for 1.5 minutes at a high speed (temperature: 15°C). Water at temperatures of 20°C and 40°C was added to this powder mixture, and mixed in a Hobart mixer at low speed for 4.5 minutes and then switched to medium speed for 6 minutes until the product temperature reached 15°C and 30°C, respectively.
I got some fabric. The two types of dough obtained were divided into two equal parts, and the dough of each temperature was treated with the carbon dioxide absorbent "AGELESS C".
(manufactured by Mitsubishi Gas Chemical Co., Ltd.) and those without were prepared and stored at -3°C for 5 weeks, and the changes in the dough and the amount of gas generated during storage were measured and evaluated. The packaging container was heat-sealed using a retort aluminum pouch with no gas permeability. The results are shown in Table 1.
【表】【table】
Claims (1)
度25℃以下で混捏後、冷却した生地を炭酸ガス吸
収剤の存在下温度5〜−5℃で保存することを特
徴とするパン類生地の冷蔵保存法。 2 生地の混捏温度が10〜25℃であることを特徴
とする特許請求の範囲第1項記載のパン類生地の
冷蔵保存法。 3 炭酸ガス吸収剤と共に酸素吸収剤の存在下で
あることを特徴とする特許請求の範囲第1項のパ
ン類生地の冷蔵保存法。[Claims] 1. A bread characterized in that when yeast-fermented bread dough is stored in a refrigerator, the dough is kneaded at a temperature of 25°C or lower, and then the cooled dough is stored at a temperature of 5 to -5°C in the presence of a carbon dioxide absorbent. How to refrigerate similar dough. 2. The method for refrigerating bread dough according to claim 1, wherein the kneading temperature of the dough is 10 to 25°C. 3. The refrigerated preservation method for bread dough according to claim 1, characterized in that the method is carried out in the presence of an oxygen absorbent as well as a carbon dioxide absorbent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60083960A JPS61242538A (en) | 1985-04-19 | 1985-04-19 | Method for refrigerating preservation of bread dough |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60083960A JPS61242538A (en) | 1985-04-19 | 1985-04-19 | Method for refrigerating preservation of bread dough |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61242538A JPS61242538A (en) | 1986-10-28 |
JPH0510052B2 true JPH0510052B2 (en) | 1993-02-08 |
Family
ID=13817130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60083960A Granted JPS61242538A (en) | 1985-04-19 | 1985-04-19 | Method for refrigerating preservation of bread dough |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61242538A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0353840A (en) * | 1989-07-20 | 1991-03-07 | Hoshino Bussan Kk | Method for stable storing dough of breads and rapid production of just baked breads |
-
1985
- 1985-04-19 JP JP60083960A patent/JPS61242538A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS61242538A (en) | 1986-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0114450B1 (en) | Frozen bread dough | |
US4788067A (en) | Preproofed, frozen and 84% baked, crusty bread and method of making same | |
US5167975A (en) | Frozen cream puff paste | |
Stauffer | Frozen dough production | |
CN112655734B (en) | Pre-proofed frozen dough and preparation method thereof | |
JPH0549384A (en) | Bread improver | |
US7175865B2 (en) | Method of producing frozen dough, and related products | |
JPS61195637A (en) | Production of breads | |
JPS5951978B2 (en) | Method for manufacturing frozen bread dough | |
JPH0510052B2 (en) | ||
JPH07322810A (en) | Preparation of bread | |
JPH1156221A (en) | Frozen medium seed dough, frozen bread dough and bread making method using the same | |
JP3367024B2 (en) | Thawing method of frozen baking bread and confectionery | |
SU1750568A1 (en) | Method for bakery articles production | |
RU2140159C1 (en) | Prolonged storage cake and method of preparing such cake | |
JPH1175671A (en) | Bread dough manufacturing method | |
JP4284134B2 (en) | Method for producing frozen or refrigerated dough for yeast fermented food and method for producing yeast fermented food using the dough | |
JP3536093B2 (en) | Refrigerated dough baking method and bread obtained by this method | |
JP2761666B2 (en) | Heating method of refrigerated bread dough | |
JPH09182555A (en) | Production of pizza crust | |
JP2010035507A (en) | Method for producing breads | |
JPS61231937A (en) | Manufacturing method for refrigerated bread dough | |
JP3089281B1 (en) | Remix straight method frozen dough baking method | |
US20110262594A1 (en) | Method for the production of bread | |
JPH02163031A (en) | How to mold and refrigerate bread dough |