[go: up one dir, main page]

JPH049919A - Method for driving opto-electrical device - Google Patents

Method for driving opto-electrical device

Info

Publication number
JPH049919A
JPH049919A JP2112972A JP11297290A JPH049919A JP H049919 A JPH049919 A JP H049919A JP 2112972 A JP2112972 A JP 2112972A JP 11297290 A JP11297290 A JP 11297290A JP H049919 A JPH049919 A JP H049919A
Authority
JP
Japan
Prior art keywords
data
period
driving
potential
electro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2112972A
Other languages
Japanese (ja)
Inventor
Takeshi Maeda
武 前田
Koji Iwasa
浩二 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2112972A priority Critical patent/JPH049919A/en
Publication of JPH049919A publication Critical patent/JPH049919A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PURPOSE:To average the variation of picture electrode potential in a non- selection period by diving a selection period into two periods, i.e. a data charging period and an average period, and controlling scanning signals and data signals. CONSTITUTION:Many driving electrodes 31a, 31b are successively selected in each pair from the high position, and during the selection period, data are charged by counter electrodes 32. In this case, the selection period is divided into two periods, i.e. the data charging period in the former half (latter half) period and the data averaging period in the latter half (former half) period, to control scanning signals and data signals. Consequently, the variation of the picture element electrode potential in the non-selection period is averaged, data inputted to one picture can be stored without being influenced by data inputted to another picture element and the restriction of the capacity ratio of a picture element part to an element part can be eased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は駆動用if極に添って並んだ各画素毎に画素
電極と非線形抵抗素子を有する電気光学装置の駆動方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for driving an electro-optical device having a pixel electrode and a nonlinear resistance element for each pixel arranged along a driving if pole.

〔発明の概要〕[Summary of the invention]

この発明は各画素電極と各画素電極毎に複数個設けられ
た非線形抵抗素子とが各画素電極を間にはさむようにし
て、隣接する2本の駆動用電極と接続されている電気光
学装置を、駆動するに当り、駆動用電極を1対ずつ線順
次に選択しながら駆動を行う方法において、選択期間を
前半と後半に分け、一方をデータの充電期間、他方をデ
ータの平均化期間として走査信号とデータ信号の制御を
行うことによって、非選択期間における画素電極電位の
変動を平均化し、一つの画素に入力したデータが他の画
素へ入力するデータの影響を受けずに保持されることが
可能となるとともに、画素部と素子部の容量比の制約が
ゆるくなるような電気光学装置の駆動方法を提供するも
のである。
The present invention provides an electro-optical device in which each pixel electrode and a plurality of nonlinear resistance elements provided for each pixel electrode are connected to two adjacent driving electrodes with each pixel electrode sandwiched therebetween. In this method, the selection period is divided into a first half and a second half, and one period is used as a data charging period, and the other period is used as a data averaging period to generate a scanning signal. By controlling the data signal and averaging the fluctuations in the pixel electrode potential during the non-selection period, it is possible to maintain the data input to one pixel without being affected by the data input to other pixels. In addition, the present invention provides a method for driving an electro-optical device in which restrictions on the capacitance ratio between a pixel portion and an element portion are relaxed.

〔従来の技術〕[Conventional technology]

薄型、軽量、低消費電力のデイスプレィパネルとして、
液晶表示パ享ルは優れた特徴を有しており、現在ラップ
トツブやブック型のパソコン等をはしめ多く用いられて
いる。その中でアクティフマトリノクス方式によるデイ
スプレィパネルは、表示情報量の増大化と高画質化が可
能な方法として注目を浴びている。アクティブ素子とし
ては、薄膜トランジスタなどを用いた三端子素子、MI
Mなどの非線形抵抗素子やPN接合薄膜ダイオードなど
に代表される二端子素子がある。
As a thin, lightweight, low power consumption display panel,
Liquid crystal display panels have excellent features and are currently widely used in laptops and book-type personal computers. Among these, display panels based on the actif matrix system are attracting attention as a method that can increase the amount of displayed information and improve image quality. Active elements include three-terminal elements using thin film transistors, MI
There are two-terminal elements such as nonlinear resistance elements such as M, and PN junction thin film diodes.

この中で、三端子素子は形成膜数が多いため工程は複雑
であり、歩留まりは悪く、コスト高になる欠点がある。
Among these, the three-terminal element has the disadvantage that the process is complicated due to the large number of formed films, the yield is low, and the cost is high.

また、ダイオードの場合は耐圧が低く、静電気に対して
弱いなどの問題がある。これに対し、非線形抵抗素子は
構造が単純で、耐圧も高くできるので、低コストで、大
面積表示パネルへの応用に有利である。
Additionally, diodes have problems such as low breakdown voltage and vulnerability to static electricity. On the other hand, nonlinear resistance elements have a simple structure and can have a high breakdown voltage, so they are low cost and advantageous for application to large-area display panels.

第3図fatは非線形抵抗素子を用いた電気光学装置と
のX−Yマトリックスパネル回路図であり、第3図(′
b)は装置の構造を示す一部断面図である。
Figure 3 fat is an X-Y matrix panel circuit diagram with an electro-optical device using a nonlinear resistance element, and Figure 3 ('
b) is a partial sectional view showing the structure of the device.

行電極(駆動用電極)31と列電極(対向電極)32は
基板B及び対向基板Aにそれぞれ通常100〜1000
本程形成される。x−y交差部には画素電極36と各画
素電極36毎に複数個の非線形抵抗素子34a、34b
を有し、それぞれ異なる2本の駆動用電Fi31a 、
 31 bに接続されている。そして、基板AB間には
電気光学材料33が保持されている。
The row electrodes (driving electrodes) 31 and the column electrodes (counter electrodes) 32 are usually 100 to 1000 on the substrate B and the counter substrate A, respectively.
It is formed during this process. At the x-y intersection, there is a pixel electrode 36 and a plurality of nonlinear resistance elements 34a, 34b for each pixel electrode 36.
and two different driving electric currents Fi31a,
31b. An electro-optic material 33 is held between the substrates AB.

この種のデイスプレィパネルの駆動は次のように行う。This type of display panel is driven as follows.

すなわち、第3図の多数の駆動用電極31a、31bを
一対ずつ上の方から線順次に選択し、その選択期間内に
対向電極32によってデータを充電する。第2図は従来
の電気光学装置の駆動波形を示したものであり、第2図
(alはn行目の画素電極に隣接する一対の行電極(駆
動用電極)へ加わる走査信号、第2図山)はn+1行目
の画素電極に隣接する一対の行電極(駆動用電極)へ加
わる走査信号、第2図(C1はn+2行目の画素電極に
隣接する一対の行電極(駆動用電極)へ加わる走査信号
、第2図(diは一つの列のすべての画素がONとなる
ときに列電極(対向電極)へ加わるデータ信号、第2図
te+は一つの列のn行目の画素がONで、残りのすべ
ての画素がOFFとなるときに列電極(対向電極)へ加
わるデータ信号を示す図である。
That is, a large number of drive electrodes 31a and 31b shown in FIG. 3 are selected one pair at a time from the top in line order, and data is charged by the counter electrode 32 within the selection period. FIG. 2 shows a driving waveform of a conventional electro-optical device. Figure 2) shows a scanning signal applied to a pair of row electrodes (driving electrodes) adjacent to the pixel electrode in the n+1st row; ), Figure 2 (di is the data signal applied to the column electrode (counter electrode) when all pixels in one column are turned on, Figure 2 te+ is the n-th pixel in one column) FIG. 4 is a diagram showing a data signal applied to a column electrode (counter electrode) when the pixel is ON and all remaining pixels are OFF.

第2図fa)〜iclにおいて、駆動用電極31が一対
ずつ線順次に選択されていく様子が示されている。そし
て、一対のうちの一方の駆動用電極31aの電位は、表
示選択期間には■。に保たれ、選択期間において■。+
Vo、に立ち上がる。他方の駆動用電極31bは非選択
期間にV。1選択期間に■。−7吋の電位となる。従っ
て、一対の非線形抵抗素子34aと34bの両端(第3
図farに示すH,H間)にかかる電圧は非選択期間が
0、選択期間が2Vorとなり、VOPとして適当な値
をとることにより、非線形抵抗素子がスイッチとして働
くようになる。
2 fa) to icl show how the driving electrodes 31 are selected line-sequentially pair by pair. The potential of one of the pair of driving electrodes 31a is ■ during the display selection period. ■ during the selected period. +
Stand up to Vo. The other driving electrode 31b is at V during the non-selection period. ■ in 1 selection period. The potential is -7 inches. Therefore, both ends of the pair of nonlinear resistance elements 34a and 34b (the third
The voltage applied between H and H shown in FIG.

また、一対の非線形抵抗素子34aと34bは極めて近
傍に配置されているため、その特性はほぼ同一であると
考えてよく、画素電極36の電位は選択期間、非選択期
間とともにVoを中心として動くことになる。表示する
データは、画素電極36と対向電極32の電位差で決ま
るので、対向電極32の電位をvoを基準にして、デー
タに対応する分だけ変えてやれば、任意の表示が可能と
なり、グレースケールなども比較的容易に出せる。さら
に、このような駆動方法においてはデータ信号は非線形
抵抗素子の特性と独立しているため、素子特性に多少の
ばらつきや経時変化があったとしても、■。。
Furthermore, since the pair of nonlinear resistance elements 34a and 34b are arranged very close to each other, their characteristics can be considered to be almost the same, and the potential of the pixel electrode 36 moves around Vo during the selection period and the non-selection period. It turns out. The data to be displayed is determined by the potential difference between the pixel electrode 36 and the counter electrode 32, so by changing the potential of the counter electrode 32 by an amount corresponding to the data with vo as a reference, arbitrary display is possible, and grayscale etc. can be produced relatively easily. Furthermore, in such a driving method, the data signal is independent of the characteristics of the nonlinear resistance element, so even if there is some variation or change over time in the element characteristics, (2). .

を十分大きくとっておけば安定な駆動ができる。If it is made large enough, stable driving can be achieved.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように各画素ごとに非線形抵抗素子を複数個用いた
デイスプレィパネルでは、表示の大容量化と高画質化が
可能となるが、−本の対向電極を多数の画素が強誘して
いるため、一つの画素に充電された電荷は非選択期間に
同じ列の他の画素に書き込まれるデータによって放電量
が異なってくる。
Display panels that use multiple nonlinear resistance elements for each pixel in this way enable larger display capacity and higher image quality, but - the large number of pixels forces the opposite electrode of the book. Therefore, the amount of charge charged in one pixel varies depending on the data written to other pixels in the same column during the non-selection period.

第2図(dl、 (elから明らかなように、n行目の
画素では同じONでも第2図telの方が放電量が大き
くなる。従ってV#調表示の場合には濃度の差となって
現れてくる。この差を小さくするには、放電量自体を小
さくすることが有効であるが、それには、非線形抵抗素
子の低電圧印加時の抵抗を高くすることと、画素部の容
量C1と素子部の容量CNLとの比Cp/CNtを大き
くすることが必要である。素子の抵抗は高くすることは
、VOPなどの兼ね合いからの限界があり容量比CP/
CNLを大きくすることは、画素サイズが小さい場合に
は困難となる。従って、表示できるグレースケールの水
準にも限りがあるという問題があった。
As is clear from Figure 2 (dl, (el), the amount of discharge is larger in Figure 2 tel for the nth row pixel even if the same ON state. Therefore, in the case of V# tone display, there is a difference in density. In order to reduce this difference, it is effective to reduce the discharge amount itself, but this requires increasing the resistance of the nonlinear resistance element when low voltage is applied, and increasing the capacitance C1 of the pixel section. It is necessary to increase the ratio Cp/CNt between CNL and the capacitance CNL of the element.Increasing the resistance of the element has a limit due to VOP etc.
Increasing CNL becomes difficult when the pixel size is small. Therefore, there is a problem that there is a limit to the level of gray scale that can be displayed.

そこで本発明は、非選択期間のデータ信号のパターンに
よる放電量の差を小さくし、画素部と素子部の容量比C
P/CMい非線形抵抗素子の抵抗値等の制約をゆるめる
ことが可能な電気光学装置の駆動方法を提供することを
目的としている。
Therefore, the present invention reduces the difference in discharge amount depending on the pattern of the data signal during the non-selection period, and reduces the capacitance ratio C of the pixel section and the element section.
It is an object of the present invention to provide a method for driving an electro-optical device that can relax restrictions such as the resistance value of a P/CM nonlinear resistance element.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記問題点を解決するために、選択期間を2分
割し、前半または後半をデータの充電期間として用いて
、残りの期間を用いて放電量を平均化することにより、
データのパターンによらず安定な動作を可能とし、設計
上の制約をゆるめるようにしたものである。
In order to solve the above problem, the present invention divides the selection period into two, uses the first half or the second half as a data charging period, and uses the remaining period to average the discharge amount.
This enables stable operation regardless of data patterns and loosens design constraints.

〔実施例〕〔Example〕

以下に本発明の実施例を図面に基づいて説明する。第1
図は本発明の詳細な説明する駆動波形図であり、第1図
(alはn行目の画素電極に隣接する一対の行電極(駆
動用電極)へ加わる走査信号、第1図(′b)はn+1
行目の画素電極に隣接する一対の行電極(駆動用電極)
へ加わる走査信号、第1図fc)はn+2行目の画素電
極に隣接する一対の行を極(駆動用電極)へ加わる走査
信号、第1図+d)は一つの列のすべての画素がONと
なるときに列電極(対向電極)へ加わるデータ信号、第
1図(elは一つの列のn行目の画素がONで、残りの
すべての画素がOFFとなるときに列電極(対向電極)
へ加わるデータ信号を示す図である。第1図ta+〜(
C)において、駆動用電極31が一対ずつ線順次に選択
されていく様子が示されている。この場合、対になる駆
動用電極間の電位差が選択電位となる期間は、第2図と
比較して2となっており、ここでデータの充電を行い、
次の行が選択されるまでの期間をデータの平均化に用い
ている。充電期間と平均化期間の時間的比率はV。、と
の兼ね合いによって任意に設定できる。 (充電期間が
短いときはV。、をやや大きめにとるとよい)。第1図
1dl(elはデータ信号の一例である。すなわち、画
素がONのときは充電期間に■。N、平均化期間に■。
Embodiments of the present invention will be described below based on the drawings. 1st
The drawings are drive waveform diagrams explaining the present invention in detail, and FIG. ) is n+1
A pair of row electrodes (driving electrodes) adjacent to the row pixel electrode
1 fc) is a scanning signal applied to the pair of rows (driving electrodes) adjacent to the n+2th pixel electrode, and 1+d) is a scanning signal applied to a pair of rows (driving electrodes) adjacent to the n+2th pixel electrode. The data signal applied to the column electrode (counter electrode) when )
FIG. 3 is a diagram illustrating data signals applied to; Figure 1 ta+~(
In C), it is shown that the driving electrodes 31 are selected line-sequentially one pair at a time. In this case, the period during which the potential difference between the pair of drive electrodes becomes the selection potential is 2 compared to FIG. 2, and data is charged here.
The period until the next row is selected is used to average the data. The time ratio between the charging period and the averaging period is V. , can be set arbitrarily depending on the balance. (If the charging period is short, it is better to set V slightly larger.) FIG. 1 1dl (el is an example of a data signal. That is, when the pixel is ON, the charging period is ■.N, and the averaging period is ■.

。 41画素がOFFのときは充電期間にVOFF平均化期
間にV。8の電圧をデータとして加えている。こうする
ことによって、非選択期間のデータ信号の平均電位はあ
らゆるデータのパターンで同一となり、放電量もほぼ均
一となる。データ電圧V、が充電期間に■。FF≦V、
≦VONの任意の値をとるような場合は、平均化期間に
■。N”VOFF  v。
. When 41 pixels are OFF, V is applied during the charging period and V during the averaging period. 8 voltage is added as data. By doing so, the average potential of the data signal during the non-selection period becomes the same for all data patterns, and the amount of discharge becomes almost uniform. The data voltage V is ■ during the charging period. FF≦V,
≦If any value of VON is taken, enter ■ in the averaging period. N”VOFF v.

の電圧をデータとして加えてやれば同様の効果が得られ
る。また、平均化期間のデータを充電期間のデータによ
らず一定の値に固定することによっても放tliの差を
小さくするこ七ができることは言うまでもない。
A similar effect can be obtained by adding the voltage as data. It goes without saying that the difference in tli can also be reduced by fixing the data of the averaging period to a constant value regardless of the data of the charging period.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば1回の選択期間をデ
ータの充電期間とデータの平均化期間に分けて、走査信
号とデータ信号の制御をすることにより 非選択期間に
放電される電荷量がデータのパターンによらず平均化す
ることができ、非線形抵抗素子のリーク特性や、画素容
量と素子容量の比などの制約に対して自由な設計が可能
となる。
As explained above, according to the present invention, one selection period is divided into a data charging period and a data averaging period, and by controlling the scanning signal and the data signal, the amount of charge discharged during the non-selection period can be reduced. can be averaged regardless of the data pattern, allowing for free design with respect to constraints such as the leakage characteristics of the nonlinear resistance element and the ratio of pixel capacitance to element capacitance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明する駆動波形図、第2図1
alはn行目の画素電極に隣接する一対の行を極(駆動
用電極)へ加わる走査信号を示す波形図、第1図(bl
はfi+1行目の画素電極に隣接する一対の行電極(駆
動用電極)へ加わる走査信号を示す波形図、第1図+C
Iはn+2行目の画素電極に隣接する一対の行電極(駆
動用電極)へ加わる走査信号を示す波形図、第1図(d
)は−列のすべての画素がONとなるときに列電極(対
向電極)へ加わるデータ信号を示す波形図、第1図(e
lは一つの列のn行目の画素がONで、残りのすべての
画素がOFFとなるときに列電極(対向電極)へ加わる
データ信号を示す波形図、第2図は従来の電気光学装置
の駆動方法を説明する波形図、第2図1alはn行目の
画素電極に隣接する一対の行電極(駆動用電極)へ加わ
る走査信号を示す波形図、第2図(blはn+1行目の
画素電極に隣接する一対の行電極(駆動用電極)へ加わ
る走査信号を示す波形図、第2図(C1はn+2行目の
画素電極に隣接する一対の行電極(駆動用電極)へ加わ
る走査信号を示す波形図、第2図1alは一列のすべて
の画素がONとなるときに列電極(対向電極)へ加わる
データ信号を示す波形図、第2図1alは一つの列のn
行目の画素がONで、残りのすべての画素がOFFとな
るときに列電極(対向電極)へ加わるデータ信号を示す
波形図、第3図(alは非線形抵抗素子を用いた電気光
学装置のX−Yマトリックスパ矛ル回路図、第3図(b
lは非線形抵抗素子を用いた電気光学装置の構造を示す
断面図である。 A・・・・・・・対向基板 B・・・・・・・基板 3L31a、31b − 32・ ・ ・ ・ ・ 33・ ・ ・ ・ ・ 34a  34b  −− 35a  35b  −− 36・   ・ ・ ・ 行電極(駆動用電極) 列電極(対向電極) 電気光学材料(液晶) 非線形抵抗素子 非線形抵抗層 画素電極
Fig. 1 is a drive waveform diagram explaining the present invention in detail, Fig. 2
al is a waveform diagram showing a scanning signal applied to a pair of rows adjacent to the n-th pixel electrode (driving electrodes); FIG.
is a waveform diagram showing a scanning signal applied to a pair of row electrodes (driving electrodes) adjacent to the pixel electrode in the fi+1 row, Fig. 1+C
I is a waveform diagram showing a scanning signal applied to a pair of row electrodes (driving electrodes) adjacent to the pixel electrode in the n+2th row;
) is a waveform diagram showing the data signal applied to the column electrode (counter electrode) when all the pixels in the − column are turned on, FIG.
l is a waveform diagram showing the data signal applied to the column electrode (counter electrode) when the pixel in the n-th row of one column is ON and all the remaining pixels are OFF, and Figure 2 is a conventional electro-optical device. FIG. 2 1al is a waveform diagram showing a scanning signal applied to a pair of row electrodes (driving electrodes) adjacent to the n-th pixel electrode; FIG. FIG. 2 is a waveform diagram showing a scanning signal applied to a pair of row electrodes (driving electrodes) adjacent to the pixel electrode of the (C1 is applied to a pair of row electrodes (driving electrode) adjacent to the pixel electrode of the n+2th row. FIG. 2 1al is a waveform diagram showing the scanning signal. FIG. 2 1al is a waveform diagram showing the data signal applied to the column electrode (counter electrode) when all the pixels in one column are turned on. FIG.
Figure 3 is a waveform diagram showing the data signal applied to the column electrode (counter electrode) when the pixel in the row is ON and all the remaining pixels are OFF. X-Y matrix parallel circuit diagram, Figure 3 (b
1 is a cross-sectional view showing the structure of an electro-optical device using a nonlinear resistance element. A... Counter substrate B...... Substrate 3L31a, 31b - 32... 33... 34a 34b -- 35a 35b -- 36... Row electrode (Drive electrode) Column electrode (counter electrode) Electro-optic material (liquid crystal) Nonlinear resistance element Nonlinear resistance layer pixel electrode

Claims (5)

【特許請求の範囲】[Claims] (1)2枚の対向する基板と該基板間に挟持された電気
光学効果を有する材料、一方の基板に形成した多数の行
電極群と他方の基板に形成した多数の列電極群、少なく
とも一方の基板にマトリックス状に配置された画素電極
群と前記画素電極群の各電極毎に複数個ずつ設けられた
非線形抵抗素子からなり、前記各画素電極はそれぞれ第
1の非線形抵抗素子を介して第1の行(列)電極に、第
2の非線形抵抗素子を介して第2の行(列)電極に接続
されている電気光学装置の駆動方法として、前記第1と
第2の行(列)電極を1対ずつ線順次に選択をしながら
駆動を行う駆動方法において、選択期間を2分割し、前
半(後半)をデータの充電期間、後半(前半)をデータ
の平均化期間として、走査信号とデータ信号の制御を行
うことを特徴とする電気光学装置の駆動方法。
(1) Two opposing substrates and a material having an electro-optic effect sandwiched between the substrates, a large number of row electrode groups formed on one substrate and a large number of column electrode groups formed on the other substrate, at least one of them. It consists of a pixel electrode group arranged in a matrix on a substrate, and a plurality of nonlinear resistance elements provided for each electrode of the pixel electrode group, and each pixel electrode is As a method for driving an electro-optical device in which a first row (column) electrode is connected to a second row (column) electrode via a second nonlinear resistance element, the first and second row (column) In a driving method in which electrodes are selected line-sequentially one pair at a time, the selection period is divided into two, with the first half (second half) being a data charging period and the second half (first half) being a data averaging period. 1. A method for driving an electro-optical device, the method comprising controlling a data signal.
(2)走査信号の電位はデータの充電期間は選択電位、
データの平均化期間は非選択電位であることを特徴とす
る第1項記載の電気光学装置の駆動方法。
(2) The potential of the scanning signal is the selection potential during the data charging period;
2. The method of driving an electro-optical device according to claim 1, wherein the data averaging period is at a non-selective potential.
(3)画素がONとなるデータ電位をV_O_N、画素
がOFFとなるデータ電位をV_O_F_F充電するデ
ータ電位をV_Dとしたとき、データ信号の電位は、デ
ータの充電期間はV_Dデータの平均化期間はV_O_
N+V_O_F_F−V_Dであることを特徴とする第
2項記載の電気光学装置の駆動方法。
(3) When the data potential at which the pixel is turned on is V_O_N, and the data potential at which the pixel is turned off is V_O_F_F, and the data potential at which it is charged is V_D, the potential of the data signal is V_D during the data charging period, and V_D during the data averaging period. V_O_
3. The method for driving an electro-optical device according to item 2, wherein N+V_O_F_F-V_D.
(4)データ信号の電位は、データの平均化期間におい
て、V_O_N、V_O_F_Fの間の常に一定の値を
とることを特徴とする第2項記載の電気光学装置の駆動
方法。
(4) The method for driving an electro-optical device according to item 2, wherein the potential of the data signal always takes a constant value between V_O_N and V_O_F_F during the data averaging period.
(5)データ信号のデータ平均化期間における一定の電
位はV_O_N、V_O_F_Fまたは(V_O_N+
V_O_F_F)/2のいずれかであることを特徴とす
る第4項記載の電気光学装置の駆動方法。
(5) The constant potential of the data signal during the data averaging period is V_O_N, V_O_F_F or (V_O_N+
5. The method for driving an electro-optical device according to item 4, wherein the voltage is either V_O_F_F)/2.
JP2112972A 1990-04-27 1990-04-27 Method for driving opto-electrical device Pending JPH049919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2112972A JPH049919A (en) 1990-04-27 1990-04-27 Method for driving opto-electrical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2112972A JPH049919A (en) 1990-04-27 1990-04-27 Method for driving opto-electrical device

Publications (1)

Publication Number Publication Date
JPH049919A true JPH049919A (en) 1992-01-14

Family

ID=14600171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2112972A Pending JPH049919A (en) 1990-04-27 1990-04-27 Method for driving opto-electrical device

Country Status (1)

Country Link
JP (1) JPH049919A (en)

Similar Documents

Publication Publication Date Title
US5790092A (en) Liquid crystal display with reduced power dissipation and/or reduced vertical striped shades in frame control and control method for same
US8373691B2 (en) Active-matrix bistable display device
JP2705711B2 (en) Method for removing crosstalk in liquid crystal display device and liquid crystal display device
US6597119B2 (en) Method for driving an electro-optical device, driving circuit for driving an electro-optical device, electro-optical device, and electronic apparatus
KR100201429B1 (en) Liquid crystal display device
CA2707099C (en) Low power active matrix display
EP2419894B1 (en) Low power active matrix display
US6320562B1 (en) Liquid crystal display device
CN102169668A (en) Pixel circuit, liquid-crystal device, and electronic device
WO2001054108A1 (en) System for driving a liquid crystal display with power saving and other improved features
JP4969043B2 (en) Active matrix display device and scanning side drive circuit thereof
JP2630663B2 (en) Electro-optical device
US7081873B2 (en) Driving method of liquid crystal display device and liquid crystal display device
US5576728A (en) Driving method for an electrooptical device
KR20070039759A (en) Liquid crystal display
EP0932893A2 (en) Display device
JPH049919A (en) Method for driving opto-electrical device
Howard et al. Eliminating crosstalk in thin-film transistor/liquid-crystal displays
JP2547118B2 (en) Electro-optical device
JP2626923B2 (en) Driving method of electro-optical device
JPH049920A (en) Method for driving opto-electrical device
JPH04116628A (en) Electrooptical device
JPH0414014A (en) Display method for electrooptic device
JP4474954B2 (en) Electro-optical device, driving circuit for electro-optical device, driving method for electro-optical device, and electronic apparatus
JPH0416894A (en) Driving circuit of electrooptic device