[go: up one dir, main page]

JPH0498802A - Permanent magnet - Google Patents

Permanent magnet

Info

Publication number
JPH0498802A
JPH0498802A JP2215922A JP21592290A JPH0498802A JP H0498802 A JPH0498802 A JP H0498802A JP 2215922 A JP2215922 A JP 2215922A JP 21592290 A JP21592290 A JP 21592290A JP H0498802 A JPH0498802 A JP H0498802A
Authority
JP
Japan
Prior art keywords
permanent magnet
heat treatment
content
rare earth
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2215922A
Other languages
Japanese (ja)
Other versions
JP2598558B2 (en
Inventor
Yasutoshi Mizuno
水野 保敏
Kazuo Matsui
一雄 松井
Teruo Kiyomiya
照夫 清宮
Haruhiro Yukimura
治洋 幸村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2215922A priority Critical patent/JP2598558B2/en
Publication of JPH0498802A publication Critical patent/JPH0498802A/en
Application granted granted Critical
Publication of JP2598558B2 publication Critical patent/JP2598558B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は希土類−鉄−ホウ素系(以下、rR−Fe−B
系」という)永久磁石に関し、特に希土類含有量の少な
くかつホウ素含有量の多い領域で遷移金属T(TはW、
Ta、Nb、Mo、Ti。
Detailed Description of the Invention (Field of Industrial Application) The present invention is directed to rare earth-iron-boron (hereinafter referred to as rR-Fe-B)
With regard to permanent magnets (referred to as "systems"), transition metals T (T is W,
Ta, Nb, Mo, Ti.

Zr、Hf、V、Cr、Mnの1種または2種以上)を
含有するR−Fe−B系永久磁石に関するものである。
The present invention relates to an R-Fe-B permanent magnet containing one or more of Zr, Hf, V, Cr, and Mn.

(従来の技術) 永久磁石としては、従来、COを20〜30重量%含む
アルニコ磁石、Feの酸化物を主成分とするハードフェ
ライト磁石、COを50〜65重量%含み、かつ希土類
元素(R)としてSmを含む希土類コバルト磁石か代表
的なものとして知られている。
(Prior Art) Conventional permanent magnets include alnico magnets containing 20 to 30% by weight of CO, hard ferrite magnets containing Fe oxide as a main component, and magnets containing 50 to 65% by weight of CO and rare earth elements (R ) is known as a typical rare earth cobalt magnet containing Sm.

但し、アルニコ磁石や希土類コバルト磁石に使用される
Coの原料事情が不安定化し、また希土類コバルト磁石
に使用されるSmは希土類鉱物中の含有量が少なく極め
て高価である等の理由により、ハードフェライト磁石が
永久磁石の主流を占めている。
However, the raw material situation for Co used in alnico magnets and rare earth cobalt magnets has become unstable, and the Sm used in rare earth cobalt magnets has a low content in rare earth minerals and is extremely expensive. Magnets are the mainstream of permanent magnets.

ところが、希土類コバルト磁石は、他の磁石に比べ、磁
気特性が格段に高く、主として小型で、付加価値の高い
磁気回路に必須の磁石とされている。
However, rare earth cobalt magnets have much higher magnetic properties than other magnets, and are considered to be essential magnets mainly for small, high value-added magnetic circuits.

そこで、CoやSmを含まない希土類磁石の開発が急務
となり、これまで各種の希土類磁石の研究がなされてい
る。
Therefore, there is an urgent need to develop rare earth magnets that do not contain Co or Sm, and research has been carried out on various rare earth magnets.

このような事情から、希土類磁石の開発が進み、最近、
CoやSmを含まず、Nd、Pr、Dy。
Due to these circumstances, the development of rare earth magnets has progressed, and recently,
Does not contain Co or Sm, contains Nd, Pr, and Dy.

Ho、Tbの希土類元素のうちの少なくとも一種8〜3
0at%と、82〜28at%と、残部実質的にFeと
から成る磁気異方性焼結体の希土類永久磁石、並びにN
d、Pr、Dy、Ho、Tbの希土類元素のうちの少な
くとも一種と、La、Ce。
At least one of the rare earth elements Ho, Tb 8-3
A rare earth permanent magnet of a magnetically anisotropic sintered body consisting of 0 at%, 82 to 28 at%, and the balance substantially Fe, and N
at least one of the rare earth elements d, Pr, Dy, Ho, and Tb, and La and Ce.

Pm、Sm、Eu、Gd、Er、Tm、Yb。Pm, Sm, Eu, Gd, Er, Tm, Yb.

Lu、Yの希土類元素のうちの少なくとも一種の合計8
〜30at%と、82〜28at%と、残部実質的にF
eとから成る磁気異方性焼結体の希土類永久磁石が提案
された(特公昭81−34242号)。
A total of 8 of at least one rare earth element of Lu and Y
~30at%, 82~28at%, and the remainder is substantially F
A magnetically anisotropic sintered rare earth permanent magnet consisting of e was proposed (Japanese Patent Publication No. 81-34242).

また、液体急冷法を用いて、低希土類含有量で、高磁石
特性を有する永久磁石の製造方法も提案されている(特
開昭59−64739号)。
Furthermore, a method for producing a permanent magnet with a low rare earth content and high magnetic properties using a liquid quenching method has also been proposed (Japanese Patent Laid-Open No. 59-64739).

(発明が解決しようとする課題) 希土類元素は高価であるため、できるだけ少ないことが
望まれる。
(Problems to be Solved by the Invention) Rare earth elements are expensive, so it is desirable to have as few rare earth elements as possible.

しかし、前述した従来の永久磁石は、いずれも、成る程
度は希土類元素含有量の低減目的を達成しているものの
、8at%以上の含有量は必要とされており、これより
少ないと充分な磁石特性を得ることができない。
However, although the above-mentioned conventional permanent magnets have all achieved the purpose of reducing the rare earth element content to a certain extent, a content of 8 at% or more is required, and if it is less than this, the magnet is insufficient. Unable to obtain properties.

従って、この分原料コスト高となっている。Therefore, the raw material cost increases accordingly.

本発明は以上の諸点に鑑みてなされたもので、その目的
とするところは、希土類含有量が8at%以下において
高保磁力、高エネルギー積を示す永久磁石を提供するこ
とにある。
The present invention has been made in view of the above points, and its object is to provide a permanent magnet that exhibits high coercive force and high energy product when the rare earth content is 8 at% or less.

[課題を解決するための手段] 本発明に係る永久磁石は、上記目的と達成するために、
2〜6at%のR(但し、RはYを含む希土類元素の1
種または2種以上)、10〜30at%のB、1〜18
at%のT(TはW、TaNb  Mo、Ti、Zr、
Hf、V、Cr、Mnの1種または2種以上)、残部F
eから成ることを特徴とする。
[Means for Solving the Problems] In order to achieve the above objects, the permanent magnet according to the present invention has the following features:
2 to 6 at% of R (however, R is 1 of a rare earth element containing Y)
species or two or more species), 10 to 30 at% B, 1 to 18
at% of T (T is W, TaNb Mo, Ti, Zr,
one or more of Hf, V, Cr, Mn), the remainder F
It is characterized by consisting of e.

本発明に係る永久磁石は、上記組成領域の溶融合金を液
体急冷法により急冷し、この後、必要に応じて500〜
900℃で熱処理して得ることができる。
The permanent magnet according to the present invention is produced by quenching the molten alloy in the above composition range by a liquid quenching method, and then, if necessary,
It can be obtained by heat treatment at 900°C.

この場合、液体急冷法により組織の結晶粒を微細に析出
させることができ、上記の熱処理によりこの結晶粒の粒
径を適切な大きさに調整することができる。
In this case, the crystal grains of the structure can be finely precipitated by the liquid quenching method, and the grain size of the crystal grains can be adjusted to an appropriate size by the heat treatment described above.

熱処理温度は500℃未満では熱処理効果がなく、90
0℃を超えるとiHc 、B r 、(BH)saxが
低くなる。
If the heat treatment temperature is less than 500℃, there will be no heat treatment effect;
When the temperature exceeds 0°C, iHc, B r and (BH)sax decrease.

なお、上記の液体急冷法における急冷条件を適切にすれ
ば、急冷体の結晶粒が最適となるため、上記の熱処理は
不要となる。
Note that if the quenching conditions in the liquid quenching method described above are appropriate, the crystal grains of the quenched body become optimal, so the above heat treatment becomes unnecessary.

(作 用) 本発明に係る永久磁石(R−Fe−B系磁石)において
は、低RIEB領域で保磁力(iHc)が発生する。
(Function) In the permanent magnet (R-Fe-B magnet) according to the present invention, coercive force (iHc) is generated in the low RIEB region.

このようなRの作用を確保するためには、少なくとも2
at%のR含有量とする必要がある。但し、Rの含有量
が多くなり過ぎると保磁力(iHc)、残留磁束密度(
Br)、最大エネルギー積((BH)   )が低下す
るため、6at%以下とsax することが重要であり、好ましいR含有量は2.5〜5
at%である。
In order to ensure such an effect of R, at least 2
It is necessary to set the R content to at%. However, if the R content becomes too large, the coercive force (iHc) and residual magnetic flux density (
Since the maximum energy product ((BH)) decreases, it is important to keep the R content to 6 at% or less, and the preferable R content is 2.5 to 5.
It is at%.

また、Bの含有量が少なくなり過ぎると、iHc、Br
、(BH)   か低下する。一方、Bの■aX 含有量が多くなり過ぎても、Br、(BH)l、xが減
少してしまうため、Bは10〜30at96とする必要
がある。好ましくは13〜25a【%である。
Also, if the B content becomes too low, iHc, Br
, (BH) decreases. On the other hand, even if the aX content of B becomes too large, Br, (BH)l, and x will decrease, so B needs to be 10 to 30at96. Preferably it is 13-25a[%.

さらに、Tは1aL%未満であるとiHc、Br。Furthermore, when T is less than 1aL%, iHc, Br.

(BH)   が小さく、18at%を超えるとBr。(BH) is small and exceeds 18 at%, Br.

aX (BH)   が小さくなる。好ましくは2〜15aX at%である。aX (BH) becomes smaller. Preferably 2-15aX It is at%.

(実施例) 実施例1 下記の第1工程(前工程)及び第2工程(熱処理)を経
て、Ndを1〜7at%の範囲内で第1表に示すように
種々変化させ、B:20at%、W:5at%、Fe:
残部の組成を有する本発明に係るR−Fe−B系永久磁
石を調製した。
(Example) Example 1 Through the following first step (pre-step) and second step (heat treatment), Nd was varied in the range of 1 to 7 at% as shown in Table 1, and B: 20 at% %, W: 5at%, Fe:
An R-Fe-B permanent magnet according to the present invention having the remaining composition was prepared.

第1工程(前工程) 必要とする合金元素をアーク溶解炉で溶解し、液体急冷
装置(片ロール法)で周速度30 m / sで合金を
急冷した。
First Step (Pre-Step) The required alloying elements were melted in an arc melting furnace, and the alloy was rapidly cooled at a circumferential speed of 30 m/s in a liquid quenching device (single roll method).

第2工程(熱処理工程) 第1工程で得た急冷体を700℃で1時間の熱処理を行
った。
Second step (heat treatment step) The quenched body obtained in the first step was heat treated at 700° C. for 1 hour.

以上のようにして得られた本発明に係るR−Fe−B系
永久磁石のi HC,B r、  (BH) waxを
測定し、その結果をNd含有量との対比で第1表に示し
た。
The i HC, Br, (BH) wax of the R-Fe-B permanent magnet according to the present invention obtained as described above was measured, and the results are shown in Table 1 in comparison with the Nd content. Ta.

第1表から明らかなように、Nd含有量が2at%未満
ではiHc、Br、(BH)   が小さaX く、Nd含有量が6at%を超えてもiHc、Br。
As is clear from Table 1, iHc, Br, (BH) are small when the Nd content is less than 2 at%, and iHc and Br are small even when the Nd content exceeds 6 at%.

(BH)   は小さくなってしまう。(BH) becomes small.

曙aX 実施例2 下記の第1工程(前工程)及び第2工程(熱処理工程)
を経て、Bを8〜32at%の範囲内で第2表に示すよ
うに種々変化させ、Nd:4at%、W:5at%、F
e:残部の組成を有する本発明に係るR−Fe−B系永
久磁石を調製した。
Akebono aX Example 2 The following first step (pre-process) and second step (heat treatment step)
After that, B was varied in the range of 8 to 32 at% as shown in Table 2, Nd: 4 at%, W: 5 at%, F
e: An R-Fe-B permanent magnet according to the present invention having the composition of the remainder was prepared.

第1工程(前工程) 実施例1に同じ。1st process (pre-process) Same as Example 1.

第2工程(熱処理工程) 実施例1に同じ。2nd process (heat treatment process) Same as Example 1.

このようにして得た本発明に係るR−Fe−B系永久磁
石のi Hc、B r、(BH)   を測定ax し、その結果をB含有量との対比で第2表に示した。
The iHc, Br, (BH) of the R-Fe-B permanent magnet according to the present invention thus obtained was measured, and the results are shown in Table 2 in comparison with the B content.

第  2  表 第2表から明らかなように、B含釘量が10a 196
未満ではiHc、Br、(BH)   が小さaX くなり、B含釘量が30ar%を超えるとB「が小さく
なる。
Table 2 As is clear from Table 2, the amount of B nails included is 10a 196
If the content of B nails exceeds 30ar%, iHc, Br, (BH) will become small, and if the B nail content exceeds 30ar%, B' will become small.

実施例3 下記の第1工程(前工程)及び第2工程(熱処理工程)
を経て、Wを0〜19at%の範囲内で第3表に示すよ
うに種々変化させ、Nd:4at%。
Example 3 The following first step (pre-process) and second step (heat treatment step)
After that, W was varied in the range of 0 to 19 at% as shown in Table 3, and Nd: 4 at%.

B:20at%、Fe:残部の組成を有する本発明に係
るR−Fe−B系永久磁石を調製した。
An R-Fe-B permanent magnet according to the present invention having a composition of B: 20 at% and Fe: the balance was prepared.

第1工程(前工程) 実施例1に同じ。1st process (pre-process) Same as Example 1.

第2工程(熱処理工程) 実施例1に同じ。2nd process (heat treatment process) Same as Example 1.

このようにした得た本発明に係るR−Fe−B系永久磁
石のi Hc、B r、(BH)   を測定麿ax し、その結果をW含有量との対比で第3表に示した。
The iHc, Br, (BH) of the thus obtained R-Fe-B permanent magnet according to the present invention was measured, and the results are shown in Table 3 in comparison with the W content. .

第3表 第3表から明らかなように、W含有量がlat%未満で
はiHc、Br、(BH)   が小さくなax す、W含有量が18at%を超えると、Br。
Table 3 As is clear from Table 3, when the W content is less than lat%, iHc, Br, and (BH) are small, and when the W content exceeds 18 at%, Br.

(BH)    が小さくなる。(BH) becomes smaller.

■ax 実施例4 下記の第1工程(前工程)及び第2工程(熱処理工程)
を経て、Ndを2〜4at%の範囲内、Ceを0〜2a
t%の範囲内で、それぞれ第4表に示すように種々変化
させ(但し、Nd+Ce−4at%とした)、B:2C
)at%、W:5at%、Fe:残部の組成を有する本
発明に係るR−Fe−B系永久磁石を調製した。
■ax Example 4 The following first step (pre-process) and second step (heat treatment step)
After that, Nd was added in the range of 2 to 4 at% and Ce was added in the range of 0 to 2 at%.
Within the range of t%, various changes were made as shown in Table 4 (however, Nd+Ce-4at%), B: 2C
) at%, W: 5 at%, and Fe: the balance. An R-Fe-B permanent magnet according to the present invention was prepared.

第1工程(前工程) 実施例1に同じ。1st process (pre-process) Same as Example 1.

第2玉程(熱処理工程) 実施例1に同し。Second ball stage (heat treatment process) Same as Example 1.

このようにした得た本発明に係るR−Fe−B系永久磁
石のiHc、Br、(BH)   をsj定■aX し、その結果をCe含有量との対比で第4表に示した(
なお、同表中のNd含有量は、上記の式Nd+Ce−4
at%を満足する量である)。
The iHc, Br, (BH) of the R-Fe-B permanent magnet according to the present invention thus obtained were determined by sj, and the results are shown in Table 4 in comparison with the Ce content (
In addition, the Nd content in the same table is calculated from the above formula Nd+Ce-4
(at%).

第  4  表 第4表から明らかなように、NdのCe置換量に応して
磁気特性が変化するか、実用上充分な磁気特性が得られ
る二とが判る。このことは、Nd以外のR(Yを含む)
であっても有効であることを明示するものである。
Table 4 As is clear from Table 4, it can be seen that either the magnetic properties change depending on the amount of Ce substituted for Nd, or that magnetic properties sufficient for practical use can be obtained. This means that R other than Nd (including Y)
This clearly indicates that it is valid even if

実施例5 Tとして第5表に示すものを使用し、下記の第1工程(
前工程)及び第2工程(熱処理工程)を経て、N d 
: 4at96.  B : 20at%、T:5at
%Fe:残部の組成を資する本発明に係るR−Fe−B
系永久磁石を調製した。
Example 5 Using the T shown in Table 5, the following first step (
After the previous step) and the second step (heat treatment step), N d
: 4at96. B: 20at%, T: 5at%
%Fe: R-Fe-B according to the present invention contributing to the remaining composition
A permanent magnet was prepared.

第1工程(前工程) 実施例1に同し。1st process (pre-process) Same as Example 1.

第2工程(熱処理工程) 実施例1に同し。2nd process (heat treatment process) Same as Example 1.

このようにして得た本発明に係るR−Fe−B系永久磁
石のlHc 、Br 、(BH) w a xをM]定
し、その結果をTの種類との対比で第5表に示した。
The lHc, Br, (BH) w ax of the R-Fe-B permanent magnet according to the present invention thus obtained were determined, and the results are shown in Table 5 in comparison with the type of T. Ta.

第5表から明らかなように、Tの種類か変わると磁気特
性も変化するか、いずれの種類のTてあっても実用上充
分な磁気特性が得られることか判る。
As is clear from Table 5, it can be seen that the magnetic properties change as the type of T changes, and that practically sufficient magnetic properties can be obtained regardless of the type of T.

実施例6 下記の第1工程(前工程)及び第2工程(熱処理工程)
を経て、Nd:4at%、B:20at%。
Example 6 The following first step (pre-process) and second step (heat treatment step)
Nd: 4 at%, B: 20 at%.

W:5at%、Fe:残部の組成を有する本発明に係る
R−Fe−B系永久磁石を調製した。
An R-Fe-B permanent magnet according to the present invention having a composition of W: 5 at% and Fe: the balance was prepared.

第1工程(前工程) 必要とする合金をアーク炉で溶解し、液体急冷装置(片
ロール法)で周速度を10〜40m/sの範囲内で第6
表に示すように種々変化させて合金を急冷した。
First step (pre-process) The required alloy is melted in an arc furnace, and the sixth
The alloy was quenched with various changes as shown in the table.

第2工程(熱処理工程) 実施例1と同し。2nd process (heat treatment process) Same as Example 1.

このようにした得た本発明に係るR−Fe−B系永久磁
石のiHc、B r、(BH)   を測定+max し、その結果を急冷時の周速度との対比で第6表に示し
た。
The iHc, Br, (BH) of the R-Fe-B permanent magnet according to the present invention thus obtained was measured +max, and the results are shown in Table 6 in comparison with the circumferential speed during rapid cooling. .

弔 表 第6表から明らかなように、周速度の変化に応じて磁気
特性か変化するか、いずれの周速度でも実用上充分な磁
気特性が得られることが判る。
As is clear from Table 6, it can be seen that the magnetic properties change as the circumferential speed changes, or that practically sufficient magnetic properties can be obtained at any circumferential speed.

実施例7 下記の第1工程(前工程)及び第2工程(熱処理工程)
を経て、Nd:4at%、B:20at%。
Example 7 The following first step (pre-process) and second step (heat treatment step)
Nd: 4 at%, B: 20 at%.

W:5at%、Fe:残部の組成を有する本発明に係る
R−Fe−B系永久磁石を調製した。
An R-Fe-B permanent magnet according to the present invention having a composition of W: 5 at% and Fe: the balance was prepared.

第1工程(前工程) 実施例1に同じ。1st process (pre-process) Same as Example 1.

第2工程(熱処理工程) 第1工程で得た急冷体を400〜1000℃の範囲内で
第7表に示すように種々変化させ、1時間の熱処理を行
った。
Second step (heat treatment step) The quenched body obtained in the first step was heat-treated for 1 hour at various temperatures within the range of 400 to 1000° C. as shown in Table 7.

このようにした得た本発明に係るR−Fe系永久磁石の
i Hc、B r、(BH)   をa1定■ax し、その結果を熱処理温度との対比で第7表に示した。
The iHc, Br, (BH) of the R-Fe permanent magnet according to the present invention obtained in this manner was determined by a1 constant (ax), and the results are shown in Table 7 in comparison with the heat treatment temperature.

なお、同表には、 あわせて示した。In addition, in the same table, Also shown.

熱処理工程前の磁気特性をも 第7表から明らかなように、熱処理温度が500℃未満
ては熱処理の効果かなく、熱処理温度か900℃を超え
るとt Hc、  B r、  (BH) waxか小
さくなる。
As is clear from Table 7 regarding the magnetic properties before the heat treatment process, if the heat treatment temperature is less than 500°C, the heat treatment has no effect, and if the heat treatment temperature exceeds 900°C, t Hc, Br, (BH) wax, etc. becomes smaller.

(発明の効果) 以上詳述したように、本発明に係るR−Fe−B系永久
磁石によれば、R含有量を前述の先提案のものに比して
大幅に少なくても、RとTの相乗効果により、高iHc
を確保することができる。
(Effects of the Invention) As detailed above, according to the R-Fe-B permanent magnet according to the present invention, even if the R content is significantly lower than that of the previous proposal, Due to the synergistic effect of T, high iHc
can be ensured.

この結果、Rが2〜6at%という少ない領域でも高i
Hcの永久磁石を得ることができる。
As a result, even in a low R range of 2 to 6 at%, high i
A permanent magnet of Hc can be obtained.

そして、Rの含有量か前述の先提案のものより少ないた
め、原料コストの大幅な低減を図ることかできる。
Furthermore, since the R content is lower than that of the previous proposal, the cost of raw materials can be significantly reduced.

Claims (1)

【特許請求の範囲】[Claims]  2〜6at%のR(但し、RはYを含む希土類元素の
1種または2種以上)、10〜30at%のB、1〜1
8at%のT(TはW,Ta,Nb,Mo,Ti,Zr
,Hf,V,Cr.Mnの1種または2種以上)、残部
Feから成ることを特徴とする永久磁石。
2 to 6 at% R (however, R is one or more rare earth elements including Y), 10 to 30 at% B, 1 to 1
8 at% T (T is W, Ta, Nb, Mo, Ti, Zr
, Hf, V, Cr. A permanent magnet characterized by comprising one or more types of Mn), and the balance being Fe.
JP2215922A 1990-08-17 1990-08-17 permanent magnet Expired - Lifetime JP2598558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2215922A JP2598558B2 (en) 1990-08-17 1990-08-17 permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2215922A JP2598558B2 (en) 1990-08-17 1990-08-17 permanent magnet

Publications (2)

Publication Number Publication Date
JPH0498802A true JPH0498802A (en) 1992-03-31
JP2598558B2 JP2598558B2 (en) 1997-04-09

Family

ID=16680486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2215922A Expired - Lifetime JP2598558B2 (en) 1990-08-17 1990-08-17 permanent magnet

Country Status (1)

Country Link
JP (1) JP2598558B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0657899A1 (en) * 1993-12-10 1995-06-14 Sumitomo Special Metals Company Limited Iron-based permanent magnet alloy powders for resin bonded magnets and magnets made therefrom
US6004407A (en) * 1995-09-22 1999-12-21 Alps Electric Co., Ltd. Hard magnetic materials and method of producing the same
JP2007524986A (en) * 2003-02-06 2007-08-30 マグネクエンチ,インコーポレーテッド Highly quenchable Fe-based rare earth material to replace ferrite
US7507302B2 (en) 2001-07-31 2009-03-24 Hitachi Metals, Ltd. Method for producing nanocomposite magnet using atomizing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362842A (en) * 1986-09-04 1988-03-19 Tdk Corp Permanent magnet material containing rare earth element
JPS63111602A (en) * 1986-10-30 1988-05-16 Tdk Corp High performance rare earth cast magnet
JPS63190138A (en) * 1986-09-29 1988-08-05 Tdk Corp Rare-earth permanent magnet material
JPS64703A (en) * 1986-04-15 1989-01-05 Tdk Corp Permanent magnet and manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64703A (en) * 1986-04-15 1989-01-05 Tdk Corp Permanent magnet and manufacture thereof
JPS6362842A (en) * 1986-09-04 1988-03-19 Tdk Corp Permanent magnet material containing rare earth element
JPS63190138A (en) * 1986-09-29 1988-08-05 Tdk Corp Rare-earth permanent magnet material
JPS63111602A (en) * 1986-10-30 1988-05-16 Tdk Corp High performance rare earth cast magnet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0657899A1 (en) * 1993-12-10 1995-06-14 Sumitomo Special Metals Company Limited Iron-based permanent magnet alloy powders for resin bonded magnets and magnets made therefrom
US6004407A (en) * 1995-09-22 1999-12-21 Alps Electric Co., Ltd. Hard magnetic materials and method of producing the same
US7507302B2 (en) 2001-07-31 2009-03-24 Hitachi Metals, Ltd. Method for producing nanocomposite magnet using atomizing method
JP2007524986A (en) * 2003-02-06 2007-08-30 マグネクエンチ,インコーポレーテッド Highly quenchable Fe-based rare earth material to replace ferrite
JP4755080B2 (en) * 2003-02-06 2011-08-24 マグネクエンチ,インコーポレーテッド Highly quenchable Fe-based rare earth material to replace ferrite

Also Published As

Publication number Publication date
JP2598558B2 (en) 1997-04-09

Similar Documents

Publication Publication Date Title
TW493185B (en) High performance iron-rare earth-boron-refractory-cobalt nanocomposites
US6332933B1 (en) Iron-rare earth-boron-refractory metal magnetic nanocomposites
JPS6331102A (en) High-energy ball milling method for producing rare earth-transition metal-boron permanent magnets
JPH06212327A (en) Rare earth permanent magnet alloy
WO1998025280A1 (en) Process for the production of magnet
EP1127358B1 (en) Sm (Co, Fe, Cu, Zr, C) COMPOSITIONS AND METHODS OF PRODUCING SAME
JP2774372B2 (en) Permanent magnet powder
JPH0498802A (en) Permanent magnet
JPH0146575B2 (en)
JP3735502B2 (en) Manufacturing method of magnet material
US4966633A (en) Coercivity in hot worked iron-neodymium boron type permanent magnets
JP3357381B2 (en) Magnet material, method of manufacturing the same, and bonded magnet
JP2951006B2 (en) Permanent magnet material, manufacturing method thereof, and bonded magnet
JP2580067B2 (en) Manufacturing method of rare earth permanent magnet
JPH03148803A (en) Permanent magnet
JPH05152115A (en) Manufacture of magnetic recording powder
JP2001167915A (en) Method of manufacturing magnet
JPH10340806A (en) Rare earth-iron magnetic material and manufacture thereof
JPH11233322A (en) Magnet and bonded magnet
JPS62158854A (en) Permanaent magnet material
JPH02138707A (en) Rare-earth magnet powder annealing method
JPS62257704A (en) Permanent magnet
JPH01112703A (en) Manufacture of r-tm-b permanent magnet
JPS6362842A (en) Permanent magnet material containing rare earth element
JPH04323804A (en) Rare-earth magnet