[go: up one dir, main page]

JPH0497989A - Production of single crystal and pulling up device for single crystal - Google Patents

Production of single crystal and pulling up device for single crystal

Info

Publication number
JPH0497989A
JPH0497989A JP21373590A JP21373590A JPH0497989A JP H0497989 A JPH0497989 A JP H0497989A JP 21373590 A JP21373590 A JP 21373590A JP 21373590 A JP21373590 A JP 21373590A JP H0497989 A JPH0497989 A JP H0497989A
Authority
JP
Japan
Prior art keywords
single crystal
pulling
melt
heater
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21373590A
Other languages
Japanese (ja)
Other versions
JP2828118B2 (en
Inventor
Masaru Sakamoto
勝 坂本
Seiji Sogo
十河 清二
Shintaro Miyazawa
宮澤 信太郎
Masahiro Sasaura
正弘 笹浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Nippon Telegraph and Telephone Corp
Nikko Kyodo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Nippon Telegraph and Telephone Corp, Nikko Kyodo Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP21373590A priority Critical patent/JP2828118B2/en
Publication of JPH0497989A publication Critical patent/JPH0497989A/en
Application granted granted Critical
Publication of JP2828118B2 publication Critical patent/JP2828118B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To prevent a crack from being generated in NdGaO3 single crystal being left to stand by specifying the temp. gradient in the direction of a pulling-up axis of NdGaO3 single crystal. CONSTITUTION:The inside face of a heat insulating mold 5 is formed into a tapered face 5b nearly equal to an after-heater 2. The heat insulating molds 5, 6 are provided to a supporting base 8 fixed to the upper part of a crucible 1. The after-heater 2 is formed of a hollow body having a taper in the pulling-up direction and provided in the interval of 25-80mm from the liquid level of melt 7 introduced inside of this heater 2. Nd2O3 and Ga2O3 are introduced into the crucible 1 and heated by a high-frequency coil 4, and melted to form melt 7. Moreover the temp. gradient in the direction of a pulling-up axis is set at <=40 deg.C/cm in the interval (a) of 20-60mm from the liquid level of melt 7. Then seed crystal fitted to the tip of the pulling-up axis is brought into contact with melt 7 and pulled up. Grown NdGaO3 single crystal is annealed at >=1000 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、単結晶の製造方法に関するものであり、さら
に詳しく述べるならば、駿化物超伝導薄膜成長の基板材
料等として使用される NdGa0.単結晶を製造する方法、ならびに弓上げ装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a single crystal, and more specifically, to a method for producing a single crystal, and more specifically, to a method for producing a single crystal, NdGa0. The present invention relates to a method for manufacturing a single crystal and a bow raising device.

(従来の技術) 従来シリコン結晶等において最も一般的な単結晶製造法
として引上げ法が使用されている。
(Prior Art) Conventionally, a pulling method has been used as the most common single crystal manufacturing method for silicon crystals and the like.

N d G a Os単結晶の製造方法としても引上げ
法の適用が試みられている。
Application of the pulling method has also been attempted as a method for producing N d Ga Os single crystals.

第3図に従来−船釣に使用されている引上げ装置の図面
を示す0図中、1はイリジウム製ルツボ、2はイリジウ
ム製アフターヒーター、3で小される点はジルコニアバ
ブル、4は高周波加熱コイル、5.6は保温筒、7は融
液である。
Figure 3 shows a drawing of a conventional pulling device used for boat fishing. In Figure 0, 1 is an iridium crucible, 2 is an iridium afterheater, the point subtracted by 3 is a zirconia bubble, and 4 is high-frequency heating. The coil, 5.6 is a heat insulating cylinder, and 7 is a melt.

N d G a O*の焼結体を高周波加熱コイル4で
融解し、種結晶を融液に付けて、回転させながら引上げ
てN d G a Os単結晶を育成し、育成中には引
上げ方向に先細りにしたアフターヒーター2により結晶
を加熱してその冷却速度を遅くして、冷却歪を少なくす
る。アフターヒーター2は引上げ直後(ai度1650
℃程度)からの約7cmまでの区間の冷却を遅くするよ
うに構成される。
A sintered body of N d Ga O* is melted by a high-frequency heating coil 4, a seed crystal is attached to the melt, and the seed crystal is pulled up while rotating to grow an N d Ga Os single crystal. The crystal is heated by the tapered after-heater 2, and the cooling rate is slowed down to reduce cooling distortion. After heater 2 is installed immediately after lifting (AI degree 1650)
It is configured to slow down the cooling of the area up to about 7 cm from the

(発明が解決しようとする課題) 第3図を引用して説明した方法でNdGa0゜単結晶を
育成したとろ、育成中において単結晶にクラックが入り
、良質な結晶を得ることができなかった。また、たとえ
クラックが少ない結晶でも炉から取り出した後の放置中
に結晶にクラックが入ることがあった。このため、従来
の方法で育成した結晶からは大きな直径の単結晶基板を
得ることは不可能であった。また、小さい径の単結晶基
板でも歩留まりは非常に低かった。
(Problems to be Solved by the Invention) When a NdGa 0° single crystal was grown by the method described with reference to FIG. 3, cracks appeared in the single crystal during the growth, making it impossible to obtain a high-quality crystal. Further, even if the crystal has few cracks, cracks may appear in the crystal while it is left standing after being taken out from the furnace. For this reason, it has been impossible to obtain a single crystal substrate with a large diameter from crystals grown using conventional methods. Furthermore, even with small diameter single crystal substrates, the yield was extremely low.

また、第3図に示す従来の単結晶引き上げ装置を使用し
てN d G a Os単結晶を育成すると、アフター
ヒーター2および保温筒5.6の効果が不十分であるた
めに、適切な温度勾配が形成されず、上述のようなりラ
ックの問題が起こることが分かった。
Furthermore, when N d Ga Os single crystals are grown using the conventional single crystal pulling apparatus shown in FIG. It has been found that no slope is formed and the racking problem described above occurs.

したがって、本発明はN d G a Os単結晶の弓
上げ法による育成技術において育成中にもまた育成後の
放置中にもクラックが入らない新規な単結晶製造方法及
び引上げ装置を提供することを目的とする。
Therefore, it is an object of the present invention to provide a new single crystal manufacturing method and a pulling device that do not cause cracks during growth or when left standing after growth in a technique for growing NdGaOs single crystals using the bow raising method. purpose.

さらに、本発明は従来法の引上げ法で製造したN d 
G a Os単結晶が放置中にクラックが入ることを防
止する方法を提供することを目的とする。
Furthermore, the present invention provides N d produced by the conventional pulling method.
An object of the present invention is to provide a method for preventing cracks from forming in a GaOs single crystal during storage.

(課題を解決するための手段) 本発明に係る方法は、NdGa0.単結晶を弓上げ法に
より育成するに際し、N d G a Os単結晶の引
上げ軸方向の温度勾配を、N ’d G a Os融液
の液面から20mm〜60mmの区間(以下、「特定区
間」という)において40℃/ c m以下とすること
を特徴とする単結晶の製造方法である。
(Means for Solving the Problems) The method according to the present invention provides a method for solving the problems of NdGa0. When growing a single crystal by the bow-raising method, the temperature gradient in the direction of the pulling axis of the N'd GaOs single crystal is set in an area of 20 mm to 60 mm from the liquid surface of the N'd Ga Os melt (hereinafter referred to as a "specific area"). This is a method for producing a single crystal, characterized in that the temperature is 40° C./cm or less at a temperature of 40° C./cm or less.

また本発明に係る単結晶引き上げ装!は、N d G 
a Os単結晶の引上げ装置であって、NdGa0.の
融液を収容するルツボと、前記ルツボ内の融液な加熱す
る加熱手段と、前記ルツボの開口部から引上げられた単
結晶の側面を取り囲みかつ引上げ方向にテーパを有する
中空体アフターヒーターと、アフターヒーターの外側を
取り囲む保温筒と、を含んでなる単結晶引上げ装置にお
いて。
Also, a single crystal pulling device according to the present invention! is N d G
a Os single crystal pulling device, comprising: NdGa0. a crucible for accommodating a melt, a heating means for heating the melt in the crucible, and a hollow after-heater that surrounds a side surface of a single crystal pulled from an opening of the crucible and has a taper in the pulling direction; In a single crystal pulling apparatus comprising: a heat-retaining cylinder surrounding the outside of an after-heater;

前記アフターヒーターが、前記N d G a Os融
液の液面から25mm以上の区間に存在しており、前記
保温筒の内面を前記アフターヒーターと面する部分では
該ヒーターのテーパーとほぼ同一のテーパー面とするこ
とを特徴とする。
The after-heater exists in a section 25 mm or more from the liquid level of the N d Ga Os melt, and the inner surface of the heat-insulating cylinder has a taper that is almost the same as the taper of the heater at a portion facing the after-heater. It is characterized by a face.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明者らは第3図に示すような引上げ炉内の温度勾配
を測定したところ、上記の特定区間においては非常に高
いことを見出した。この特定区間はN d G a O
s単結晶の育成については最も歪が発生しやすい区間で
あり、温度勾配をなだらかに設定することがクラック防
止に有効であることを見出して、本発明法を完成した。
The present inventors measured the temperature gradient inside the pulling furnace as shown in FIG. 3 and found that it was extremely high in the above-mentioned specific section. This specific section is N d Ga O
Regarding the growth of s single crystals, it was found that this is the section where strain is most likely to occur, and that setting a gentle temperature gradient is effective in preventing cracks, and the method of the present invention was completed.

すなわち、特定区間の温度勾配を40℃/ c mを超
えると、特定区間で歪が発生し易くなり、クラックの発
生に至る。一方クラック発生に不敏感な領域である特定
区間以外で40℃/ c m以下の温度勾配を設定して
もクラック発生防止には効果がない。またN d G 
a Os融液の液面から20mm未満では凝固の進行程
度が低いために、またN d G a Os融液のl1
面から60mmを超えると、凝固に伴う収縮歪のピーク
を過ぎているので、いずれも本発明の温度設定の効果が
ない。
That is, when the temperature gradient in a specific section exceeds 40° C./cm, strain tends to occur in the specific section, leading to the occurrence of cracks. On the other hand, even if a temperature gradient of 40° C./cm or less is set outside the specific section, which is an area insensitive to cracking, it is not effective in preventing cracking. Also N d G
Since the degree of solidification is low below 20 mm from the liquid level of the aOs melt, and the l1 of the NdGaOs melt
If the distance exceeds 60 mm from the surface, the shrinkage strain due to solidification has passed the peak, so the temperature setting of the present invention has no effect.

このような温度勾配を作りだすためには、ルツボ内のN
 d G a O*融液の加熱手段が高周波誘導コイル
であるときは、ルツボ周囲の耐火物構造を密にすること
や、アフターヒーターの位置を調節することが必要であ
る。さらに、抵抗加熱でルツボを加熱する時はさらに補
助ヒーターを設け、特定区間を加熱することにより所定
温度勾配を設定することができる。
In order to create such a temperature gradient, N in the crucible must be
When the means for heating the dG a O* melt is a high-frequency induction coil, it is necessary to make the refractory structure around the crucible dense and to adjust the position of the after-heater. Furthermore, when heating the crucible by resistance heating, an auxiliary heater is further provided and a predetermined temperature gradient can be set by heating a specific section.

以下、単結晶育成法の具体的操作を説明する。Hereinafter, specific operations of the single crystal growth method will be explained.

本発明の単結晶製造法の原料はNd、0.とGaJiの
粉末である。これらの酸化物粉末は4N程度の高純度品
であることが好ましい。これらの酸化物を混合し直ちに
ルツボで溶解することも出来るが、混合粉をCIP成形
した後焼結を行った原料を使用することが溶解中の原料
の蒸発などを少なくする上で好ましい。焼結体をIrル
ツボに充填し、高周波加熱又は抵抗加熱で1550〜1
680℃で融解する。原料が融解したら、種結晶を取り
付けた引上げ棒を上部より融液に接触させ、引上げ棒を
回転させながら引上げ、N d G a Os単結晶を
育成する。このとき引上げ炉の融液液面上の特定区間が
上記温度勾配条件を満たすことが必要である。
The raw materials for the single crystal production method of the present invention are Nd, 0. and GaJi powder. These oxide powders are preferably of high purity of about 4N. Although these oxides can be mixed and immediately melted in a crucible, it is preferable to use a raw material obtained by CIP molding the mixed powder and then sintering it, in order to reduce evaporation of the raw material during melting. The sintered body was filled into an Ir crucible and heated to 1550 to 1 by high frequency heating or resistance heating.
Melts at 680°C. When the raw material is melted, a pulling rod equipped with a seed crystal is brought into contact with the melt from above, and the pulling rod is pulled up while rotating to grow an N d Ga Os single crystal. At this time, it is necessary that a specific section on the melt surface of the pulling furnace satisfies the above temperature gradient condition.

従来法により育成されたインゴットに放置中にクラック
が発生することを防止するために本発明の方法は引上げ
後に1000℃以上の温度でアニールすることも特徴と
している。これにより、インゴットを全長・全断面で均
熱し、引上げ後インゴットに残っている歪を取り除きク
ラックを少なくすることができる。ただし、従来法では
育成直後にはクラックが無(とも、放置中にクラックが
発生するので引上げ後にできるだけ速やかにアニールを
する必要がある。アニールは引上げ炉とは独立したアニ
ール炉を使用してもよ(、あるいは均熱が良い条件が得
られれば、引上げ炉内で弓上げ後、連続的にアニールし
てもよい。
In order to prevent the occurrence of cracks in ingots grown by conventional methods during standing, the method of the present invention is also characterized by annealing at a temperature of 1000° C. or higher after pulling. This makes it possible to uniformly heat the ingot over its entire length and cross section, and to remove strain remaining in the ingot after pulling, thereby reducing cracks. However, in the conventional method, there are no cracks immediately after the growth (although cracks occur during the growth, so it is necessary to anneal as soon as possible after the pulling. Alternatively, if conditions for good soaking are obtained, continuous annealing may be performed after raising the bow in a pulling furnace.

また本発明者は引上げ炉構造を種々検討し、その結果、
アフターヒーターが、少なくとも、前記N d G a
 Os融液の液面から25mm以上の区間に存在してお
り、前記保温筒の内面を、前記ヒーターと面する部分で
は該ヒーターのテーパーとほぼ同一のテーパー面とする
構造にすることによりクラックを防止することができる
ことを見出した。
The inventor also studied various pulling furnace structures, and as a result,
The after-heater includes at least the N d Ga
The cracks are present in an area 25 mm or more from the surface of the Os melt, and the inner surface of the heat insulating cylinder is designed to have a tapered surface that is almost the same as the taper of the heater in the part facing the heater. We have found that this can be prevented.

従来のアフターヒーターはクラックが最も発生しやすい
場所(すなわちN d G a Os融液の液面から2
0mm−60mmの特定区間)を効果的になだらかに降
温するように設けられていないので、本発明の装置では
アフターヒーターを設ける位置を特定した。すなわち、
アフターヒータを設ける位置を特定区間と一致させると
、インゴットの先端側で温度勾配が急峻になり、クラッ
クが発生しやすくなる。また、融液液面から60mmま
での区間全体にアフターヒーターを設けても同様にクラ
ックが発生しやすい、クラック発生に有効であるのはア
フターヒーターをその下側で特定区間より5mm上方に
ずらすことである。しかしながら、アフターヒーターの
上側をN d G a Os融液の液面より120mm
を超えてずらすことは、これにより温度勾νはさらに緩
やかにはならないので、25−120mmの区間内にア
フターヒーターを設けることが好ましい。
Conventional after-heaters are used in areas where cracks are most likely to occur (i.e., in areas 2
In the apparatus of the present invention, the position where the after-heater is to be installed was specified, since it is not provided to effectively and gradually lower the temperature in the specified section (0 mm to 60 mm). That is,
If the position where the after-heater is provided coincides with the specific section, the temperature gradient will become steeper on the tip side of the ingot, making it easier for cracks to occur. Furthermore, even if the afterheater is installed in the entire section up to 60mm from the melt surface, cracks are likely to occur as well.What is effective for cracking is to shift the afterheater 5mm above the specific section below it. It is. However, the upper side of the afterheater is placed 120 mm from the liquid level of the N d Ga Os melt.
It is preferable to provide an after-heater within the range of 25 to 120 mm, since if the temperature gradient ν is shifted by more than 20 mm, the temperature gradient ν will not become even gentler.

さらに、従来の保温筒は装置全体の保温には効果があっ
たが、クラックが最も発生しやすい場所の保温には効果
がなかったので、保温筒の構造も改善した。まず第1に
アフターヒーターとほぼ同じテーパーを保温筒の内面に
付けることにより、アフターヒーターの熱が出来るだけ
インゴットに多(向かうようにした。
Furthermore, while conventional heat-insulating tubes were effective in keeping the entire device warm, they were not effective in keeping the areas where cracks were most likely to occur, so the structure of the heat-insulating tube was improved. First of all, by attaching a taper similar to that of the afterheater to the inner surface of the heat insulating cylinder, we made sure that as much of the heat from the afterheater as possible was directed toward the ingot.

(作用) 請求項1M己載の方法はけ特定区間の温度勾配を従来よ
り緩やかになるように制御する方法である。従来法と本
発明法の温度勾配を特定区間で比較すると、従来法では
低温側で急激に温度が低下していたために、特定区間全
体の温度勾配が急峻になっていた。このような温度勾配
ではクラックが発生しやすいので本発明は低温側の冷却
を妨げて、緩やかな温度勾配を達成した。
(Function) The method recited in claim 1M is a method for controlling the temperature gradient in a specific area to be gentler than before. Comparing the temperature gradients of the conventional method and the method of the present invention in a specific section, it was found that in the conventional method, the temperature suddenly decreased on the low temperature side, so the temperature gradient of the entire specific section became steep. Since cracks are likely to occur with such a temperature gradient, the present invention prevents cooling on the low temperature side to achieve a gentle temperature gradient.

請求項2記載の方法のアニールは引上げ後インゴットに
残存する歪を少なくする手段である。この方法は従来法
で炉から取り出した後の放置中に発生するクラックの防
止に有効である。請求項3記載の装置は、インゴットに
クラックが発生しやすい、融液面から比較的離れた区間
の温度勾配な緩やかにして単結晶を育成する装置である
The annealing of the method according to claim 2 is a means for reducing the strain remaining in the ingot after pulling. This method is effective in preventing cracks that occur during storage after being removed from the furnace in the conventional method. The apparatus according to claim 3 is an apparatus for growing a single crystal by making the temperature gradient gentle in a section relatively far from the melt surface where cracks are likely to occur in the ingot.

以下、第1図を参照して実施例により本発明を更に詳し
く説明する。
Hereinafter, the present invention will be explained in more detail by way of examples with reference to FIG.

(実施例) 実施例1 等モル量のNd、O,とGa*Osを混合し、CIP成
形後1500℃で焼結した。得られた焼結体を直径10
0mmのIr製ルツボ1に入れ、高周波コイル4による
加熱により窒素雰囲気中で1600℃で融解した。
(Examples) Example 1 Equimolar amounts of Nd, O, and Ga*Os were mixed and sintered at 1500° C. after CIP molding. The obtained sintered body has a diameter of 10
It was placed in a 0 mm Ir crucible 1 and melted at 1600° C. in a nitrogen atmosphere by heating with a high frequency coil 4.

引上げ装置のルツボ1上方には支持台8に固定したIr
製アフターヒータ2を融液7の液面から25mm〜80
mmの区間にテーパ角度的70゜をもって設けた。その
外側にはアルミナ製保温筒5を2と同軸状に設けた。こ
れらにより特定区間aの温度勾配を緩やかにする。
Above the crucible 1 of the pulling device, Ir fixed to the support stand 8 is placed.
Afterheater 2 of 25 mm to 80 mm from the surface of melt 7
It was provided with a taper angle of 70° in a section of mm. On the outside thereof, an alumina heat-insulating cylinder 5 was provided coaxially with 2. With these, the temperature gradient in the specific section a is made gentler.

引上げ棒(図示せず)の先端に着けられた種結晶(直径
6mm)を融液7に接触させて、回転数2 Orpm 
、引上げ速度2.0mm/hrで引上げ、高周波コイル
6の出力をコントロールしながら結晶を育成した。
A seed crystal (diameter 6 mm) attached to the tip of a pulling rod (not shown) was brought into contact with the melt 7, and the number of revolutions was 2 Orpm.
The crystal was grown at a pulling speed of 2.0 mm/hr while controlling the output of the high frequency coil 6.

上記方法により得られたインゴットの温度分布を第2図
に示す、特定区間aの温度勾配は35℃/ c mであ
った。
The temperature distribution of the ingot obtained by the above method is shown in FIG. 2, and the temperature gradient in specific section a was 35° C./cm.

上記方法により7本のインゴットを製造したが結晶育成
中にもインゴット放置中にもクラックが発生しなかった
Seven ingots were produced using the above method, and no cracks occurred during crystal growth or while the ingots were left standing.

比較例 第3図の装置により、アフターヒーティング及び保温条
件以外は実施例1と同じ方法によりインゴットの引上げ
を行った所、第4図に示す温度勾配が得られた。特定区
間の温度勾配は70℃/cmであった。4本のインゴッ
トは育成中にクラックが発生し、3本のインゴットは放
置中にクラックが発生した。
Comparative Example When an ingot was pulled using the apparatus shown in FIG. 3 in the same manner as in Example 1 except for after-heating and heat retention conditions, the temperature gradient shown in FIG. 4 was obtained. The temperature gradient in the specific section was 70°C/cm. Cracks occurred in four ingots during growth, and cracks occurred in three ingots while they were left.

実施例2 比較例1において育成中にクラックが発生しなかったイ
ンゴット(育成後徐冷状態)を、直ちに均熱性が優れた
マツフル炉にいれ20℃/ h rで昇温し1400℃
で10時間保持し、20℃/hrで降温するアニールを
行ったところ、その後の放置中のクラックは起こらなか
った。
Example 2 The ingot in which no cracks occurred during growth in Comparative Example 1 (slowly cooled after growth) was immediately placed in a Matsufuru furnace with excellent heat uniformity and heated at a rate of 20°C/hr to 1400°C.
When annealing was carried out by holding the sample for 10 hours and lowering the temperature at a rate of 20° C./hr, no cracks occurred during subsequent standing.

(発明の効果) 以上説明したように本発明によれば N d G a Os単結晶の製造において、結晶育成
中にもまた放置中にもクラックの発生を防止することが
できるので、歩留まりの向上及び大型基板の製造に寄与
する。
(Effects of the Invention) As explained above, according to the present invention, in the production of N d Ga Os single crystals, it is possible to prevent the occurrence of cracks both during crystal growth and during standing, resulting in an improvement in yield. and contributes to the manufacture of large substrates.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明請求項3記載の装置の実施例を示す断面
図、 第2図は実施例1における温度勾配を示すグラフ、 第3図は従来の結晶引上げ装置の断面図、第4図は従来
法における温度勾配を示すグラフである。 1−ルツボ、2−アフターヒーター、3−ジルコニアバ
ブル、4は高周波加熱コイル、5.6−保温筒、7−融
液、a−特定区間(融液7の表面から20−60 m 
mの区間) 第1図 第3図
FIG. 1 is a cross-sectional view showing an embodiment of the apparatus according to claim 3 of the present invention, FIG. 2 is a graph showing the temperature gradient in Example 1, FIG. 3 is a cross-sectional view of a conventional crystal pulling apparatus, and FIG. is a graph showing the temperature gradient in the conventional method. 1- crucible, 2- after heater, 3- zirconia bubble, 4 is high frequency heating coil, 5.6- heat insulation cylinder, 7- melt, a- specific section (20-60 m from the surface of melt 7
m section) Figure 1 Figure 3

Claims (1)

【特許請求の範囲】 1、NdGaO_3単結晶を引上げ法により育成するに
際し、前記NdGaO_3単結晶の引上げ軸方向の温度
勾配を、NdGaO_3融液の液面から20mm〜60
mmの区間において40℃/cm以下とすることを特徴
とする単結晶の製造方法。 2、引上げ法により育成したNdGaO_3単結晶を、
引上げた後に1000℃以上の温度でアニールすること
を特徴とする単結晶の製造方法。 3、NdGaO_3単結晶の引上げ装置であって、Nd
GaO_3の融液を収容するルツボと、前記ルツボ内の
融液を加熱する加熱手段と、前記ルツボの開口部から引
上げられた単結晶の側面を取り囲みかつ引上げ方向にテ
ーパを有する中空体アフターヒーターと、アフターヒー
ターの外側を取り囲む保温筒と、を含んでなる単結晶引
上げ装置において、 前記アフターヒーターが、前記NdGaO_3融液の液
面から約25mm以上の区間に存在しており、前記保温
筒の内面を前記アフターヒーターと面する部分では該ヒ
ーターのテーパーとほぼ同一のテーパー面とすることを
特徴とする単結晶引上げ装置。
[Claims] 1. When growing an NdGaO_3 single crystal by a pulling method, the temperature gradient in the direction of the pulling axis of the NdGaO_3 single crystal is set to 20 mm to 60 mm from the liquid level of the NdGaO_3 melt.
A method for producing a single crystal, characterized in that the temperature is 40° C./cm or less in a mm section. 2. NdGaO_3 single crystal grown by the pulling method,
A method for producing a single crystal, which comprises annealing at a temperature of 1000° C. or higher after pulling. 3. NdGaO_3 single crystal pulling equipment,
a crucible for accommodating a melt of GaO_3; a heating means for heating the melt in the crucible; and a hollow after-heater that surrounds a side surface of a single crystal pulled from an opening of the crucible and has a taper in the pulling direction. , a heat-insulating cylinder surrounding the outside of the after-heater, the after-heater being present in a section approximately 25 mm or more from the liquid surface of the NdGaO_3 melt, and the inner surface of the heat-insulating cylinder A single crystal pulling apparatus characterized in that a portion facing the after-heater has a tapered surface that is substantially the same as the taper of the heater.
JP21373590A 1990-08-14 1990-08-14 Single crystal manufacturing method and single crystal pulling apparatus Expired - Lifetime JP2828118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21373590A JP2828118B2 (en) 1990-08-14 1990-08-14 Single crystal manufacturing method and single crystal pulling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21373590A JP2828118B2 (en) 1990-08-14 1990-08-14 Single crystal manufacturing method and single crystal pulling apparatus

Publications (2)

Publication Number Publication Date
JPH0497989A true JPH0497989A (en) 1992-03-30
JP2828118B2 JP2828118B2 (en) 1998-11-25

Family

ID=16644140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21373590A Expired - Lifetime JP2828118B2 (en) 1990-08-14 1990-08-14 Single crystal manufacturing method and single crystal pulling apparatus

Country Status (1)

Country Link
JP (1) JP2828118B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321696A (en) * 1993-05-14 1994-11-22 Nippon Telegr & Teleph Corp <Ntt> Production of ndgao3 single crystal
JPH0782088A (en) * 1993-09-17 1995-03-28 Shinkosha:Kk Method for growing single crystal
JP2007077013A (en) * 2005-09-13 2007-03-29 Schott Ag Method and apparatus for making highly uniform low-stress single crystal by pulling from melt and use of the single crystal
EP2133450A1 (en) * 2007-03-14 2009-12-16 Nippon Mining & Metals Co., Ltd. Substrate for epitaxial growth and method for producing nitride compound semiconductor single crystal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101329408B1 (en) 2011-12-23 2013-11-14 재단법인 포항산업과학연구원 Apparatus for directionally solidfying silicion

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321696A (en) * 1993-05-14 1994-11-22 Nippon Telegr & Teleph Corp <Ntt> Production of ndgao3 single crystal
JPH0782088A (en) * 1993-09-17 1995-03-28 Shinkosha:Kk Method for growing single crystal
JP2007077013A (en) * 2005-09-13 2007-03-29 Schott Ag Method and apparatus for making highly uniform low-stress single crystal by pulling from melt and use of the single crystal
US7868708B2 (en) 2005-09-13 2011-01-11 Schott Ag Method and apparatus for making a highly uniform low-stress single crystal by drawing from a melt and uses of said crystal
EP2133450A1 (en) * 2007-03-14 2009-12-16 Nippon Mining & Metals Co., Ltd. Substrate for epitaxial growth and method for producing nitride compound semiconductor single crystal
EP2133450A4 (en) * 2007-03-14 2010-12-08 Nippon Mining Co EPITAXIAL GROWTH SUBSTRATE AND METHOD FOR MANUFACTURING A NITRIDE COMPOUND SEMICONDUCTOR MONOCRYSTAL

Also Published As

Publication number Publication date
JP2828118B2 (en) 1998-11-25

Similar Documents

Publication Publication Date Title
EP0748884B1 (en) Process for producing polycrystalline semiconductors
KR20100016435A (en) Quartz glass crucible for silicon single crystal pulling operation and process for manufacturing the same
KR0157323B1 (en) Method for producing manganese-zinc ferrite single crystal using local melt zone formation method and apparatus
JP3086850B2 (en) Method and apparatus for growing single crystal
JP3533812B2 (en) Crystal manufacturing apparatus by Czochralski method, crystal manufacturing method, and crystal manufactured by this method
JPH0497989A (en) Production of single crystal and pulling up device for single crystal
JP2509477B2 (en) Crystal growth method and crystal growth apparatus
JPS63222091A (en) Crucible for pulling up silicon single crystal
JP3120662B2 (en) Crucible for growing crystals
JP2021031341A (en) Production method of lithium tantalate single crystal
JP2543449B2 (en) Crystal growth method and apparatus
JP3018738B2 (en) Single crystal manufacturing equipment
JP7486743B2 (en) Method for producing FeGa alloy single crystal
JP3369394B2 (en) Crystal preparation method
JPH06256091A (en) (nd,la)gao3 single crystal free from twin crystal and its production
JPH09202685A (en) Single crystal pulling device
JPH06128075A (en) Growing method for single crystal
JPH07109195A (en) Crystal growth apparatus and crystal growth method
JPH06135800A (en) Production of single crystal
JPH0692781A (en) Production of single crystal and apparatus therefor
JPH06183895A (en) Production of neodymium-doped yttrium-aluminum garnet single crystal
JPH0250077B2 (en)
JPH0341432B2 (en)
JPS59107996A (en) Single crystal growing up method of solid solution composition of inorganic compound oxide
JPH03193689A (en) Production of compound semiconductor crystal

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070918

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100918

Year of fee payment: 12

EXPY Cancellation because of completion of term