JPH049772B2 - - Google Patents
Info
- Publication number
- JPH049772B2 JPH049772B2 JP58104148A JP10414883A JPH049772B2 JP H049772 B2 JPH049772 B2 JP H049772B2 JP 58104148 A JP58104148 A JP 58104148A JP 10414883 A JP10414883 A JP 10414883A JP H049772 B2 JPH049772 B2 JP H049772B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- liquid phase
- solid acid
- catalyst
- organic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000006243 chemical reaction Methods 0.000 claims description 114
- 239000003054 catalyst Substances 0.000 claims description 51
- 238000000034 method Methods 0.000 claims description 32
- 239000002994 raw material Substances 0.000 claims description 30
- 239000007791 liquid phase Substances 0.000 claims description 27
- 238000004821 distillation Methods 0.000 claims description 26
- 238000006460 hydrolysis reaction Methods 0.000 claims description 20
- 239000011973 solid acid Substances 0.000 claims description 18
- 238000006053 organic reaction Methods 0.000 claims description 14
- 239000000835 fiber Substances 0.000 claims description 10
- 230000002378 acidificating effect Effects 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 6
- 238000005341 cation exchange Methods 0.000 claims description 5
- 238000005886 esterification reaction Methods 0.000 claims description 5
- 239000003729 cation exchange resin Substances 0.000 claims description 4
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 3
- 238000006703 hydration reaction Methods 0.000 claims description 3
- 238000000066 reactive distillation Methods 0.000 description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 25
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 24
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 24
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 21
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 21
- 230000007062 hydrolysis Effects 0.000 description 18
- 239000007788 liquid Substances 0.000 description 18
- 238000009835 boiling Methods 0.000 description 9
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 239000007795 chemical reaction product Substances 0.000 description 5
- 239000011259 mixed solution Substances 0.000 description 5
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 229920001429 chelating resin Polymers 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 235000019441 ethanol Nutrition 0.000 description 4
- 239000003456 ion exchange resin Substances 0.000 description 4
- 229920003303 ion-exchange polymer Polymers 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 230000007420 reactivation Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000032050 esterification Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229940023913 cation exchange resins Drugs 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010931 ester hydrolysis Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- -1 zeolites Chemical class 0.000 description 2
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical class O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical group O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
【発明の詳細な説明】
本発明は固体酸触媒を用いる有機反応を短時間
の内に高い反応率で、しかも経済的におこなわせ
る方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for carrying out an organic reaction using a solid acid catalyst in a short period of time, at a high reaction rate, and moreover economically.
固体酸触媒にはゼオライトのようなシリカ・ア
ルミナ化合物、ヘテロポリ酸、強酸性イオン交換
樹脂など種々のものがあるが、イオン交換樹脂を
除いては、水を含む系で使用した場合、著しく活
性が低下したり、溶解したりするため水を含む系
で用いられる固体酸触媒は殆ど強酸性陽イオン交
換樹脂が主体であり、アンバーライト1R−
120B、アンバーライト200C(H)、アンバーリスト
15などはその例である。 There are various types of solid acid catalysts, including silica/alumina compounds such as zeolites, heteropolyacids, and strongly acidic ion exchange resins, but with the exception of ion exchange resins, their activity is significantly lower when used in systems containing water. Most solid acid catalysts used in water-containing systems are mainly made of strongly acidic cation exchange resins, and Amberlite 1R-
120B, Amberlite 200C(H), Amberlist
15 is an example.
これらのイオン交換樹脂は通常球状で有効径は
0.4〜0.7mm程度であるが、粒径のより小さいもの
を使用してもよいし、必要なら粉砕して使用して
もよい。粒径が小さければ比表面積は大きくなる
から反応速度は速くなるが、あまり粒径が小さく
なると液体との触媒抵抗が大きくなり、操作上の
不便を伴なうので好ましくない。 These ion exchange resins are usually spherical and have an effective diameter of
The particle size is approximately 0.4 to 0.7 mm, but smaller particles may be used, or they may be pulverized if necessary. If the particle size is small, the specific surface area will be large and the reaction rate will be faster; however, if the particle size is too small, the catalytic resistance with the liquid will increase, which is undesirable because it will cause operational inconvenience.
これらの固体酸触媒を陽いる有機反応には(1)固
体酸触媒との接触下に反応中に蒸留を伴なわない
液相反応を行なわせる方法と(2)固体酸触媒の存在
下に反応中に蒸留を伴なう気液相反応を行なわせ
る方法とがある。前者の反応においてこれらの固
体酸触媒と反応原料との接触は通常、充填塔か撹
拌槽内で行なわれる。標準状態で気体の反応原料
も加圧して液化し充填塔で反応させるのが通例で
ある。このような方式では、前に記したように、
比表面積を大きくすることで反応速度を上げるこ
とができ、極めて有効な方法であるが致命的な欠
陥も合わせ持つている。 These organic reactions using solid acid catalysts include (1) a method in which a liquid phase reaction is carried out without distillation during the reaction in contact with a solid acid catalyst, and (2) a method in which the reaction is carried out in the presence of a solid acid catalyst. Among them, there is a method of performing a gas-liquid phase reaction accompanied by distillation. In the former reaction, contact between these solid acid catalysts and the reaction raw materials is usually carried out in a packed column or a stirring tank. It is customary to pressurize and liquefy the reaction raw material, which is a gas under standard conditions, and then react it in a packed column. In such a method, as mentioned earlier,
This is an extremely effective method that can increase the reaction rate by increasing the specific surface area, but it also has a fatal flaw.
すなわち、反応槽内に未反応原料と反応生成物
とが共存するため反応が平衡状態に達した後は、
それ以上は反応は進行しない。 In other words, after the reaction reaches an equilibrium state because unreacted raw materials and reaction products coexist in the reaction tank,
The reaction does not proceed any further.
例えば酢酸メチル1モル、水4モル、メタノー
ル0.4モルの混合溶液をイオン交換樹脂触媒と接
触させた場合、この反応が平衡に達したときの加
水分解率は約55%である。また使用する触媒の量
は反応原料との接触時間で決定される。換言すれ
ば使用する触媒の量は単位時間当り触媒と接触さ
せる反応原料流体の容積に比例する。仮に、100
%加水分解が起るとした場合と比較すると、この
例では、ほぼ2倍の触媒量と2倍の大きさの反応
槽を必要とすることになる。 For example, when a mixed solution of 1 mole of methyl acetate, 4 moles of water, and 0.4 moles of methanol is brought into contact with an ion exchange resin catalyst, the hydrolysis rate is approximately 55% when the reaction reaches equilibrium. Further, the amount of catalyst used is determined by the contact time with the reaction raw materials. In other words, the amount of catalyst used is proportional to the volume of reactant fluid that is contacted with the catalyst per unit time. If 100
Compared to if % hydrolysis were to occur, this example would require approximately twice the amount of catalyst and twice the size of the reactor.
勿論、反応原料である水を更に過剰に加えて加
水分解率を上げることは可能である。例えば、醋
酸メチルに対して10モル倍の水を用いれば約75%
の加水分解率が得られる。しかしながら、それに
よつて単に触媒使用量が増え、反応槽も大型にな
るばかりでなく、未反応の水を系外に除去するた
めに膨大なエネルギーを必要とすることになり、
全く実用にならない。 Of course, it is possible to further increase the hydrolysis rate by adding an excess amount of water, which is a reaction raw material. For example, if you use 10 times the mole of water to methyl acetate, it will be approximately 75%
A hydrolysis rate of However, this not only increases the amount of catalyst used and increases the size of the reaction tank, but also requires a huge amount of energy to remove unreacted water from the system.
It's not practical at all.
このような欠陥を持たず、たとえ平衡常数の極
めて小さい反応であつても、事実上反応を完全に
おこなわせることができるのが後者のいわゆる反
応蒸留法である。この方法は蒸留塔内に触媒を充
填し、反応させつつ生成物を系外に取り出す方法
である。先の酢酸メチルの加水分解の例では、反
応生成物の酢酸の沸点が最も高いから、生成する
と同時に反応部から分離して塔底に流下する。一
方、反応原料の酢酸メチルと水は酢酸に比較する
と沸点が低いから反応部に止まり、更に反応の進
行に関与する。従つて、反応時間を適切に選べば
事実上100%の反応率を得ることができる。 The latter method, the so-called reactive distillation method, does not have such defects and can virtually carry out the reaction completely even if the reaction has an extremely small equilibrium constant. This method is a method in which a catalyst is packed into a distillation column and the product is taken out of the system while the reaction takes place. In the above example of hydrolysis of methyl acetate, the reaction product acetic acid has the highest boiling point, so as soon as it is produced, it is separated from the reaction section and flows down to the bottom of the column. On the other hand, since the reaction raw materials methyl acetate and water have lower boiling points than acetic acid, they remain in the reaction zone and further participate in the progress of the reaction. Therefore, if the reaction time is selected appropriately, a reaction rate of virtually 100% can be obtained.
しかしながら、この反応蒸留法にも幾つかの問
題がある。反応蒸留法では反応原料や反応生成物
のうち少なくとも1つの化合物は気相であり、少
なくとも1つの化合物は液相で存在する。触媒層
はこの液体で濡れていながら、なおかつ気体が容
易にこの触媒層を通過できるものでなければなら
ない。すなわち、反応蒸留という操作をおこなう
以上、単位容積当りの触媒充填密度は低くならざ
るをえない。 However, this reactive distillation method also has some problems. In the reactive distillation method, at least one compound among the reaction raw materials and reaction products is in the gas phase, and at least one compound is in the liquid phase. The catalyst layer must be wet with this liquid and yet allow gas to easily pass through the catalyst layer. That is, as long as the operation of reactive distillation is performed, the catalyst packing density per unit volume must be low.
蒸留を伴なわない反応では1m3当り、乾燥重量
約600Kgの触媒を充填できるが、反応蒸留塔では
通常1m3当りの充填量は200Kg程度に過ぎず、反
応槽としての反応蒸留塔の設備コストは液相で用
いる反応槽とは比較にならない程高いものとな
る。また、このように充填密度が低いことは必然
的に反応原料と触媒の接触効率を下げることにな
るから、反応蒸留法ではより多くの触媒が必要で
設備費をより大きなものにしてしまう。 In a reaction that does not involve distillation, a dry weight of about 600 kg of catalyst can be packed per 1 m 3 , but in a reactive distillation column, the amount packed per 1 m 3 is usually only about 200 kg, which reduces the equipment cost of the reactive distillation column as a reaction tank. is incomparably higher than that in a reaction tank used in the liquid phase. In addition, such a low packing density inevitably lowers the contact efficiency between the reaction raw materials and the catalyst, so in the reactive distillation method, more catalysts are required, resulting in higher equipment costs.
このように、固体酸触媒を用いる反応蒸留法の
1つの問題は設備費が高い点にある。そのため高
い反応率が得られるという大きなメリツトがある
にもかかわらず、設備費の高いという欠点で滅殺
され、その用途を限定されたものにしてしまつて
いる。 Thus, one problem with the reactive distillation method using a solid acid catalyst is that the equipment cost is high. Therefore, although it has the great advantage of being able to obtain a high reaction rate, it is defeated by the drawback of high equipment costs, and its applications are limited.
もう1つの問題は反応蒸留法においては触媒の
再生ないしは再賦活が不可能に近いことである。
触媒の活性低下には種々の原因があり、それが触
媒の不可逆的な化学的変化や物理的な破壊による
場合は再賦活は不可能であるが、アルカリ成分や
金属イオンによつて触媒の酸としての機能が低下
した場合や、副反応生成物が触媒の表面を汚染し
反応原料と触媒との接触が阻害されることによる
場合には、鉱酸によるイオン交換処理や、溶媒に
よる洗浄によつて活性を復活させることができる
場合が少くない。 Another problem is that it is nearly impossible to regenerate or reactivate the catalyst in reactive distillation methods.
There are various causes for catalyst activity reduction, and if it is due to irreversible chemical change or physical destruction of the catalyst, reactivation is impossible. If the function of the catalyst deteriorates, or if side reaction products contaminate the surface of the catalyst and prevent contact between the reaction raw materials and the catalyst, ion exchange treatment with mineral acid or cleaning with a solvent may be performed. In many cases, it is possible to restore activity.
前者の反応方法に溶いられる蒸留を伴なわない
反応槽では、同じ反応槽の中で鉱酸の水溶液また
は溶剤と効率よく接触させることができるし、も
し必要であれば触媒を液体スラリーとして他の容
器に容易に移し換えることもできる。 The non-distillation reactor used in the former reaction method allows efficient contact with an aqueous mineral acid solution or solvent in the same reactor and, if necessary, the catalyst as a liquid slurry in another reactor. It can also be easily transferred to a container.
しかし反応蒸留塔内での触媒の再賦活は、この
ように簡単におこなうことはできない。ここでも
再賦活のための薬液と触媒との接触効率が悪いこ
とが致命的な問題となる。作業は不可能ではない
にしろ、大量の薬液を繰返し流下させねばなら
ず、本質的な反応蒸留塔の目的ではない再賦活の
ために塔材質をこの薬液に耐えうるものにしてお
くことが必要である。更に、蒸留塔に充填したと
き十分な空隙率を確保するため触媒の形は大きく
(例えば25mmφのラシヒリング状)、したがつて塔
外に取り出す作業は容易でない。ましてブロツク
状に成形された触媒では塔外に取り出すために
は、塔の頂部をとり外すなどの大規模な作業を必
要とする。このように、塔外に取り出す作業が容
易でないからこそ、触媒は長期に使用することが
重要であるにもかかわらず、蒸留塔内の触媒の再
賦活は事実上不可能である。 However, reactivation of the catalyst within the reactive distillation column cannot be carried out as easily. Here again, poor contact efficiency between the chemical solution for reactivation and the catalyst is a fatal problem. Although the work is not impossible, large amounts of chemical liquid must be repeatedly flowed down, and it is necessary to make the column material capable of withstanding this chemical liquid for reactivation, which is not the essential purpose of a reactive distillation column. It is. Furthermore, when packed in a distillation column, the shape of the catalyst is large (for example, a Raschig ring with a diameter of 25 mm) to ensure sufficient porosity, and therefore it is not easy to take it out of the column. Moreover, in order to remove the catalyst from the column, which is shaped like a block, large-scale operations such as removing the top of the column are required. As described above, since it is not easy to remove the catalyst from the column, it is virtually impossible to reactivate the catalyst inside the distillation column, although it is important to use the catalyst for a long period of time.
以上に述べたように、液相で充填槽又は撹拌槽
で反応させる前者の方法と後者の反応蒸留法とは
それぞれ好ましい性質を持ちながら、同時に欠陥
をも合わせ持ち単独で使用した場合には最良の反
応手段とはいいがたい。 As mentioned above, the former method of reacting in a liquid phase in a packed tank or a stirred tank and the latter reactive distillation method each have favorable properties, but at the same time they also have drawbacks and are best when used alone. It is difficult to say that this is a means of reaction.
本発明はこの両手段を巧みに組み合わせること
により、それぞれの長所のみを発揮させ、欠陥部
分を互いに補わさせ、極めて経済的に有機反応を
おこなわせることに成功したものである。 The present invention has succeeded in skillfully combining both of these methods, thereby bringing out only their respective strengths and compensating for each other's deficiencies, thereby allowing an extremely economical organic reaction to occur.
本発明は要旨とする所は固体酸触媒を用いる有
機反応において、先ず反応原料の全部又は一部を
固体酸触媒との触媒下に反応中に蒸留を伴なわな
い液相反応を行なわせ、次いでこの液相反応を行
なつた反応原料を固体触媒の存在下に反応中に蒸
留を伴なう気液相反応を行なわせ、前出の反応原
料の残部がある場合にはこれを後段の気液相反応
で向流接触させることを特徴とする有機反応方法
に存するものであるが、本発明の適用される有機
反応としてはエステル化反応、水和反応あるいは
加水分解反応などをあげることができる。 The gist of the present invention is that in an organic reaction using a solid acid catalyst, first, all or a part of the reaction raw materials are subjected to a liquid phase reaction without distillation during the reaction under the catalysis of a solid acid catalyst, and then The reaction raw material that has undergone this liquid phase reaction is subjected to a gas-liquid phase reaction accompanied by distillation in the presence of a solid catalyst, and if there is any remaining reaction raw material, it is transferred to the subsequent gas. This is an organic reaction method characterized by countercurrent contact in a liquid phase reaction, and organic reactions to which the present invention can be applied include esterification reactions, hydration reactions, and hydrolysis reactions. .
また反応中に蒸留を伴なわない液相反応に用い
る固体酸触媒としては粒度1mm以下の球状または
破砕状の強酸性陽イオン交換樹脂あるいは直径
100μ以下の強酸性陽イオン交換繊維が好ましく、
他方反応中に蒸留を伴なう気液相反応に用いる固
体酸触媒としては直径100μ以下の強酸性陽イオ
ン交換繊維が望ましい。 In addition, solid acid catalysts used in liquid phase reactions that do not involve distillation during the reaction are spherical or crushed strong acid cation exchange resins with a particle size of 1 mm or less, or
Strongly acidic cation exchange fibers of 100μ or less are preferred;
On the other hand, as a solid acid catalyst used in a gas-liquid phase reaction involving distillation during the reaction, strongly acidic cation exchange fibers with a diameter of 100 μm or less are desirable.
強酸性カチオン交換繊維としてはたとえばポリ
プロピレン繊維に膨潤剤の存在下でスチレンモノ
マー、ジビニルベンゼンモノマーを含浸させ重合
せしめた後スルフオン化して得られたもの、繊維
体にスチレン、ジビニルベンゼンをグラフト重合
した後にスルフオン化したもの、ポリビニル系繊
維を熱処理し、部分的に炭化せしめた後にスルフ
オン化したもの、スルフオン基を有するモノマ
ー、たとえばビニルスルフオン酸やスチレンスル
フオン酸などを他のモノマーと共重合させたもの
を繊維状にしたものが使用できる。 Examples of strongly acidic cation exchange fibers include those obtained by impregnating polypropylene fibers with styrene monomers and divinylbenzene monomers in the presence of a swelling agent, polymerizing them, and then sulfonating them, and those obtained by graft polymerizing styrene and divinylbenzene onto the fibers. Sulfonated products, polyvinyl fibers that are heat-treated and partially carbonized and then sulfonated, monomers with sulfon groups, such as vinyl sulfonic acid and styrene sulfonic acid, copolymerized with other monomers. A fibrous material can be used.
以下に本発明方法を先に用いた酢酸メチルの加
水分解を再び例にとつて具体的に説明する。本発
明方法は反応蒸留をも併用するのが前提であるか
ら、加水分解率を98%と仮定して原料を反応プロ
セスに送ることができる。蒸留を伴なわない反応
の場合、仮に、100モルの酢酸を結果としてうる
ためには、反応率が55%であるから、約180モル
の酢酸メチルと720モルの水を供給しなければな
らず、未反応のエステル80モル、水620モルを蒸
留及び抽出などの手段で分離し、リサイクルする
ことが必要である。これに対して本発明の反応蒸
留を併わせて用いる場合は、供給原料は酢酸メチ
ル102モル、水408モルでよいことになる。 Hereinafter, the method of the present invention will be specifically explained using the hydrolysis of methyl acetate as an example. Since the method of the present invention is based on the premise that reactive distillation is also used, the raw material can be sent to the reaction process assuming a hydrolysis rate of 98%. In the case of a reaction that does not involve distillation, in order to obtain 100 moles of acetic acid as a result, the reaction rate is 55%, so approximately 180 moles of methyl acetate and 720 moles of water must be supplied. It is necessary to separate 80 moles of unreacted ester and 620 moles of water by means such as distillation and extraction and recycle them. On the other hand, when the reactive distillation of the present invention is used in combination, the feedstocks may be 102 moles of methyl acetate and 408 moles of water.
したがつて本発明のように反応蒸留を併用する
場合、前段の蒸留を併わない反応で用いる触媒量
は約1/2量にしても加水分解は変わらず、しかも
触媒の機能を劣化させる触媒毒はここで捕捉さ
れ、後段の反応蒸留塔へはこのような触媒毒を送
ることがない。 Therefore, when using reactive distillation in combination as in the present invention, even if the amount of catalyst used in the reaction without distillation in the first stage is reduced to about half the amount, the hydrolysis will not change, and moreover, the catalyst will deteriorate the function of the catalyst. Poisons are captured here and are not sent to the subsequent reactive distillation column.
後段の反応を行なう反応蒸留塔は触媒を充填し
た反応部と触媒を充填しない精留部とからなり、
エステルの加水分解では塔の下半部を精留部、上
半部を反応部とする。醋酸メチルの加水分解では
処理される原液は反応部の最下端、すなわち精留
部の最上端に供給される。 The reactive distillation column that performs the subsequent reaction consists of a reaction section filled with a catalyst and a rectification section not filled with a catalyst.
In the hydrolysis of esters, the lower half of the column is used as a rectification section and the upper half is used as a reaction section. In the hydrolysis of methyl acetate, the stock solution to be treated is fed to the bottom end of the reaction section, ie, the top end of the rectification section.
前段の反応槽で55%が加水分解された液、すな
わち46モルの未反応醋酸メチル、56モル醋酸、同
じく56モルのメタノール、352モルの水の混合溶
液が反応蒸留塔に供給されると、沸点の高い醋酸
はそのまま、精留部を経て塔底に流下し、反応部
に入ることはない。 When the liquid that was 55% hydrolyzed in the previous reaction tank, that is, a mixed solution of 46 moles of unreacted methyl acetate, 56 moles of acetic acid, 56 moles of methanol, and 352 moles of water, is supplied to the reactive distillation column. Acetic acid, which has a high boiling point, flows directly to the bottom of the column via the rectification section and does not enter the reaction section.
すなわち反応蒸留塔へは醋酸メチル46モル、メ
タノール56モル、水352モルの混合液を供給した
ことに等しい。反応蒸留のみですべての反応をお
こなわせる場合と比較する前段の蒸留を伴なわな
い反応を併用した場合の利点は単に、負荷が減少
しただけではなく、重要なのは酢酸メチルと水の
モル比の調整機能にある。上の例ではこの比は46
対352、すなわち1:7.7となる。先に記したよう
にこの比は大きい程加水分解率を高めるが、それ
だけではなく反応速度をも高めるから、後段の反
応を行なわせる反応蒸留塔の規模が小さくなり設
備費の大幅な節約になる。 In other words, this is equivalent to supplying a mixed solution of 46 moles of methyl acetate, 56 moles of methanol, and 352 moles of water to the reactive distillation column. The advantage of using a reaction that does not involve distillation in the first stage, compared to the case where all reactions are carried out only by reactive distillation, is not only that the load is reduced, but also that it is important to adjust the molar ratio of methyl acetate and water. It's in the function. In the example above this ratio is 46
The ratio is 352, or 1:7.7. As mentioned earlier, the larger the ratio, the higher the hydrolysis rate, but it also increases the reaction rate, which reduces the size of the reactive distillation column that performs the subsequent reaction, resulting in a significant savings in equipment costs. .
エステル化の場合は加水分解とは逆に、液相で
一部反応をおこなわせた結果の液は、反応蒸留塔
の反応部の上部に供給される。すでに生成されて
いたエステルは直ちに塔頂から排出され、未反応
の酸とアルコールは反応部を流下しながら反応は
進行していく。 In the case of esterification, in contrast to hydrolysis, the resulting liquid is partially reacted in the liquid phase and is supplied to the upper part of the reaction section of the reactive distillation column. The ester that has already been produced is immediately discharged from the top of the column, and the reaction proceeds while unreacted acid and alcohol flow down the reaction section.
このように有機反応の一部を、まず前段の蒸留
を伴なわない反応により液相でほぼ平衡に近い段
階にまで達せしめ、次いで後段の蒸留を伴なう反
応蒸留反応によつて反応率を更に高める本発明方
法は極めて有効かつ、新規な反応方法である。し
かし本発明の実施に当つては必ずしも原料のすべ
てを前段の蒸留を伴なわない液相で処理し、その
処理液をそのまま全部後段の蒸留を伴う反応を行
なわせる反応蒸留塔へ供給するものに制約される
ものではない。場合によつては一部変更を加えて
実施するのが有利な場合がある。これには反応に
あずかる原料の沸点差が大きい場合をあげること
ができ、例えばエステル化における酸とアルコー
ル、エステルの加水分解におけるエステルと水、
オレフインの水和におけるオレフインと水などが
ある。 In this way, a part of the organic reaction is first brought to a stage close to equilibrium in the liquid phase through a reaction that does not involve distillation in the first stage, and then the reaction rate is increased through a reactive distillation reaction that involves distillation in the second stage. The method of the present invention, which further increases the reaction value, is an extremely effective and novel reaction method. However, in carrying out the present invention, it is not necessary to treat all of the raw materials in a liquid phase without distillation in the first stage, and to supply the treated liquid as it is to a reactive distillation column where a reaction involving distillation in the second stage is carried out. There are no restrictions. In some cases, it may be advantageous to implement the method with some modifications. This includes cases where there is a large difference in boiling point between the raw materials involved in the reaction, such as acid and alcohol in esterification, ester and water in ester hydrolysis, etc.
In the hydration of olefin, there is olefin and water.
今少し具体的に記せば酢酸メチルの加水分解に
おいて、反応原料の水と酢酸メチルの混合物を反
応蒸留塔の反応部の最下端に供給したとき、沸点
の低い酢酸メチルは容易に反応部を上昇するのに
反し、水はその一部が反応生成物の酢酸と共に、
反応部に達することなく塔底に流下してしまう。
又酢酸エチルの製造においては、反応部の最上端
に供給される酢酸は反応部を流下するが、エチル
アルコールは塔頂から酢酸エチルと同伴して系外
に出る割合が大きい。エチルアルコールと酢酸エ
チルとは最低沸点の共沸物を作るからより一層ロ
スが大きい。このように複数の反応原料があり、
しかもそれぞれの沸点差が大きい場合には、高沸
点原料を反応蒸留塔反応部の上部から、低沸点原
料を下部から供給し、反応部で向流接触させるの
が好ましいことになる。 To be more specific, in the hydrolysis of methyl acetate, when a mixture of water and methyl acetate as reaction raw materials is supplied to the bottom of the reaction section of a reactive distillation column, methyl acetate, which has a low boiling point, easily rises up the reaction section. On the other hand, some of the water, along with the reaction product acetic acid,
It flows down to the bottom of the tower without reaching the reaction section.
In the production of ethyl acetate, acetic acid supplied to the top of the reaction section flows down the reaction section, but a large proportion of ethyl alcohol exits from the top of the column together with ethyl acetate. Since ethyl alcohol and ethyl acetate form an azeotrope with the lowest boiling point, the loss is even greater. In this way, there are multiple reaction raw materials,
Moreover, when the difference in their boiling points is large, it is preferable to feed the high-boiling raw material from the upper part of the reaction section of the reactive distillation column and the low-boiling raw material from the lower part, and to bring them into countercurrent contact in the reaction part.
他方エステル化やエステルの加水分解におい
て、液相での予備反応をおこなわせないで、反応
蒸留塔に直接原料を供給する場合、2つの原料を
混合して供給するより、それぞれを反応部の上下
両端から供給する方が、反応の効率は高くなり、
換言すれば設備の処理能力が高まることになる。 On the other hand, in esterification and ester hydrolysis, when feeding raw materials directly to a reactive distillation column without performing a preliminary reaction in the liquid phase, rather than feeding two raw materials together, they are placed in the upper and lower parts of the reaction section. The reaction efficiency is higher when supplied from both ends.
In other words, the processing capacity of the equipment will increase.
しかしながらそれでもなお本発明方法の如く液
相での予備反応をおこなわせた結果の液を一ケ所
から供給した場合に及ばない。機能的にも、経済
的にも最良の結果を得るためには本発明方法の実
施に当り原料の1つの一部を分割しておき、残部
の原料の混合物を前段の蒸留を伴ない液相で反応
せしめたのち、後段の蒸留を伴なう反応蒸留塔に
送つて反応させ、その際あらかじめ分割しておい
た一部の原料を反応蒸留塔反応部で向流接触がお
こなわれるような位置から供給したときに得られ
る。 However, this is still not as good as the method of the present invention in which the liquid resulting from the preliminary reaction in the liquid phase is supplied from one place. In order to obtain the best results both functionally and economically, one part of the raw materials is separated when carrying out the process of the invention, and the remaining raw material mixture is distilled into a liquid phase without a previous distillation step. After reacting in the reaction section of the reactive distillation column, it is sent to the reactive distillation column that carries out the subsequent distillation for reaction. Obtained when supplied from
例えば酢酸メチルの加水分解にあつては、酢酸
メチル1モル、水3モルの割合の混合液を、強酸
性カチオン交換樹脂を充填した塔に供給して反応
をほぼ平衡に達せしめたのち、反応蒸留塔反応部
の下部に供給し、同時に酢酸メチル1モル当り1
モルに相当する水を反応部の上部に供給する。 For example, in the case of hydrolyzing methyl acetate, a mixture of 1 mole of methyl acetate and 3 moles of water is supplied to a column packed with a strongly acidic cation exchange resin, and the reaction is brought to almost equilibrium. 1 per mole of methyl acetate.
A molar equivalent of water is supplied to the upper part of the reaction section.
原料の割合比は反応の種類によつて最適値が異
なるが、少なくとも反応が理想的におこなわれる
と仮定したときの、いわゆる理論量の原料は液相
での予備反応に供することが望ましい。 Although the optimum proportion ratio of raw materials differs depending on the type of reaction, it is desirable that at least the so-called stoichiometric amount of raw materials, assuming that the reaction is carried out ideally, be subjected to the preliminary reaction in the liquid phase.
以下実施例を記す。 Examples will be described below.
比較例 1
酢酸メチル1モル、水4モル、メタノール0.4
モルの割合の混合溶液を作り、60℃に加熱した
後、H型に調整したアンバーライト1R−124 200
mlを充填した内径25mmのカラムに上昇流で通液し
た。結果は表1に示す。表中SVは1時間当り、
アンバーライト1R−124充填容積の何倍の液を処
理したかを示す。Comparative example 1 1 mol of methyl acetate, 4 mol of water, 0.4 methanol
Amberlite 1R-124 200 which was adjusted to H type after making a mixed solution with a molar ratio and heating it to 60℃
The liquid was passed through a column with an inner diameter of 25 mm filled with 1.0 mL of the solution in an upward flow. The results are shown in Table 1. SV in the table is per hour.
Indicates how many times the liquid was processed compared to the Amberlite 1R-124 filling volume.
S V 加水分解率
0.5 55%
1.0 55%
1.5 49%
1モルの無水酢酸を得るためには、0.82モルの
酢酸メチル、6.27モルの水の分離が必要であつ
た。 S V Hydrolysis rate 0.5 55% 1.0 55% 1.5 49% To obtain 1 mol of acetic anhydride, it was necessary to separate 0.82 mol of methyl acetate and 6.27 mol of water.
比較例 2
内径25mmの蒸留塔の下部800mm高さまで、直径
4mmのガラス製ヘリツクスを充填し、精留部と
し、その上部400mm高さまで、東レ(株)製イオン交
換繊維IONEXで作つた単繊維の太さが20μのも
のを布状にして直径4mmスパイラル状に巻いた長
さ4mmの円筒型触媒を充填し、反応部とした。反
応部容積は200mlである。Comparative Example 2 A glass helix with a diameter of 4 mm was filled up to a height of 800 mm at the bottom of a distillation column with an inner diameter of 25 mm to form a rectification section, and a single fiber made of ion exchange fiber IONEX manufactured by Toray Industries, Inc. was filled up to a height of 400 mm above the column. A cylindrical catalyst with a length of 4 mm wound spirally with a diameter of 4 mm was filled in a cloth-like material having a thickness of 20 μm to form a reaction section. The reaction section volume is 200ml.
酢酸メチル1モル、メタノール0.4モルの割合
の混合液を反応部の下端から、酢酸メチル4モル
倍に相当する水を反応部の頂部から供給し、前還
流で運転した。原料液はいずれも60℃に加熱し、
酢酸メチル、メタノール、水のモル比は絶えず一
定に保ちながら供給液量を調節し、加水分解率が
95%に達するときの、供給液総量を求めた結果1
時間当り、72mlであつた。 A mixed solution containing 1 mole of methyl acetate and 0.4 mole of methanol was supplied from the bottom of the reaction section, and water equivalent to 4 moles of methyl acetate was supplied from the top of the reaction section, and the reactor was operated under pre-reflux. All raw material liquids were heated to 60℃,
While keeping the molar ratio of methyl acetate, methanol, and water constant, the amount of liquid supplied is adjusted to maintain the hydrolysis rate.
Results of calculating the total amount of supplied liquid when reaching 95% 1
It was 72 ml per hour.
実施例 1
比較例2と同じ実験設備を用い、比較例1にお
いてSVが1の場合に得られた液を、反応部下端
に供給し、比較例2と同様に加水分解率95%が得
られる最大処理量を求めた。1時間当りの処理液
量は110mlであつた。Example 1 Using the same experimental equipment as in Comparative Example 2, the liquid obtained when SV was 1 in Comparative Example 1 was supplied to the lower end of the reaction, and as in Comparative Example 2, a hydrolysis rate of 95% was obtained. The maximum throughput was determined. The amount of treated liquid per hour was 110 ml.
実施例 2
比較例1と同じ方法で、酢酸メチル1モル、水
2モル、メタノール0.4モルの割合の混合液を
SV1で処理した。加水分解率は41%であつた。Example 2 In the same manner as in Comparative Example 1, a mixture of 1 mol of methyl acetate, 2 mol of water, and 0.4 mol of methanol was prepared.
Processed with SV1. The hydrolysis rate was 41%.
この液を比較例2の実験設備の反応部の下端に
供給し、同時に反応部頂部に酢酸メチルの2モル
倍に相当する水を加えた。加水分解率95%が得ら
れたときの最大総液量は1時間当り180mlであつ
た。 This liquid was supplied to the lower end of the reaction section of the experimental equipment of Comparative Example 2, and at the same time, water equivalent to 2 moles of methyl acetate was added to the top of the reaction section. The maximum total liquid volume when a hydrolysis rate of 95% was obtained was 180 ml per hour.
Claims (1)
原料を先ず固体酸触媒との接触下に反応中に蒸留
を伴なわない液相反応を行なわせ、次いでこの液
相反応を経た反応原料を固体酸触媒の存在下に反
応中に蒸留を伴なう気液相反応を行なわせること
を特徴とする有機反応方法。 2 反応原料の一部を前段の液相反応、次いで後
段の気液相反応を行なうと共に反応原料の残部の
直接後段の気液相反応を行なわせ、両者を後段の
気液相反応で向流接触させる特許請求の範囲第1
項記載の有機反応方法。 3 有機反応がエステル化反応、水和反応あるい
は加水分解反応である特許請求の範囲第1項また
は第2項記載の有機反応方法。 4 反応中に蒸留を伴なわない液相反応に用いる
固体酸触媒が粒度1mm以下の球状または破砕状の
強酸性陽イオン交換樹脂あるいは直径100μ以下
の強酸性陽イオン交換繊維である特許請求の範囲
第1項から第3項までのいずれか1項記載の有機
反応方法。 5 反応中に蒸留を伴なう気液相反応に用いる固
体酸触媒が直径100μ以下の強酸性陽イオン交換
繊維である特許請求の範囲第1項から第4項まで
のいずれか1項記載の有機反応方法。[Claims] 1. In an organic reaction using a solid acid catalyst, the reaction raw material is first brought into contact with the solid acid catalyst to undergo a liquid phase reaction without distillation during the reaction, and then subjected to this liquid phase reaction. An organic reaction method characterized by subjecting reaction raw materials to a gas-liquid phase reaction accompanied by distillation during the reaction in the presence of a solid acid catalyst. 2 A part of the reaction raw material undergoes the liquid phase reaction in the first stage, then the gas-liquid phase reaction in the latter stage, and the remaining part of the reaction raw material is directly subjected to the gas-liquid phase reaction in the latter stage, and both are countercurrently reacted in the latter stage gas-liquid phase reaction. Claim 1 to be brought into contact
Organic reaction method described in section. 3. The organic reaction method according to claim 1 or 2, wherein the organic reaction is an esterification reaction, a hydration reaction, or a hydrolysis reaction. 4 Claims in which the solid acid catalyst used in a liquid phase reaction that does not involve distillation during the reaction is a spherical or crushed strongly acidic cation exchange resin with a particle size of 1 mm or less or a strongly acidic cation exchange fiber with a diameter of 100 μ or less The organic reaction method according to any one of items 1 to 3. 5. The solid acid catalyst according to any one of claims 1 to 4, wherein the solid acid catalyst used in the gas-liquid phase reaction that involves distillation during the reaction is a strongly acidic cation exchange fiber with a diameter of 100 μm or less. Organic reaction methods.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58104148A JPS59231027A (en) | 1983-06-13 | 1983-06-13 | Organic reaction using solid acid catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58104148A JPS59231027A (en) | 1983-06-13 | 1983-06-13 | Organic reaction using solid acid catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59231027A JPS59231027A (en) | 1984-12-25 |
JPH049772B2 true JPH049772B2 (en) | 1992-02-21 |
Family
ID=14372991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58104148A Granted JPS59231027A (en) | 1983-06-13 | 1983-06-13 | Organic reaction using solid acid catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59231027A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4237339A1 (en) * | 1992-11-05 | 1994-05-11 | Salzgitter Anlagenbau | A process for the production of formic acid |
GB9815135D0 (en) | 1998-07-14 | 1998-09-09 | Bp Chem Int Ltd | Ester synthesis |
ATE239689T1 (en) * | 1999-10-13 | 2003-05-15 | Sulzer Chemtech Ag | METHOD FOR THE HYDROLYTICAL PRODUCTION OF A CARBOXYLIC ACID AND AN ALCOHOL FROM THE CORRESPONDING CARBOXYLATE |
JP4878415B2 (en) * | 2001-06-07 | 2012-02-15 | 新日鐵化学株式会社 | Method for producing bisphenol A |
-
1983
- 1983-06-13 JP JP58104148A patent/JPS59231027A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59231027A (en) | 1984-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4469905A (en) | Process for producing and extracting C2 to C6 alcohols | |
US5139981A (en) | Process for preparing silver(I)-exchanged resins | |
SU1132787A3 (en) | Method of obtaining isobutene | |
US4087471A (en) | Fixed bed process for the production of t-butanol | |
CA1246620A (en) | Process for the continuous production of alcohols | |
EP0713857B1 (en) | Improved process for preparing unsaturated carboxylic acid esters and novel apparatus for preparing the same | |
Saha et al. | Esterification of formic acid, acrylic acid and methacrylic acid with cyclohexene in batch and distillation column reactors: ion-exchange resins as catalysts | |
KR100579351B1 (en) | A process for preparing vinyl acetate utilizing a catalyst comprising palladium, gold, and any of certain third metals | |
JP2004196805A (en) | METHOD FOR PRODUCING t-BUTANOL | |
JPH049772B2 (en) | ||
JP2003511432A (en) | Method and apparatus for obtaining carboxylic acids and alcohols from the corresponding carboxylic esters by hydrolysis | |
JPH07309800A (en) | Method for producing organic carboxylic acid | |
KR100618363B1 (en) | Olefin hydration process | |
US3053887A (en) | Esterification of iso-olefins | |
CN1108283C (en) | Process for preparing tert-butanol from isobutylene by hydration | |
KR100578945B1 (en) | Production process for hydroxyalkyl ester | |
US4208540A (en) | Process for separation and recovery of isobutene | |
US3140312A (en) | Percarboxylic acid production employing a pretreated, dehydrated acid cation exchange resin | |
CA1100477A (en) | Catalyst comprising phosphoric acid on silica gel, its preparation and use | |
CA3071184A1 (en) | A method for production of methyl methacrylate by oxidative esterification using a heterogeneous catalyst | |
CA2148292A1 (en) | Liquid phase prparation of (meth)-acrylate from alpha-olefin | |
JPS6123770B2 (en) | ||
EP0054576B1 (en) | Process for producing esters from olefins | |
JP2845528B2 (en) | Propylene production method | |
CN1069893C (en) | Process for producing methyl methacrylate and ethyl methacrylate |