[go: up one dir, main page]

JPH0496963A - Epoxy resin composition - Google Patents

Epoxy resin composition

Info

Publication number
JPH0496963A
JPH0496963A JP21272990A JP21272990A JPH0496963A JP H0496963 A JPH0496963 A JP H0496963A JP 21272990 A JP21272990 A JP 21272990A JP 21272990 A JP21272990 A JP 21272990A JP H0496963 A JPH0496963 A JP H0496963A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
particle diameter
crystalline silica
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21272990A
Other languages
Japanese (ja)
Inventor
Hideki Okabe
岡部 秀樹
Koji Ikeda
幸司 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP21272990A priority Critical patent/JPH0496963A/en
Publication of JPH0496963A publication Critical patent/JPH0496963A/en
Pending legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain an epoxy resin composition suitable as a semiconductor molding material having high thermal conductivity, excellent heat-cycle properties with only a slight mold wearing containing a crystalline silica and a silicon nitride having specific averaged particle diameter as inorganic fillers. CONSTITUTION:(A) An epoxy resin composition containing epoxy resin (e.g. cresol-novolak type or bisphenol-A type), a crosslinking agent (preferably phenolic resin, etc., having 80-120 OH equivalent and 60-120 deg.C softening point), a hardener and a hardening accelerator, etc., is mixed with (B) B1: spherical crystalline silica having 10-40mum averaged particle diameter and preferably <=2.2 maximum value of shape factor and B2: silicon nitride having <=10mum averaged particle diameter as inorganic fillers and arbitrarily with other inorganic filler (e.g. molten silica, aluminum hydroxide or clay), then uniformly blended, melted by heating, cooled and crushed to afford the objective epoxy resin composition.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、成形材料樹脂組成物に関するものである。特
に高熱伝導性に優れた半導体用成形材料樹脂組成物に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a molding material resin composition. In particular, the present invention relates to a molding material resin composition for semiconductors having excellent high thermal conductivity.

〔従来技術〕[Prior art]

近年、パワーIC,パワートランジスターなどのパワー
デバイスの高耐久性、高信頼性を図るために、熱抵抗の
小さなパッケージが求められている。マイカレス仕様の
TO220やTO3のフルモールドタイプのパッケージ
においては、リードフレムの放熱部を覆う封止樹脂成形
品の肉厚は、熱放散性を良くして熱抵抗を小さくするた
めにますます薄肉化の傾向にあるが、成形品の肉厚の薄
肉化はパッケージの耐ヒートサイクル性を低下させる問
題を有していた。他方、自動車用レギュレータ、音響・
映像機器の出力回路、電源回路など高電圧、高電力、高
周波用のデバイスのハイブリッドIC化により、ますま
すデバイスは高密度に実装されてきている。デバイスが
実装されるセラミック基板と封止樹脂成形品でなるデバ
イスのパンケージの熱による寸法変化の違いから、セラ
ミック基板が割れたり、実装されたデバイスがはずれる
などの問題を有していた。
2. Description of the Related Art In recent years, packages with low thermal resistance are required in order to improve the durability and reliability of power devices such as power ICs and power transistors. In full mold type packages such as TO220 and TO3 with micaless specifications, the thickness of the sealing resin molded product that covers the heat dissipation part of the lead frame is becoming thinner and thinner to improve heat dissipation and reduce thermal resistance. Although there is a trend, thinning the wall thickness of molded products has had the problem of reducing the heat cycle resistance of the package. On the other hand, automotive regulators, acoustic
BACKGROUND OF THE INVENTION Due to the shift to hybrid ICs for high voltage, high power, and high frequency devices such as output circuits and power supply circuits of video equipment, devices are being increasingly packed in high density. Due to the difference in dimensional changes due to heat between the ceramic substrate on which the device is mounted and the pan cage of the device, which is made of a molded resin molded product, there have been problems such as the ceramic substrate cracking and the mounted device coming off.

かかる、問題の解決方法として、これまで高熱伝導性の
良好なエポキシ樹脂組成物を得るためには、無機充填材
として窒化珪素を用いる技術が特開平2−346575
号公報に記載されていた。窒化珪素を用いると高熱伝導
率と低線膨張率化が図れ、低線膨張率のよる低応力化に
よりヒートサイクル性が大幅に向上する反面、結晶シリ
カのみの配合に比べ、金型磨耗が著しい欠点を有してい
ることが判明した。
As a solution to this problem, in order to obtain a good epoxy resin composition with high thermal conductivity, a technique using silicon nitride as an inorganic filler has been proposed in Japanese Patent Application Laid-Open No. 2-346575.
It was stated in the publication. Using silicon nitride has high thermal conductivity and a low linear expansion coefficient, and the low linear expansion coefficient reduces stress, which greatly improves heat cycle performance, but mold wear is significant compared to a formulation containing only crystalline silica. It turned out that it had some drawbacks.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

そこで、本発明は、高熱伝導性を有し、ヒートサイクル
性に優れ、かつ金型磨耗の少ないエポキシ樹脂組成物を
提供することにある。
Therefore, an object of the present invention is to provide an epoxy resin composition that has high thermal conductivity, excellent heat cycle properties, and less mold wear.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記課題を解決するためになされたものであり
、その特徴は、無機充填材として平均粒径が10〜40
μ−の結晶シリカと平均粒径が101I11以下の窒化
珪素を含むエポキシ樹脂組成物にある。
The present invention has been made to solve the above problems, and is characterized by an inorganic filler having an average particle size of 10 to 40.
An epoxy resin composition containing μ-crystalline silica and silicon nitride having an average particle size of 101I11 or less.

特に好ましい結晶シリカの態様としては前記結晶シリカ
の形状係数の最大値が2,2以下で球状に近いことであ
る。
A particularly preferred aspect of the crystalline silica is that the crystalline silica has a maximum shape factor of 2.2 or less and is close to spherical.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に用いる充填剤の無機充填材としては、結晶シリ
カは平均粒径が10〜40μ−の範囲のもに、窒化珪素
は平均粒径lOμ−以下のものに限定してそれぞれ用い
る必要がある。このように二種類の無機充填材の平均粒
径を上記範囲を限定することによって成形品になったと
き最密充填の構造をとり易く、バインダー樹脂より熱伝
導率が桁違いに優れた無機充填材の隣接距離が短かくな
り高熱伝導性が確保できるからである。したがって、1
0μ−を超えた窒化珪素を用いると最密充填構造を形成
しにくくなるので高熱伝導率が得られなくなる。さらに
、結晶シリカの平均粒径が10μ−未満では溶融時の粘
度が高くなり、成形性が悪くなり充填不良などが発生し
易くなるからであり、平均粒径が40tl#1を超えて
ものでは、成形材料が金型のゲートに詰まる問題を発生
するからである。
As the inorganic filler used in the present invention, it is necessary to limit the use of crystalline silica to those with an average particle size in the range of 10 to 40 μ-, and the use of silicon nitride to those with an average particle size of 10 μ- or less. . In this way, by limiting the average particle diameter of the two types of inorganic fillers to the above range, the molded product can easily have a close-packed structure, and the inorganic filler has an order of magnitude better thermal conductivity than the binder resin. This is because the distance between adjacent materials is shortened and high thermal conductivity can be ensured. Therefore, 1
If silicon nitride with a particle diameter exceeding 0 μ- is used, it becomes difficult to form a close-packed structure, making it impossible to obtain high thermal conductivity. Furthermore, if the average particle size of crystalline silica is less than 10 μ-, the viscosity during melting will be high, the moldability will be poor, and filling defects will easily occur, whereas if the average particle size exceeds 40 tl #1, This is because the molding material may clog the gate of the mold.

なお、結晶シリカの形状係数とは、一つの充填剤を略楕
円形とみたときの長軸と短軸の比を表すものであり、1
は球状を表す。形状係数が2.2を超えた結晶シリカは
、球状から遠ざかり剣状になるので金型磨耗がより著し
くなり好ましくない。
The shape factor of crystalline silica refers to the ratio of the long axis to the short axis when one filler is viewed as a substantially elliptical shape, and is 1
represents spherical shape. Crystalline silica having a shape factor of more than 2.2 is undesirable because it moves away from a spherical shape and becomes sword-shaped, resulting in more significant mold wear.

なお、無機充填材として、前記結晶シリカ、窒化珪素以
外に溶融シリカ、タルク、アルミナ、珪酸力ルシュウム
、炭酸力ルシュウム、水酸化アルミニウム、クレーなど
の粉末などを用いることができる。
In addition to the crystalline silica and silicon nitride, powders of fused silica, talc, alumina, rhusium silicate, rhusium carbonate, aluminum hydroxide, clay, and the like can be used as the inorganic filler.

エポキシ樹脂としては、従来から公知のエポキシ樹脂を
適宜使用することができる。このようなエポキシ樹脂と
しては、その分子中にエポキシ基を少なくとも2個以上
有する化合物が好ましく、分子構造、分子量などに特に
制限されることなく、たとえば、フェノールノボラック
型エポキシ樹脂、タレゾールノボラック型エポキシ樹脂
、ビスフェノールA型エポキシ樹脂または、これらのハ
ロゲン化エポキシ樹脂などである。
As the epoxy resin, conventionally known epoxy resins can be used as appropriate. As such an epoxy resin, a compound having at least two or more epoxy groups in its molecule is preferable, and there are no particular restrictions on molecular structure or molecular weight, and examples include phenol novolac type epoxy resin, Talezol novolac type epoxy resin, etc. resin, bisphenol A type epoxy resin, or these halogenated epoxy resins.

架橋剤としては、フェノール樹脂、メラミン樹脂、アク
リル樹脂、イソシアネート樹脂などが用いることができ
、特に、フェノール樹脂としては、フェノールノボラッ
ク樹脂、タレゾールノボラック樹脂、レゾール樹脂など
があげられ例えば、その中でも1分子中に2個以上の水
酸基をもつフェノール樹脂であり、水酸基当量80〜1
20、軟化点60〜120°Cのものを単独、もしくは
他のものを組み合わせて用いることができる。
As the crosslinking agent, phenol resin, melamine resin, acrylic resin, isocyanate resin, etc. can be used. In particular, as the phenol resin, phenol novolac resin, talesol novolac resin, resol resin, etc. can be mentioned. Among them, for example, 1 A phenolic resin with two or more hydroxyl groups in the molecule, with a hydroxyl equivalent of 80 to 1.
20. Those having a softening point of 60 to 120°C can be used alone or in combination with others.

硬化剤としては、特に限定するものではなく、脂肪族ポ
リアミン、ポリアミド樹脂、芳香族ジアミンなどのアミ
ン系硬化剤、酸無水物硬化剤、ルイス酸錯化合物などを
用いることができる。
The curing agent is not particularly limited, and amine curing agents such as aliphatic polyamines, polyamide resins, and aromatic diamines, acid anhydride curing agents, Lewis acid complex compounds, and the like can be used.

硬化促進剤としては、特に限定するものではなく、リン
系及び又は3級アミン系硬化促進剤を用いることができ
る。
The curing accelerator is not particularly limited, and phosphorus-based and/or tertiary amine-based curing accelerators can be used.

なお、本発明のエポキシ樹脂組成物の配合成分としては
、以上の他に、離型剤、着色剤、カップリング剤などに
ついては、通常用いられているものを必要に応じて配合
して用いることができる。
In addition to the above-mentioned components of the epoxy resin composition of the present invention, commonly used release agents, coloring agents, coupling agents, etc. may be added as necessary. I can do it.

また、上記の配合成分をエポキシ樹脂組成物とするのに
は、配合成分を均一に混合し、加熱熔融、冷却、粉砕の
通常のプロセスで製造することができ、この際に使用さ
れる装置も通常使用されるものをそのまま適用すること
ができる。
In addition, in order to make an epoxy resin composition from the above-mentioned ingredients, it is possible to uniformly mix the ingredients and manufacture it using the usual process of heating and melting, cooling, and pulverizing, and the equipment used at this time is also Those normally used can be applied as they are.

次に本発明を実施例と比較例によって具体的に説明する
Next, the present invention will be specifically explained using Examples and Comparative Examples.

[実施例] 実施例1〜4および、比較例1.2の配合成分について
は、無機充填材は第1表の上段の配合欄に結晶シリカと
窒化珪素の平均粒径と形状係数を変えて示したものを、
その他の配合成分は下記゛のものをそれぞれの量で用い
た。
[Example] Regarding the compounding components of Examples 1 to 4 and Comparative Example 1.2, the inorganic filler was changed in the average particle size and shape factor of crystalline silica and silicon nitride in the formulation column in the upper row of Table 1. What was shown,
The other ingredients listed below were used in their respective amounts.

エポキシ樹脂としては、エポキシ当量200、軟化点8
0°Cのオルソ−クレゾールノボランクエポキシ樹脂を
14重量部を、フェノール樹脂としては、水酸基当量1
05、軟化点100°Cのフェノールノボラック樹脂を
7重量部を、硬化促進剤として2メチルイミダゾール0
.1重量部を、着色剤としてカーボンブランクを5重量
部を、カップリング剤としてエポキシシランを0.5重
量部を、離型剤としてカルナバヮンクスを0.4重量部
を、可撓剤としてシリコーンパウダーを3重量部をそれ
ぞれ用いた。
The epoxy resin has an epoxy equivalent of 200 and a softening point of 8.
14 parts by weight of ortho-cresol novolane epoxy resin at 0°C, and 14 parts by weight of phenol resin with a hydroxyl equivalent of 1
05, 7 parts by weight of phenol novolac resin with a softening point of 100°C, 2 methylimidazole as a curing accelerator
.. 1 part by weight, 5 parts by weight of carbon blank as a coloring agent, 0.5 parts by weight of epoxy silane as a coupling agent, 0.4 parts by weight of carnauba binder as a mold release agent, and silicone powder as a flexibilizing agent. 3 parts by weight of each was used.

上記の各実施例および、比較例において、結晶シリカと
窒化珪素の表面をカップリング剤のエポキシソランで処
理し、上記配合成分をミキサーで3分間均一に混合分散
した後、ロール温度100〜120°Cのミキシングロ
ールで加熱、溶融、混練した。この混練物を、冷却し、
粉砕して各エポキシ樹脂組成物を得た。
In each of the above Examples and Comparative Examples, the surfaces of crystalline silica and silicon nitride were treated with a coupling agent, epoxysolane, and the above ingredients were uniformly mixed and dispersed for 3 minutes with a mixer, and then the roll temperature was set at 100 to 120 degrees. The mixture was heated, melted, and kneaded using a C mixing roll. This kneaded material is cooled,
Each epoxy resin composition was obtained by pulverization.

以上で得た各エポキシ樹脂組成物を用いてトランスファ
成形機で成形した各試験片を用いて、線膨張率係数、熱
伝導率の物性を測定し、その結果を第1表の評価欄に示
した。なお、線膨張率係数の測定は、デュラトメーター
法で行った。熱伝導率の測定は、昭和電工製の迅速熱伝
導率針QTM−D2を使い常態線法で行い、その試験片
は各エポキシ樹脂組成物から作ったφ100■、厚さ3
0mnの円板の成形品を用いた。
Physical properties such as linear expansion coefficient and thermal conductivity were measured using each test piece molded using a transfer molding machine using each epoxy resin composition obtained above, and the results are shown in the evaluation column of Table 1. Ta. Note that the linear expansion coefficient was measured by the duratometer method. Thermal conductivity was measured by the normal wire method using a quick thermal conductivity needle QTM-D2 manufactured by Showa Denko.
A 0 mm disc molded product was used.

また、以上で得た各エポキシ樹脂組成物を用いてトラン
スファ成形機に160IP成形品の40個取り金型を取
付け、14X3.2 wmの大きさのヒートサイクル性
評価用のシリコンチップを内蔵する16DIP成形品と
して、金型温度180°C1成形時間60秒で成形した
。この161)IP成形品を一65°Cで30分と15
0°Cで30分を1サイクルとするヒートサイクルを2
00サイクル行った後、パンケージクランクの発生を3
0倍顕微鏡で検査を行いその個数を測定した。この結果
を第1表の評価欄にヒートサイクル不良率として示した
In addition, using each of the epoxy resin compositions obtained above, a 40-cavity mold for 160IP molded products was attached to a transfer molding machine, and a 16DIP mold with a built-in silicon chip for evaluation of heat cycle properties with a size of 14 x 3.2 wm was installed. A molded article was molded at a mold temperature of 180° C. and a molding time of 60 seconds. This 161) IP molded product was heated to -65°C for 30 minutes and 15 minutes.
2 heat cycles with each cycle being 30 minutes at 0°C.
After 00 cycles, check the occurrence of pan cage crank by 3
The specimens were inspected using a 0x microscope and their number was determined. The results are shown in the evaluation column of Table 1 as the heat cycle failure rate.

なお、金型磨耗量の評価は、実際の封止成形の金型磨耗
量と相関性のあるSE旧法(SEMI G31: Se
m1conducutor Equipment an
d Materials International
 5tandards)に準したもので、前記各エポキ
シ樹脂組成物900dを95°Cにブレヒートし、15
0°Cのアルミニウム製のオリフィスから、70kg/
cdの押出し圧で押出し、押出し後のオリフィスの重量
減少を金型の磨耗量として測定した。オリフィスのノズ
ル径は、φ1.5 mで長さ6.4mのものを用いた。
The amount of mold wear was evaluated using the SE old method (SEMI G31: Se
m1conductor equipment an
d Materials International
5 standards), 900 d of each of the above epoxy resin compositions was preheated to 95°C, and
From an aluminum orifice at 0°C, 70kg/
It was extruded at an extrusion pressure of cd, and the weight loss of the orifice after extrusion was measured as the amount of mold wear. The orifice used had a nozzle diameter of 1.5 m and a length of 6.4 m.

この結果を第1表の評価に金型磨耗量として示した。The results are shown in the evaluation in Table 1 as the amount of mold wear.

第1表下段の評価結果より、実施例1〜4は比較例1.
2に比べ熱伝導率と線膨張率を維持しつつヒートサイク
ル性に優れ、金型磨耗量を大幅に低減できることが確認
できた。
From the evaluation results in the lower row of Table 1, Examples 1 to 4 are compared to Comparative Example 1.
It was confirmed that compared to No. 2, the thermal conductivity and coefficient of linear expansion were maintained, the heat cycle performance was excellent, and the amount of mold wear could be significantly reduced.

〔発明の効果〕〔Effect of the invention〕

本発明による新規なエポキシ樹脂組成物によって、高熱
伝導性を有し、ヒートサイクル性に優れ、かつ金型磨耗
の少ないエポキシ樹脂組成物を得ることができるのであ
る。
The novel epoxy resin composition of the present invention makes it possible to obtain an epoxy resin composition that has high thermal conductivity, excellent heat cycle properties, and less mold wear.

■ 手 続 事件の表示 平成 2年 補正書(自発) 平成 3年 4月 特許願 第212729号 住所 名  称 代表者■ hand Continued Display of incidents 1990 Written amendment (voluntary) April 1991 Patent application No. 212729 address Name representative

Claims (2)

【特許請求の範囲】[Claims] (1)無機充填材として平均粒径が10〜40μmの結
晶シリカと平均粒径が10μm以下の窒化珪素を含むこ
とを特徴とするエポキシ樹脂組成物。
(1) An epoxy resin composition comprising crystalline silica having an average particle size of 10 to 40 μm and silicon nitride having an average particle size of 10 μm or less as an inorganic filler.
(2)前記結晶シリカの形状係数の最大値が2.2以下
であること特徴とする請求項1記載のエポキシ樹脂組成
物。
(2) The epoxy resin composition according to claim 1, wherein the crystalline silica has a maximum shape factor of 2.2 or less.
JP21272990A 1990-08-10 1990-08-10 Epoxy resin composition Pending JPH0496963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21272990A JPH0496963A (en) 1990-08-10 1990-08-10 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21272990A JPH0496963A (en) 1990-08-10 1990-08-10 Epoxy resin composition

Publications (1)

Publication Number Publication Date
JPH0496963A true JPH0496963A (en) 1992-03-30

Family

ID=16627470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21272990A Pending JPH0496963A (en) 1990-08-10 1990-08-10 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JPH0496963A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5391924A (en) * 1992-09-14 1995-02-21 Kabushiki Kaisha Toshiba Plastic package type semiconductor device
EP0566043A3 (en) * 1992-04-14 1995-11-29 Hitachi Chemical Co Ltd Method of producing boards for printed wiring

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0566043A3 (en) * 1992-04-14 1995-11-29 Hitachi Chemical Co Ltd Method of producing boards for printed wiring
US5391924A (en) * 1992-09-14 1995-02-21 Kabushiki Kaisha Toshiba Plastic package type semiconductor device

Similar Documents

Publication Publication Date Title
JPH05239321A (en) Epoxy resin composition and semiconductor-sealing arrangement
JP2009001638A (en) Molding resin composition, molded article and semiconductor package
JPH0496963A (en) Epoxy resin composition
JPH10173103A (en) Epoxy resin compsn. for sealing semiconductor
JP2015227390A (en) Resin composition for encapsulating optical semiconductor and optical semiconductor device
JPH04325543A (en) Epoxy resin composition and cured article thereof
JP2811933B2 (en) Epoxy resin composition for sealing
CN107955335B (en) Preparation method of epoxy resin composition prepared by using stirrer
JPH1030049A (en) Epoxy resin composition and material for sealing electronic parts
JPH08134330A (en) Epoxy resin composition for TAB sealing and TAB device
KR102408095B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using the same
KR100504604B1 (en) Epoxy molding compound for sealing of semiconductor device
JPH093169A (en) Sealing resin composition and device for sealing electronic part
JP4608736B2 (en) Method for producing epoxy resin composition for semiconductor encapsulation
JPS62128162A (en) Semiconductor device
JP2004018786A (en) Sealing resin composition and electronic component sealing device
KR100479853B1 (en) Method for preparing epoxy resin composition for semiconductor encapsulant and the composition
JP2716962B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH0841292A (en) Process for producing epoxy resin composition and epoxy resin composition for semiconductor encapsulation
KR100447547B1 (en) Epoxy Resin Composition For Packaging Semiconductor Device
KR950006638B1 (en) Epoxy resin composition for encapsulating semi-conductor
JPS61101520A (en) Sealing resin composition
JP2000186214A (en) Resin composition for sealing and semiconductor device
JPH0794641A (en) Semiconductor device
KR20230055749A (en) Granule type resin composition for encapsulating a semiconductor device