[go: up one dir, main page]

JPH0495511A - Pneumatic tire - Google Patents

Pneumatic tire

Info

Publication number
JPH0495511A
JPH0495511A JP2212782A JP21278290A JPH0495511A JP H0495511 A JPH0495511 A JP H0495511A JP 2212782 A JP2212782 A JP 2212782A JP 21278290 A JP21278290 A JP 21278290A JP H0495511 A JPH0495511 A JP H0495511A
Authority
JP
Japan
Prior art keywords
bead core
bead
tire
elastic modulus
outside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2212782A
Other languages
Japanese (ja)
Inventor
Shinzo Kajiwara
梶原 眞三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2212782A priority Critical patent/JPH0495511A/en
Publication of JPH0495511A publication Critical patent/JPH0495511A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tires In General (AREA)

Abstract

PURPOSE:To improve the yield strength of bead cores to improve durability of beads by increasing modulus of longitudinal elasticity of each bead core in the range from 1.0 to 1.3 times the modulus of longitudinal elasticity of an bead core adjacent to it on the outside. CONSTITUTION:With a tire 1, in a pair of right and left bead cores, N pieces of bead cores A, that is, a first bead core A1, a second bead core A2,... the N-th bead core AN are arranged and lined up from the inside to the outside toward the tire-equator CO in the axial direction of the tire. In order to make the strength of beads, a ratio Pi/Pi+1 of modulus of longitudinal elasticity Pi of a bead core Ai, that is, the i-th bead core in the order counted from the inmost, first bead core Al to the outside to modulus of longitudinal elasticity Pi+1 of a bead core Ai+1 adjacent to the bead core (Ai) on the outside is set to be in the range from 1.0 to 1.3. A ratio P1/PN of modulus of longitudinal elasticity PN of a bead core AN on the outermost side to modulus of longitudinal elasticity P1 of the above first bead core A1 is set to be more than 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、特に航空機等の重荷重車両用タイヤとして好
適に使用でき、タイヤ重量の増加を招くことなくビード
強度の向上を計りうる空気入りタイヤに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a pneumatic tire which can be suitably used particularly as a tire for heavy-load vehicles such as aircraft, and which can improve bead strength without increasing the tire weight. Regarding tires.

〔従来の技術〕[Conventional technology]

重荷重車両用タイヤ、特に高内圧、高荷重、超高速の苛
酷な条件下で使用される航空機用タイヤにおいては、ま
ず高内圧によるタイヤの膨張を抑制するために、これに
充分耐えうる強度のカーカス及びビードコアが要求され
る。特にクロスプライ構造のタイヤにおいてはそのコー
ド角に原因してカーカスに働く破壊張力がラジアル構造
のものに比して大であり、必然的にカーカスプライの枚
数を増加する必要が生ずる。
Tires for heavy-duty vehicles, especially aircraft tires used under harsh conditions of high internal pressure, high loads, and ultra-high speeds, must first be made with sufficient strength to withstand the expansion of the tires due to high internal pressure. Carcass and bead core required. In particular, in a tire with a cross-ply structure, the breaking tension acting on the carcass due to the cord angle is greater than that in a tire with a radial structure, and it is inevitably necessary to increase the number of carcass plies.

従ってこのようなりロスブライ構造の航空機タイヤでは
、従来例えば第5図に示すように、タイヤの各ビード部
に、複数本のビードコアb−をタイヤ軸方向内側から外
側に順次配置してと一ド強度を高める一方、ビード部間
に跨設されるカーカスの両端を各ビードコアb−の廻り
で夫々振り分けて折返し、増加する多数枚のカーカスプ
ライを強固に係止している。
Therefore, in aircraft tires with such a loss brining structure, for example, as shown in FIG. At the same time, both ends of the carcass placed across the bead portions are distributed and folded back around each bead core b-, thereby firmly securing an increasing number of carcass plies.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし複数本のビードコアを各ビード部に設けたタイヤ
ではタイヤ軸方向内側のビードコアから被断損傷が進行
しビード耐久性を低下するという問題が発生する。
However, in a tire in which a plurality of bead cores are provided in each bead portion, a problem arises in that breakage damage progresses from the bead core on the inner side in the axial direction of the tire, reducing bead durability.

これは、従来ビード強度は各ビードコア強度の総和によ
って定まると考えられ、従ってビードコアとして夫々横
断面におけるビードコード配設数が等しい同構成のもの
が使用されていたことに原因すると推察される。
This is thought to be due to the fact that in the past, the bead strength was determined by the sum of the strengths of each bead core, and therefore bead cores having the same structure with the same number of bead cords in the cross section were used.

しかしながら本発明者が行った歪テスト、すなわち露出
されたビードコアbの底面に夫々歪ゲージgを貼着し、
内圧充填かつ荷重負荷状態における各ビードコアbの円
周方向歪を夫々測定した結果、ビード部aはリムフラン
ジ上端を支点としたてこ状に変形し、第6図に示すよう
に最内側の第1のビードコアb1の歪量・・はその外側
の第2のビードコアb2に比して約30%大となり、又
第2のビードコアb2の歪量・eはその外側の第3のビ
ードコアに比してさらに約40%大となることを究明し
得た。
However, in the strain test conducted by the present inventor, that is, by attaching strain gauges g to the bottoms of exposed bead cores b,
As a result of measuring the strain in the circumferential direction of each bead core b in the internal pressure filled and loaded state, the bead part a deforms into a lever shape with the upper end of the rim flange as a fulcrum, and as shown in FIG. 6, the innermost first The amount of strain in the bead core b1 is approximately 30% larger than that of the second bead core b2 located outside it, and the amount of strain e in the second bead core b2 is approximately 30% greater than that of the third bead core located outside it. Furthermore, it has been determined that the amount is about 40% larger.

すなわち本発明は、歪量に応じてタイヤ軸方向内側のビ
ードコアの縦弾性率をその外側に隣接するビードコアの
縦弾性率に比して1.0〜1.3倍の範囲で高めること
を基本として、作用応力に対する各ビードコアの耐力を
均一化でき、ビード耐久性を向上しうる空気入りタイヤ
の提供を目的としている。
That is, the present invention basically aims to increase the longitudinal elastic modulus of the bead core on the inner side in the axial direction of the tire in the range of 1.0 to 1.3 times as compared to the longitudinal elastic modulus of the bead core adjacent to the outer side, depending on the amount of strain. The present invention aims to provide a pneumatic tire that can equalize the proof strength of each bead core against applied stress and improve bead durability.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するために本発明の空気入りタイヤは、
N本のビードコアがタイヤ軸内側から外側に並置される
とともに、最内側のビードコアから外側にi番目のビー
ドコアの縦弾性率Piと、該ビードコアのタイヤ軸外側
で隣り合うビードコアの縦弾性率pi+1との比Pi/
Pi+1を1.0以上かつ1゜3以下とし、しかも最外
側のビードコアの縦弾性率PNと最内側のビードコアの
縦弾性率P1との比P1/PNを1より大としている。
In order to achieve the above object, the pneumatic tire of the present invention has the following features:
N bead cores are juxtaposed from the inside to the outside of the tire shaft, and the longitudinal elastic modulus Pi of the i-th bead core from the innermost bead core to the outside, and the longitudinal elastic modulus pi + 1 of the bead core adjacent to the bead core on the outside of the tire shaft. The ratio of Pi/
Pi+1 is set to be 1.0 or more and 1°3 or less, and the ratio P1/PN of the longitudinal elastic modulus PN of the outermost bead core to the longitudinal elastic modulus P1 of the innermost bead core is set to be larger than 1.

又前記縦弾性率の増加は、ビードコアの横断面における
フィラメント数を増すことにより行ないうる。
The longitudinal elastic modulus can also be increased by increasing the number of filaments in the cross section of the bead core.

〔作用〕[Effect]

このように構成する空気入りタイヤは、タイヤ軸方向の
内側から外側に並置したN本のビードコアにおいて、最
内側のビードコアから数えてi番目のビードコアの縦弾
性率Piをその外側で隣り合うビードコアの縦弾性率P
i  の1.0倍以上かつ1゜3倍以下としている。す
なわちタイヤ軸方向の内側に向かって順次高まる作用応
力に対抗して、内側のビードコアの縦弾性率を高めてい
るため、ビード部の強度の弱所を排除でき、各ビードコ
アの作用応力に対する耐力を均一化し、ビード耐久性を
向上しうる。
In a pneumatic tire configured in this way, among N bead cores arranged side by side from the inside to the outside in the tire axial direction, the longitudinal elastic modulus Pi of the i-th bead core counting from the innermost bead core is determined by the longitudinal elastic modulus Pi of the bead core adjacent to the outside. Longitudinal modulus P
It is set to be 1.0 times or more and 1°3 times or less of i. In other words, the modulus of longitudinal elasticity of the inner bead core is increased to counteract the applied stress that gradually increases toward the inside in the axial direction of the tire, which eliminates weak points in the bead portion and increases the resistance of each bead core to the applied stress. It can be made uniform and the bead durability can be improved.

又このような縦弾性率の増減は、ビードコアの横断面に
おけるフィラメント数を増減することにより簡易にかつ
正確に行うことができる。しかも過剰強度となる外側の
ビードコアのフィラメント数を減じかつその分向側のビ
ードコアのフィラメント数を増加することによりタイヤ
の重量増加を招くことなくビード耐久性の向上を計りう
る。
Furthermore, such an increase or decrease in the longitudinal elastic modulus can be easily and accurately carried out by increasing or decreasing the number of filaments in the cross section of the bead core. Moreover, by reducing the number of filaments in the outer bead core, which would have excessive strength, and increasing the number of filaments in the bead core on the opposite side, bead durability can be improved without increasing the weight of the tire.

〔実施例〕〔Example〕

以下本発明の一実施例が、タイヤサイズがH45X 1
7. O−20の航空機用バイアスタイヤとして形成さ
れる場合を例にとり図面に基づき説明する。
The following is an example of the present invention in which the tire size is H45X1.
7. A case where the tire is formed as an O-20 aircraft bias tire will be explained based on the drawings.

第1図において、タイヤ1は、左右一対のビード部3と
、各ビード部3に連なりかつタイヤ半径方向外向きにの
びるサイドウオール部4と、その外端間を継ぐトレッド
部5とを具えるトロイド状をなし、前記各ビード部3内
には、タイヤ赤道COに向くタイヤ軸方向の内側から外
側に向かって並置する第1のビードコアA1、第2のビ
ードコアA2−第NのビードコアANであるN本のビー
ドコアAが配される。なお本例では3本のビードコアA
が並置する場合を例示している。
In FIG. 1, a tire 1 includes a pair of left and right bead portions 3, a sidewall portion 4 connected to each bead portion 3 and extending outward in the tire radial direction, and a tread portion 5 connecting the outer ends of the sidewall portions 4. It has a toroidal shape, and inside each of the bead portions 3 are a first bead core A1, a second bead core A2, and a Nth bead core AN, which are arranged side by side from the inside to the outside in the tire axial direction facing the tire equator CO. N bead cores A are arranged. In this example, three bead cores A
This example shows a case where the two are juxtaposed.

又各第1、第2、第3のビードコアA1、A2、A3の
廻りには、タイヤの内側から外側に向かって順次配され
る第1のカーカスB1、第2のカーカスB2、第3のカ
ーカスB3(総称するときカーカスBという)の各両端
が折返され、又カーカスB1、B2、B3の各主部B1
a% B12.B11が前記サイドウオール部4、トレ
ッド部5を通り連なることにより各カーカスBは夫々タ
イヤ赤道COを隔てた対称位置に配される各ビードコア
A、A間に架は渡される。又前記各カーカスBは、本例
では、有機繊維コードからなるカーカスコードをタイヤ
赤道に対して25〜50度の角度で配列した複数枚のカ
ーカスプライの積重ね体からなり、各ビードコアA−・
の周囲には、タイヤの繰返し変形に伴いビードコアA−
の廻りをつるべ状に移動する前記カーカスプライとの間
の摩擦を防止する被覆層9を設けている。なおり−カス
コードとしてはナイロン、レーヨン、ポリエステルの他
、全芳香族ポリエステル繊維コード等を用いうる。
Also, around each of the first, second, and third bead cores A1, A2, and A3, a first carcass B1, a second carcass B2, and a third carcass are arranged in order from the inside to the outside of the tire. Both ends of B3 (generally referred to as carcass B) are folded back, and each main part B1 of carcass B1, B2, and B3 is
a% B12. By connecting B11 through the sidewall portion 4 and tread portion 5, each carcass B is placed between bead cores A and A arranged at symmetrical positions across the tire equator CO, respectively. In this example, each carcass B is composed of a stack of a plurality of carcass plies in which carcass cords made of organic fiber cords are arranged at an angle of 25 to 50 degrees with respect to the tire equator, and each bead core A-.
Around the bead core A- due to repeated deformation of the tire.
A coating layer 9 is provided to prevent friction between the carcass ply and the carcass ply, which moves around the carcass ply in a spiral manner. As the Naori-cascord, in addition to nylon, rayon, polyester, wholly aromatic polyester fiber cords, etc. can be used.

又本例では、第2のカーカスB2の折返し部B2bの上
端は、タイヤの最大中となる位置の近傍で、内側となる
第1のカーカスB1の折返し部B1bはその下方で、又
外側となる第3のカーカスB3の折返し部B3bは前記
折返し部B2bの上方で、夫々複数枚のカーカスプライ
のうち最高位置のものが終端している。なお本例におい
てはカーカスBは夫々隣り合うカーカスプライの間の各
コードが相互に交差するクロスブライ構造が採用されて
いる。
In this example, the upper end of the folded part B2b of the second carcass B2 is near the maximum center position of the tire, and the folded part B1b of the first carcass B1, which is on the inside, is below and on the outside. The folded portion B3b of the third carcass B3 has its highest position terminated above the folded portion B2b among the plurality of carcass plies. In this example, the carcass B has a cross-bly structure in which the cords between adjacent carcass plies intersect with each other.

さらにカーカスBは、同様な有機繊維コードを用いた保
護プライからなり、かつ該カーカスBの全体を囲んでビ
ード部3、サイドウオール部4、トレッド部5を通る色
層11によって被覆されるとともに、トレッド部5には
、該色層11のタイヤ半径外側に、リドレッドゴム12
を介して複数層のブレーカIOがタイヤ円周方向に巻装
され、トレッド接地部を補強し走行性能を高める一方カ
ーカスBを保護している。
Further, the carcass B is made of a protective ply using a similar organic fiber cord, and is covered with a color layer 11 that surrounds the entire carcass B and passes through the bead portion 3, the sidewall portion 4, and the tread portion 5. The tread portion 5 has reddread rubber 12 on the outside of the tire radius of the color layer 11.
A plurality of layers of breakers IO are wrapped around the tire circumferentially through the breaker IO, reinforcing the tread contact area and improving running performance, while protecting the carcass B.

又前記カーカスBの生部Bla−83aとその折返し部
Bib〜B3bとの間には、各ビードコアAからタイヤ
半径方向外側に向かって先細状にのびるビードエーペッ
クス13が設けられ、ビード部3からサイドウ・オール
部4に至りタイヤを補強している。
Also, between the green part Bla-83a of the carcass B and its folded parts Bib to B3b, a bead apex 13 is provided which extends from each bead core A in a tapered manner outward in the tire radial direction.・The tire is reinforced at the oar section 4.

そしてこのようなタイヤに用いる前記ビードコアAは、
本例では第2図に示すように、夫々長尺な帯状体13を
、その一端である始端部15を半径方向内側に位置して
円周方向に連続巻きすることにより形成され、巻終わり
となる終端部16は前記始端部15と半径方向内外で重
置している。
The bead core A used in such a tire is
In this example, as shown in FIG. 2, each long strip 13 is formed by continuous winding in the circumferential direction with the starting end 15, which is one end, located inside in the radial direction. The terminal end portion 16 overlaps the starting end portion 15 inside and outside in the radial direction.

又前記帯状体13は、例えばスチール製のフィラメント
を撚り合わせてなるビードコード19の複数本をその長
手方向に平行に配列したコード配列体であって、このよ
うな帯状体13をリング状に連続巻きすることにより、
前記ビー、ドコアAは、その横断面において、同仕様を
なす複数本の前記フィラメントを配設する。ここで同仕
様とは、各フィラメントが同材質、同断面形状、同断面
積を有することを意味する。さらに本例では前記終端部
16に臨むビードコード19の各端末部分を、例えば第
3図に示すように溶接等によって互いに強固に連結し、
各ビードコード19の円周方向の動きを互いに拘束させ
合うことによって個々のワイヤルースの発生を抑制しワ
イルドワイヤを防止している。
The belt-like body 13 is a cord array body in which a plurality of bead cords 19 made of twisted steel filaments are arranged in parallel in the longitudinal direction, and such a belt-like body 13 is continuously arranged in a ring shape. By winding the
The bee and core A have a plurality of filaments having the same specifications in their cross section. Here, the same specification means that each filament has the same material, the same cross-sectional shape, and the same cross-sectional area. Furthermore, in this example, the respective terminal portions of the bead cord 19 facing the terminal end portion 16 are firmly connected to each other by welding or the like, as shown in FIG. 3, for example, as shown in FIG.
By mutually restraining the movement of each bead cord 19 in the circumferential direction, occurrence of individual loose wires is suppressed and wild wires are prevented.

又ワイルドワイヤを防止するために、前記ビードコード
19の端末部分に、ビードゴムと係合する例えばV字状
の凹溝等を形成し、ビードコード19の動きを夫々独立
して拘束してもよい、なおビードコード19としては金
属繊維コードの他、全芳香族ポリアミド繊維コード及び
グラスファイバ等高強度かつ低伸性の有機、無機の繊維
コードを使用しうる。
Furthermore, in order to prevent wild wires, the movement of each bead cord 19 may be restrained independently by forming, for example, a V-shaped concave groove or the like in the end portion of the bead cord 19 to engage with the bead rubber. As the bead cord 19, in addition to the metal fiber cord, high strength and low elongation organic or inorganic fiber cords such as wholly aromatic polyamide fiber cords and glass fibers can be used.

又前記タイヤ1においては、ビード強度の適正化を計る
ため、最内側となる第1のビードコアA1から外側に数
えて1番目のビードコアAtの縦弾性率Piと、その外
側で隣り合うビードコアAi+1の縦弾性率Pi+1の
比Pi/Pi+1を1.0以上かつ1.3以下とし、し
かも最外側のビードコアANの縦弾性率PNと前記第1
のビードコアA1め縦弾性率P1との比PI/PNを1
より大としている。
In addition, in the tire 1, in order to optimize the bead strength, the longitudinal elastic modulus Pi of the first bead core At counting from the innermost first bead core A1 and the adjacent bead core Ai+1 on the outer side are determined. The ratio Pi/Pi+1 of the longitudinal elastic modulus Pi+1 is set to be 1.0 or more and 1.3 or less, and the longitudinal elastic modulus PN of the outermost bead core AN and the first
The ratio PI/PN of the bead core A1 to the longitudinal elastic modulus P1 is 1
It is larger.

これは各ビードコアAの縦弾性率Pをその外側で隣接す
るビードコアの縦弾性率に比して1.0倍以上かつ1.
3倍以下の範囲内で高めることを意味し、このことによ
りタイヤ軸方向内方に向かって順次増加する作用応力に
対抗して、内側のビードコアの強度を向上でき、ビード
部3全体の耐久性を高めうる。
This means that the longitudinal elastic modulus P of each bead core A is 1.0 times or more and 1.0 times the longitudinal elastic modulus of the adjacent bead core on the outside.
This means that the strength of the inner bead core can be improved by increasing the strength of the inner bead core against the applied stress that gradually increases inward in the axial direction of the tire, increasing the durability of the entire bead portion 3. can increase

なお前記範囲は第6図に示すごとく、本発明者が行った
ビード部3での前記歪テストに基づき導き出されたもの
であり、前記作用応力に対する各ビードコアAの耐力を
均一にするためには前記比Pi/Pi+1を1.3とす
るのがよい、しかしながらかかる場合には、第1のビー
ドコアA1の縦弾性率P1が過大となりリム組性を大巾
に損ねる。従って本発明においては比Pi/Pi+1を
1.0以上かつ1゜3以下の範囲としている。
As shown in FIG. 6, the above-mentioned range was derived based on the above-mentioned strain test on the bead portion 3 conducted by the present inventor, and in order to make the yield strength of each bead core A uniform against the above-mentioned applied stress, It is preferable to set the ratio Pi/Pi+1 to 1.3. However, in such a case, the longitudinal elastic modulus P1 of the first bead core A1 becomes too large, which greatly impairs rim assemblability. Therefore, in the present invention, the ratio Pi/Pi+1 is set to a range of 1.0 or more and 1°3 or less.

又ビード耐久性の向上効果を維持しつつリム組性をより
高めるためには、各ビードコアAの縦弾性率Pを、前記
範囲内においてPI>P2≧−・−≧PNとすることが
好ましい。
In order to further enhance rim assemblability while maintaining the effect of improving bead durability, it is preferable that the longitudinal elastic modulus P of each bead core A satisfies PI>P2≧-.-≧PN within the above range.

すなわち少なくとも第1のビードコアA1の縦弾性率P
1を第2のビードコアA2の縦弾性率P2より大とする
ことにより、例えば第1のビードコアA1以外のビード
コアの縦弾性率が互いに等しい場合においても、ビード
損傷の起点となる第1のビードコアA1の破断を抑制し
うるため、耐久性を向上しうる。
That is, the longitudinal elastic modulus P of at least the first bead core A1
1 is larger than the longitudinal elastic modulus P2 of the second bead core A2, for example, even when the longitudinal elastic moduli of bead cores other than the first bead core A1 are equal to each other, the first bead core A1 becomes the starting point of bead damage. Since the breakage of the material can be suppressed, durability can be improved.

又各ビードコアAにおけるこのような縦弾性率Pの増減
は、ビードコアAの横断面における前記フィラメントの
配設数の増減により簡易にかつ正確な比率で行うことが
でき、かかるフィラメント配設数の増減は、前記帯状体
13の巻回数の増減、各帯状体13におけるビードコー
ド19の配列数の増減及びビードコード19を構成する
フィラメント数の増減の単独もしくはこれらを組合わせ
て行うことができる。
Further, such an increase or decrease in the longitudinal elastic modulus P of each bead core A can be easily and accurately carried out by increasing or decreasing the number of filaments arranged in the cross section of the bead core A, and such an increase or decrease in the number of filaments arranged This can be done by increasing or decreasing the number of windings of the strip 13, increasing or decreasing the number of bead cords 19 arranged in each strip 13, and increasing or decreasing the number of filaments constituting the bead cord 19, either alone or in combination.

しかもこのようなフィラメント配設数の増減は、ビード
部3内でのフィラメント総数を従来タイヤのフィラメン
ト総数とほぼ等しく保ちつつ行うことが好ましく、かか
る場合にはタイヤ重量の維持を計りうる。
Furthermore, it is preferable to increase or decrease the number of filaments disposed while keeping the total number of filaments within the bead portion 3 approximately equal to the total number of filaments of a conventional tire, and in such a case, it is possible to maintain the weight of the tire.

なおビードコアAとしては、前述のごとく該ビードコア
Aと回申の帯状体13を順次その外側に重ね合わせて巻
付けて形成する他、第4図に略示するように、1本もし
くは数本のビードコード19を例えばらせん状にかつ多
層に連続して巻付けたジヨイントレス状に形成してもよ
い。
The bead core A may be formed by sequentially overlapping and winding the bead core A and the circular strip 13 on the outside as described above. For example, the bead cord 19 may be formed into a joint tress shape in which the bead cord 19 is continuously wound in a spiral shape and in multiple layers.

〔具体例〕〔Concrete example〕

タイヤサイズがH45X17.0−20及び1300−
20である本発明のタイヤを第1表の仕様に基づき試作
するとともに、該試作タイヤのタイヤ重量及びと−ド強
度を従来タイヤと比較した。
Tire size is H45X17.0-20 and 1300-
A tire of the present invention having a tire weight of 20 was manufactured as a prototype based on the specifications shown in Table 1, and the tire weight and road strength of the trial tire were compared with those of a conventional tire.

なおビード強度は、標準リムにリム組したタイヤの内圧
を15 ktrf/dx 4がらしだいに増加させ、と
−ド損傷に至る内圧力を従来タイヤを100とした指数
で示している。指数値が大なほどビード強度に優れてい
る。
The bead strength is expressed as an index in which the internal pressure of a tire assembled on a standard rim is gradually increased to 15 ktrf/dx4, and the internal pressure that causes bead damage is set as 100 for the conventional tire. The larger the index value, the better the bead strength.

〔発明の効果〕〔Effect of the invention〕

軟土のごとく本発明のタイヤは、各ビードコアの縦弾性
率をその外側に隣接するビードコアの縦弾性率に比して
1.0倍以上かつ1.3倍以下の範囲で高めているため
、ビードコアの耐力を作用応力に応じて向上でき、ビー
ド耐久性を向上しうる。
Like soft soil, the tire of the present invention has the longitudinal elastic modulus of each bead core increased in the range of 1.0 times or more and 1.3 times or less compared to the longitudinal elastic modulus of the bead core adjacent to the outside. The yield strength of the bead core can be improved according to the applied stress, and the bead durability can be improved.

なお本発明はクロスブライ構造の他ラジアル構造のタイ
ヤとして形成することができさらには航空機の他、産業
用車両等積々な重荷重車両に用いることができる。
The present invention can be formed as a tire with a radial structure in addition to a cross-bly structure, and can be used in heavy-duty vehicles such as industrial vehicles as well as aircraft.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2図はビー
ドコアを示す斜視図、第3図はその一部を拡大して示す
斜視図、第4図はビードコアの他の実施例を略示する断
面図、第5図は従来タイヤを説明する部分断面図、第6
図は各ビードコアに生じる歪量を示す線図である。 A、AI、A2、A3、A i 、 AN−ビードコア
。 特許出願人 住友ゴム工業株式会社 代理人 弁理士  苗   村      正第2 1ノ・ 第3「 \ \ 第4図 第5F
Fig. 1 is a cross-sectional view showing one embodiment of the present invention, Fig. 2 is a perspective view showing a bead core, Fig. 3 is a perspective view showing an enlarged part of the bead core, and Fig. 4 is another embodiment of the bead core. FIG. 5 is a partial sectional view illustrating a conventional tire; FIG.
The figure is a diagram showing the amount of strain occurring in each bead core. A, AI, A2, A3, Ai, AN-bead core. Patent Applicant Sumitomo Rubber Industries Co., Ltd. Agent Patent Attorney Tadashi Naemura 2 No. 1/3 \ \ Figure 4 5F

Claims (1)

【特許請求の範囲】 1 N本のビードコアがタイヤ軸内側から外側に並置さ
れるとともに、最内側のビードコアから外側にi番目の
ビードコアの縦弾性率Piと、該ビードコアのタイヤ軸
外側で隣り合うビードコアの縦弾性率Pi+1との比P
i/Pi+1を1.0以上かつ1.3以下とし、しかも
最外側のビードコアの縦弾性率PNと最内側のビードコ
アの縦弾性率P1との比P1/PNを1より大とした空
気入りタイヤ。 2 前記ビードコアは、同仕様の複数本のフィラメント
からなりかつ前記縦弾性率は、フィラメント数を増すこ
とにより増加させたことを特徴とする請求項1記載の空
気入りタイヤ。
[Claims] 1 N bead cores are juxtaposed from the inside to the outside of the tire shaft, and the longitudinal elastic modulus Pi of the i-th bead core from the innermost bead core to the outside is adjacent to the bead core on the outside of the tire shaft. Ratio P to the longitudinal elastic modulus Pi+1 of the bead core
A pneumatic tire in which i/Pi+1 is 1.0 or more and 1.3 or less, and the ratio P1/PN of the longitudinal elastic modulus PN of the outermost bead core to the longitudinal elastic modulus P1 of the innermost bead core is greater than 1. . 2. The pneumatic tire according to claim 1, wherein the bead core is composed of a plurality of filaments having the same specifications, and the longitudinal elastic modulus is increased by increasing the number of filaments.
JP2212782A 1990-08-10 1990-08-10 Pneumatic tire Pending JPH0495511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2212782A JPH0495511A (en) 1990-08-10 1990-08-10 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2212782A JPH0495511A (en) 1990-08-10 1990-08-10 Pneumatic tire

Publications (1)

Publication Number Publication Date
JPH0495511A true JPH0495511A (en) 1992-03-27

Family

ID=16628300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2212782A Pending JPH0495511A (en) 1990-08-10 1990-08-10 Pneumatic tire

Country Status (1)

Country Link
JP (1) JPH0495511A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011509873A (en) * 2008-01-15 2011-03-31 タイタン・インターナショナル・インコーポレーテッド Multiple bead radial tires

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832044A (en) * 1981-08-14 1983-02-24 Sekisui Chem Co Ltd Laminated body used as an intermediate layer for laminated glass
JPS63222908A (en) * 1987-03-13 1988-09-16 Bridgestone Corp Pneumatic bias tire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832044A (en) * 1981-08-14 1983-02-24 Sekisui Chem Co Ltd Laminated body used as an intermediate layer for laminated glass
JPS63222908A (en) * 1987-03-13 1988-09-16 Bridgestone Corp Pneumatic bias tire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011509873A (en) * 2008-01-15 2011-03-31 タイタン・インターナショナル・インコーポレーテッド Multiple bead radial tires

Similar Documents

Publication Publication Date Title
US6719030B2 (en) Pneumatic tire having a single carcass ply reinforced with metallic cords, a high ending ply, turnup and locked bead construction
US6555212B2 (en) Reinforcing fabric for an article made from elastomeric material and corresponding article comprising this fabric
JP5481336B2 (en) Aircraft tires with improved bead structure
AU624223B2 (en) Belt overlay structure for pneumatic tires
US4887655A (en) Heavy duty-high pressure pneumatic radial tires
US4947915A (en) Radial ply tire
JPH04328003A (en) Pneumatic radial tire
EP0855964B1 (en) A thin gauge, fine diameter steel cord reinforced tire ply fabric and a method of lap splicing the fabric
JPH09323503A (en) Radial tire having at least two layers of belt plies reinforced with steel monofilament
EP0101400A2 (en) A pneumatic tire
JPH07276534A (en) Tire with reinforced sidewall
US5209794A (en) Tire for motor cycles including a spirally wound aromatic polyamide cord belt
JP7475108B2 (en) Lighter aircraft tires
CA2153949C (en) Bias tire having an improved crown reinforcement arrangement
AU602626B2 (en) A pneumatic tire
JP4166308B2 (en) Pneumatic tire
US20220016934A1 (en) Tire For a Civil Engineering Vehicle, Comprising a Level-Wound Crown Reinforcement with Metal Reinforcements
JPH0478602A (en) Pneumatic tire
JPH0310905A (en) Pneumatic radial tire
JPH06344720A (en) Pneumatic radial tire
JPH0495511A (en) Pneumatic tire
JP3001221B2 (en) Pneumatic radial tire for heavy loads
JP3744651B2 (en) Pneumatic tire
JPH0292703A (en) Pneumatic tire
JPH0466312A (en) Radial tire