JPH0494104A - Magnetic levitation/driving device - Google Patents
Magnetic levitation/driving deviceInfo
- Publication number
- JPH0494104A JPH0494104A JP21042590A JP21042590A JPH0494104A JP H0494104 A JPH0494104 A JP H0494104A JP 21042590 A JP21042590 A JP 21042590A JP 21042590 A JP21042590 A JP 21042590A JP H0494104 A JPH0494104 A JP H0494104A
- Authority
- JP
- Japan
- Prior art keywords
- levitation
- yoke
- magnetic
- plate
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005339 levitation Methods 0.000 title claims abstract description 20
- 238000006073 displacement reaction Methods 0.000 claims abstract description 23
- 230000005284 excitation Effects 0.000 claims abstract description 23
- 230000004907 flux Effects 0.000 claims abstract description 16
- 239000004020 conductor Substances 0.000 claims description 7
- 230000006698 induction Effects 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims 2
- 229910052742 iron Inorganic materials 0.000 claims 1
- 235000012431 wafers Nutrition 0.000 description 16
- 238000010586 diagram Methods 0.000 description 8
- 238000005530 etching Methods 0.000 description 8
- 238000005468 ion implantation Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000000428 dust Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000000696 magnetic material Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
Landscapes
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Coating Apparatus (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
高集積度の半導体製造におけるウェハへのエツチング用
レジストの塗布、あるいはウェハへのイオン注入におけ
るウェハを搭載する円盤を支持および回転駆動する磁気
浮上・駆動機構に関する。Detailed Description of the Invention [Industrial Application Field] Magnetic levitation for supporting and rotationally driving a disk on which a wafer is mounted for applying etching resist to a wafer in highly integrated semiconductor manufacturing or for ion implantation into a wafer.・Regarding the drive mechanism.
[従来の技術]
高集積度の半導体製造におけるウェハへのエツチング用
レジストの塗布、あるいはウェハへのイオン注入におけ
るウェハを搭載する円盤は、転がり軸受などの支持によ
り単に回転を行い、レジストの塗布、イオン注入を行っ
ていた。[Prior Art] In the application of etching resist to wafers in the manufacturing of highly integrated semiconductors, or in the ion implantation of wafers, the disk on which the wafer is mounted is simply rotated by support such as rolling bearings, and the resist is applied, Ion implantation was performed.
[発明が解決しようとする課題]
高集積度の半導体製造におけるウェハへのエツチング用
レジストの塗布、あるいはウェハへのイオン注入におけ
るウェハを搭載する円盤は、転がり軸受などの支持によ
り単に回転を行い、レジストの塗布、イオン注入を行、
っていたので、支持機構からの発塵があり、製品の歩止
まりを悪化させていた。また回転運動のみのため、ウェ
ハへのエツチング用レジストの均一な塗布、あるいはウ
ェハへのイオンの均一な注入において、改善の余地があ
った。[Problems to be Solved by the Invention] In the application of etching resist to wafers in the manufacture of highly integrated semiconductors, or in the ion implantation of wafers, the disks on which the wafers are mounted simply rotate by being supported by rolling bearings, etc. Apply resist, perform ion implantation,
As a result, dust was generated from the support mechanism, which worsened the yield of the product. Furthermore, since only rotational movement is required, there is room for improvement in uniformly applying etching resist to the wafer or uniformly implanting ions into the wafer.
本発明は、発塵を防止すると共に、ウエノ\へのエツチ
ング用レジストの塗布、又は、イオン注入を均一化する
磁気浮上・駆動機構を提供することを目的としてい・る
。SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetic levitation/driving mechanism that prevents dust generation and uniformizes the application of etching resist to etching resist or ion implantation.
[課題を解決するための手段]
本発明によれば、磁性部材(101)と電気導体(10
2)とからなり磁気浮上して移動する浮上平板(100
)と;前記磁性部材(101)の上方に対向し前記浮上
平板(100)と電磁気力により吸引浮上させる磁性材
継鉄(201)と励磁コイル(202)からなる円筒状
の軸方向制御用円筒電磁石(200)と;前記浮上平板
(100)及び円筒電磁石(200)間の隙間を計測す
る変位センサ(203)と;該浮上平板(100)の下
方に対向し励磁コイル(306)の励磁電流により磁気
飽和に近い磁気密度のリング状の継鉄部(301)と、
該浮上平板(100)の直径軸回りの運動を制御するた
めの円周方向に4分割した継鉄部(302)と、該継鉄
部(302)に設けられ該継鉄部(302)と前記浮上
平板(100)との間の磁束を変化させる電磁石コイル
(303)及び電磁石コア(304)と、該電磁石コア
(304)を接続する連結継鉄(305)とからなる直
径軸回り制御用電磁石(300)とを備えている。[Means for Solving the Problems] According to the present invention, a magnetic member (101) and an electric conductor (10
2) A floating plate (100
) and; a cylindrical axial control cylinder consisting of a magnetic yoke (201) facing above the magnetic member (101) and attracted and levitated by electromagnetic force with the floating plate (100) and an exciting coil (202); an electromagnet (200); a displacement sensor (203) for measuring the gap between the levitation plate (100) and the cylindrical electromagnet (200); and an excitation current of an excitation coil (306) facing below the levitation plate (100). a ring-shaped yoke (301) with a magnetic density close to magnetic saturation;
A yoke portion (302) divided into four in the circumferential direction for controlling the movement of the floating plate (100) around the diameter axis, and a yoke portion (302) provided on the yoke portion (302). For control around the diameter axis, it consists of an electromagnetic coil (303) and an electromagnetic core (304) that change the magnetic flux with the floating plate (100), and a connecting yoke (305) that connects the electromagnetic core (304). It is equipped with an electromagnet (300).
更に本発明によれば、電気導体(102)に対向し浮上
平板(100)をその面内で非接触に運動させる切線方
向に駆動する4個のリニアインダクションサーボモータ
(401)と、回転速度及び並進運動の変位量を計測す
る回転センサ(411)及び変位センサ(410)とを
備えている。Further, according to the present invention, there are four linear induction servo motors (401) that face the electric conductor (102) and drive in the tangential direction to move the floating plate (100) in a non-contact manner within its plane, and the rotational speed and It includes a rotation sensor (411) and a displacement sensor (410) that measure the amount of translational displacement.
[作用]
上記のように構成された磁気浮上・駆動機構においては
、
(1) 軸方向と直径軸回りの運動の制御に関し、変位
センサ203からの出力値の平均を基づき、励磁コイル
202の励磁電流を制御し、浮上平板100の面に直角
な軸方向の位置を制御する。[Function] In the magnetic levitation/drive mechanism configured as described above, (1) Regarding the control of motion in the axial direction and around the diametrical axis, the excitation coil 202 is excited based on the average of the output values from the displacement sensor 203. The current is controlled to control the position of the floating plate 100 in the axial direction perpendicular to the plane.
更に、電磁石300により、浮上平板10002つの直
径軸回りの運動を非接触で制御する。この場合、励磁コ
イル306の電流により、継鉄部301及び302にお
ける磁束の方向は、相互に逆方向になる。Furthermore, the electromagnets 300 control the movement of the floating flat plates 1000 around the two diameter axes without contact. In this case, the directions of magnetic flux in the yoke parts 301 and 302 are opposite to each other due to the current of the exciting coil 306.
変位センサ203間の出力値の差信号から浮上平板10
0の直径軸回りの回転角に比例した信号を求め、この信
号に基づき電磁石コイル303の励磁電流を制−御し、
継鉄部302と浮上平板100との間の磁束を変化させ
ることにより浮上平板100の2つの直径軸回りの運動
を制御する。この場合、4つの継鉄部302は、対角線
状の2個の継鉄部で対をなしており、互いに逆方向の磁
束を生成するように、励磁コイル303に通電する。The floating plate 10 is determined from the difference signal between the output values between the displacement sensors 203.
A signal proportional to the rotation angle around the diameter axis of 0 is obtained, and the excitation current of the electromagnetic coil 303 is controlled based on this signal.
By changing the magnetic flux between the yoke part 302 and the floating plate 100, the movement of the floating plate 100 around the two diameter axes is controlled. In this case, the four yoke parts 302 are paired with two diagonal yoke parts, and the excitation coil 303 is energized so as to generate magnetic fluxes in opposite directions.
(2) 回転と並進の運動の制御に関し、浮上平板10
0をその面内で非接触で回転と並進の運動をさせるため
、4個のりニャインダクションサーボモータ401の推
力を以下のように制御する。(2) Regarding the control of rotational and translational movements, the floating plate 10
In order to rotate and translate 0 within that plane without contact, the thrust of the four linear induction servo motors 401 is controlled as follows.
回転運動の場合は、4個のモータ401とも希望する回
転方向の推力を発生すると、1次コイルを励磁するサー
ボアンプから同振幅の3相の電流を出力する。浮上平板
100の回転速度は、回転センサ411で検出し、フィ
ードバックして回転速度を所定値に保持する。In the case of rotational motion, when all four motors 401 generate thrust in the desired rotational direction, three-phase currents with the same amplitude are output from the servo amplifier that excites the primary coil. The rotational speed of the floating plate 100 is detected by a rotation sensor 411 and fed back to maintain the rotational speed at a predetermined value.
並進運動の場合は、並進方向の推力を発生するように、
対角線上にある2つのモータ401の1次コイルを励磁
するサーボアンプから同振幅の3相の電流を出力する。In the case of translational motion, to generate thrust in the translational direction,
Three-phase currents with the same amplitude are output from servo amplifiers that excite the primary coils of two diagonally located motors 401.
浮上平板100の並進方向の位置は、変位センサ410
で検出し、フィードバックして並進運動の位置を所定値
に保持する。The position of the floating plate 100 in the translation direction is determined by the displacement sensor 410.
is detected and fed back to maintain the translational position at a predetermined value.
[実施例] 以下図面を参照して本発明の詳細な説明する。[Example] The present invention will be described in detail below with reference to the drawings.
第1図において、浮上平板100は、環状の磁性部材1
01と、該部材101内に収められた電気導体102と
からなっている。In FIG. 1, a floating plate 100 includes an annular magnetic member 1
01 and an electrical conductor 102 housed within the member 101.
この浮上平板100の上方に対向し、円筒状の軸方向制
御用円筒電磁石200が設けられ、該磁石200は、磁
性材継鉄201と、継鉄201に埋設した励磁コイル2
02とからなっている。また、浮上平板100と、円筒
電磁石200との間の隙間ΔH1を非接触で計測する4
個の変位センサ203a〜203d (以下総称する場
合は符号203を用いる)が円周等配に設けられている
。A cylindrical axial control cylindrical electromagnet 200 is provided above and facing the floating plate 100, and the magnet 200 is connected to a magnetic material yoke 201 and an excitation coil 2 embedded in the yoke 201.
It consists of 02. In addition, the gap ΔH1 between the floating flat plate 100 and the cylindrical electromagnet 200 is measured in a non-contact manner.
Displacement sensors 203a to 203d (hereinafter, the reference numeral 203 will be used collectively) are provided at equal intervals around the circumference.
前記浮上平板100の下方に対向し、リング状の電磁石
300が設けられている。該電磁石300は、励磁コイ
ル306の励磁電流により発生する磁気飽和に近い磁束
密度(第5図のコイル30による磁束線310参照)の
リング状継鉄部301と、浮上平板100の直径軸回り
の運動を制御する円周方向に4分割された4分割継鉄部
302と、その継鉄部302に設けられ継鉄部302と
浮上平板100との間の磁束(第5図の符号311参照
)を変化させる電磁石コイル303a〜303c(以下
総称する場合は符号303を用いる)及び電磁石コア3
04と、その電磁石コア304を接続する連結継鉄30
5とからなっている。A ring-shaped electromagnet 300 is provided below and opposite the floating plate 100. The electromagnet 300 has a ring-shaped yoke portion 301 with a magnetic flux density close to magnetic saturation (see magnetic flux lines 310 due to the coil 30 in FIG. 5) generated by an excitation current of an excitation coil 306, and a magnetic field around the diameter axis of the floating plate 100. A 4-part yoke section 302 that is divided into 4 parts in the circumferential direction that controls the motion, and a magnetic flux between the yoke section 302 and the floating plate 100 provided on the yoke section 302 (see reference numeral 311 in FIG. 5). Electromagnetic coils 303a to 303c (hereinafter collectively referred to as 303) and electromagnet core 3 that change the
04 and the connecting yoke 30 that connects the electromagnet core 304.
It consists of 5.
また、前記電気導体102の下方に対向し、二方向駆動
器400が設けられている。この駆動器400の基板4
00a上には、電気導体102を非接触で運動させる接
線方向に駆動する4個のりニャインダクションサーボモ
ータ401a〜4゜ld(以下総称する場合は符号40
1を用いる)が設けられ、また、浮上平板100の外周
近傍に周方向に等間隔に多数設けた小溝412をカウン
トする回転センサ411(第1図)と、並進運動の変位
量を計測する4個の変位センサ420a〜420d (
以下総称する場合は符号420を用いる)とが設けられ
ている。なお、図中の記号4゜2は固定子、403は1
次コイルである。なお、第1図において符号ΔH1およ
びΔH2はそれぞれ浮上平板100と電磁石200およ
び300との間隔を示し、Hは浮上平板100の厚さを
示している。ΔH1およびΔH2はHに対して非常に小
さい。Further, a two-way driver 400 is provided below and facing the electric conductor 102 . The board 4 of this driver 400
On the 00a are four linear induction servo motors 401a to 401d (hereinafter collectively referred to as 40
1), and a rotation sensor 411 (FIG. 1) that counts the number of small grooves 412 provided near the outer periphery of the floating plate 100 at equal intervals in the circumferential direction, and a rotation sensor 411 (FIG. 1) that measures the amount of translational displacement. displacement sensors 420a to 420d (
(hereinafter, the reference numeral 420 will be used in general). In addition, the symbol 4゜2 in the figure is a stator, and 403 is 1
Next is the coil. In FIG. 1, symbols ΔH1 and ΔH2 indicate the distances between the floating plate 100 and the electromagnets 200 and 300, respectively, and H indicates the thickness of the floating plate 100. ΔH1 and ΔH2 are very small relative to H.
第2図には、浮上平板100の平面に直交する軸方向の
運動を制御する制御系のブロック図が示されている。FIG. 2 shows a block diagram of a control system that controls the movement of the floating plate 100 in an axial direction perpendicular to the plane.
この制御系においては、変位センサ203a〜203d
の出力を加算器220で加算し、浮上平板100の軸方
向の変位量に比例した信号を求め、位相遅れ進み回路な
どを含む補償回路221に導き、更に、補償回路の出力
を電流増幅器222で増幅し、励磁コイル202を励磁
して磁性体継鉄201と磁性部材101との間に磁気吸
引力を発生させるようになっている。なお、励磁コイル
202に直列接続され、電流値をセンシングする電流フ
ィードバック抵抗223の抵抗を電流増幅器222の入
口にフィードバックし、増幅器222の特性の改善を図
っている。In this control system, displacement sensors 203a to 203d
An adder 220 adds the outputs of the floating plate 100 to obtain a signal proportional to the amount of axial displacement of the floating plate 100, which is led to a compensation circuit 221 including a phase delay/lead circuit, etc., and the output of the compensation circuit is further added to a current amplifier 222. The magnetic force is amplified and the excitation coil 202 is excited to generate a magnetic attraction force between the magnetic yoke 201 and the magnetic member 101. Note that the resistance of a current feedback resistor 223 that is connected in series with the excitation coil 202 and senses the current value is fed back to the inlet of the current amplifier 222 to improve the characteristics of the amplifier 222.
第3図には、浮上平板100の直径軸回りの運動を制御
する制御系のブロック図が示されている。FIG. 3 shows a block diagram of a control system that controls the movement of the floating plate 100 around the diameter axis.
この制御系において、バイアス磁束を発生させる励磁コ
イル306は、一定電圧の電源307で励磁される。2
個の変位センサ203a、203Cの出力を差動増幅器
321で差信号を求め、浮上平板100の直径軸回りの
角度位置に比例した信号を求め、位相遅れ進み回路など
を含む補償回路322に導き、更に、補償回路322の
出力を電流増幅器323で増幅し、励磁コイル303
a。In this control system, an excitation coil 306 that generates bias magnetic flux is excited by a constant voltage power supply 307. 2
A difference signal is obtained from the outputs of the displacement sensors 203a and 203C using a differential amplifier 321, a signal proportional to the angular position around the diameter axis of the floating plate 100 is obtained, and the signal is guided to a compensation circuit 322 including a phase delay/lead circuit. Furthermore, the output of the compensation circuit 322 is amplified by the current amplifier 323, and the output of the excitation coil 303 is amplified by the current amplifier 323.
a.
303cを同時に励磁して電磁石継鉄302 a。303c is simultaneously excited to make the electromagnetic yoke 302a.
302cと磁性部材101との間の磁気吸引力を変化さ
せるようになっている。なお、励磁コイル306に直列
に接続され電流値をセンシングする電流フィードバック
抵抗324の電圧を電流増幅器323の入口にフィード
バックし、電流増幅器323の特性の改善を図っている
。The magnetic attraction force between the magnetic member 302c and the magnetic member 101 is changed. Note that the voltage of a current feedback resistor 324 connected in series to the excitation coil 306 and sensing the current value is fed back to the inlet of the current amplifier 323 to improve the characteristics of the current amplifier 323.
第4図には、浮上平板の回転と並進の運動を制御する制
御系のブロック図が示されている。この制御系において
は、回転指示計430からの信号と回転センサ411か
らとの誤差信号450を差動増幅器433により求め、
また、並進指示計440からの信号と並進方向の浮上平
板100の動きを計測する変位センサ410a、410
cがらの信号を加減加算器434に導き、誤差信号45
1を求める。また、第6図をも参照して、サーボモータ
401bには回転誤差450に比例したX方向の推力4
20bと、並進誤差451に比例した推力421bとを
得るため、画鋲差信号450.451を加算器431b
に導く。回転指示計430の回転支持により正弦波発生
器441で作成したそれぞれ120度の位相差をもつ3
つの正弦波sinθ、5in(θ−(2/3)π)、5
in(θ−(4/3)π)と加算器431bの出力とノ
積ヲ掛算器432bU、432bV、432bWで作り
、電力増幅器405bU、405bV。FIG. 4 shows a block diagram of a control system that controls the rotational and translational movements of the floating plate. In this control system, an error signal 450 between the signal from the rotation indicator 430 and the rotation sensor 411 is obtained by a differential amplifier 433,
Additionally, displacement sensors 410a and 410 measure signals from the translation indicator 440 and the movement of the floating plate 100 in the translation direction.
The signals from c are led to an adder/subtractor 434, and an error signal 45
Find 1. Also, referring to FIG. 6, the servo motor 401b has a thrust force 4 in the X direction proportional to the rotational error 450.
20b and a thrust force 421b proportional to the translational error 451, the thumbtack difference signal 450.451 is added to the adder 431b.
lead to. Three waves each having a phase difference of 120 degrees are generated by a sine wave generator 441 by rotation support of a rotation indicator 430.
1 sine wave sinθ, 5in (θ-(2/3)π), 5
in(θ-(4/3)π) and the output of the adder 431b are multiplied by multipliers 432bU, 432bV, and 432bW, and power amplifiers 405bU and 405bV are generated.
405 bWで増幅し、サーボモータ401bのコイル
403bU、403bV、403bWを励磁することに
より所定の合成推力を得るようになっている。また、サ
ーボモータ401dも実質的にサーボモータ401bと
同様に構成され、所定の合成推力を得るようになってい
る。そして、これらの合成推力によりX方向の力と、希
望する回転方向のモーメントを発生し、並進運動と回転
運動とを得るようになっている。A predetermined combined thrust is obtained by amplifying the power by 405 bW and exciting coils 403bU, 403bV, and 403bW of the servo motor 401b. Further, the servo motor 401d is also configured substantially the same as the servo motor 401b, and is configured to obtain a predetermined combined thrust. These combined thrusts generate a force in the X direction and a moment in the desired rotational direction, thereby obtaining translational motion and rotational motion.
次に、主として第5図及び第6図を参照して作用を説明
する。Next, the operation will be explained mainly with reference to FIGS. 5 and 6.
第5図において、対角線上の2個の変位センサ203a
、203cの出力の間の差信号から浮上平板100の直
径軸回りの回転角に比例した信号を求め、この信号に基
づき4分割継鉄部302に接続した電磁石コイル3−0
3の励磁電流を制御し、継鉄部302と浮上平板100
との間の磁束311を変化させることにより浮上平板1
00の2つの直径軸回りの運動を制御する。In FIG. 5, two displacement sensors 203a on the diagonal
, 203c, a signal proportional to the rotation angle around the diameter axis of the floating plate 100 is obtained, and based on this signal, the electromagnetic coil 3-0 connected to the four-part yoke section 302
The excitation current of 3 is controlled, and the yoke part 302 and the floating flat plate 100 are controlled.
By changing the magnetic flux 311 between
Controls the movement of 00 around two diametric axes.
この際、4個の継鉄部302は、対角線上の2個の継鉄
部で対をなしており、互いに逆方向の磁束を生成するよ
うに励磁コイル303に通電する。At this time, the four yoke parts 302 form a pair of two diagonal yoke parts, and the excitation coil 303 is energized so as to generate magnetic fluxes in opposite directions.
この励磁コイル303による磁束311は、浮上平板1
00、継鉄部302、電磁石コア304、連結継鉄30
5、電磁石コア304、浮上平板100という経路にな
る。The magnetic flux 311 due to this excitation coil 303 is
00, yoke part 302, electromagnet core 304, connecting yoke 30
5. The path is the electromagnet core 304 and the floating plate 100.
第6図において、4個のリニアインダクションサーボモ
ータ4208〜420dの推力を以下のように制御する
ことにより浮上平板100の回転と並進の運転を行う。In FIG. 6, the floating plate 100 is rotated and translated by controlling the thrust of four linear induction servo motors 4208 to 420d as follows.
回転運動に関し、4個のサーボモータ401a〜401
dとも希望する回転方向の推力420a〜420dを発
生するように、サーボモータ401の1次コイルを励磁
するサーボアンプから同振幅の3相の電流を出力する。Regarding rotational movement, four servo motors 401a to 401
Three-phase currents with the same amplitude are output from the servo amplifier that excites the primary coil of the servo motor 401 so as to generate thrusts 420a to 420d in the desired rotational directions.
したがって、サーボモータ401から同じ大きさの推力
420a〜420dが発生して回転運動を誘起する。こ
の際、浮上平板100の回転速度は、回転センサ411
で検出し、その信号をサーボアンプにフィードバックし
て回転速度を所定値に保持する。Therefore, thrusts 420a to 420d of the same magnitude are generated from the servo motor 401 to induce rotational movement. At this time, the rotation speed of the floating plate 100 is determined by the rotation sensor 411
The rotation speed is maintained at a predetermined value by feeding back the signal to the servo amplifier.
並進運動に関し、4個のサーボモータ401のうち、並
進方向に推力421b、421dを発生するように、対
角線上にある2個のサーボモータ401b、401dの
1次コイルを励磁するサーボアンプから同振幅の3相の
電流を出力する。浮上平板100の並進方向の変位は、
変位センサ410で検出し、その信号をサーボアンプに
フィードバックして並進位置を所定値に保持する。Regarding translational movement, the same amplitude is generated from a servo amplifier that excites the primary coils of two diagonally located servomotors 401b and 401d so as to generate thrusts 421b and 421d in the translational direction among the four servomotors 401. Outputs three-phase current. The displacement of the floating plate 100 in the translational direction is
The displacement sensor 410 detects the displacement, and the signal is fed back to the servo amplifier to maintain the translational position at a predetermined value.
[発明の効果コ
本発明は、以上説明したように構成されているので、高
集積度半導体製造におけるウェハへのエツチング用レジ
ストの塗布、あるいはウェハへのイオン注入におけるウ
ェハを搭載する円盤では、支持機構からの発塵が無くな
り、製品の歩止まりを善くできる。また回転運動と並進
運動を同時に行えるための、ウェハへのエツチング用レ
ジストの均一な塗布、あるいはウェハへのイオンの均一
な注入も実現できる。[Effects of the Invention] Since the present invention is configured as described above, it is possible to use a support for a disk on which a wafer is mounted when applying an etching resist to a wafer in highly integrated semiconductor manufacturing or when implanting ions into a wafer. Dust generation from the mechanism is eliminated, and the yield of products can be improved. Furthermore, it is possible to uniformly apply an etching resist to a wafer or to uniformly implant ions into a wafer so that rotational movement and translational movement can be performed simultaneously.
第1図は本発明の一実施例を示す側断面斜視図、第2図
は浮上平板の平面に直交する軸方向を制御する制御系の
ブロック図、第3図は浮上平板の直径軸回りの運動を制
御する制御系のブロック図、第4図は浮上平板の回転と
並進の運動を制御する制御系のブロック図、第5図は浮
上平板の直径軸回りの運動を制御する継鉄部の作用を説
明する側断面図、第6図は浮上平板の回転と並進の運動
を制御する4個のリニアインダクションサーボモータの
作用を説明する平面図である。
100・・・浮上平板 101・・・磁性部材 1
02・・・電気導体 200・・・軸方向制御用円筒
電磁石 201・・・磁性材継鉄 202・−・励
磁コイル 203−串・変位センサ 300・・・
電磁石 301・・・リング状継鉄部 302・・
・4分割継鉄部 303・・・電磁石コイル 30
4・・・電磁石コア 305・・・連結継鉄 30
6・・・励磁コイル 400・・・二方向駆動器
401・・・リニアインダクションサーボモータ 4
10・・・変位センサ 411φ・・回転センサ
412・・・回転数測定用小溝Fig. 1 is a side cross-sectional perspective view showing one embodiment of the present invention, Fig. 2 is a block diagram of a control system that controls the axial direction perpendicular to the plane of the floating plate, and Fig. 3 is a block diagram of the control system that controls the axial direction perpendicular to the plane of the floating plate. Figure 4 is a block diagram of the control system that controls the movement of the floating plate. Figure 5 is a block diagram of the control system that controls the rotation and translation of the floating plate. Figure 5 is a block diagram of the control system that controls the movement of the floating plate around its diameter axis. FIG. 6 is a side sectional view illustrating the operation, and FIG. 6 is a plan view illustrating the operation of four linear induction servo motors that control the rotational and translational movements of the floating plate. 100... Levitating flat plate 101... Magnetic member 1
02... Electric conductor 200... Cylindrical electromagnet for axial direction control 201... Magnetic material yoke 202... Excitation coil 203--Skewer/displacement sensor 300...
Electromagnet 301...Ring-shaped yoke part 302...
・Four-divided yoke part 303...Electromagnetic coil 30
4... Electromagnet core 305... Connecting yoke 30
6... Excitation coil 400... Two-way driver
401...Linear induction servo motor 4
10...Displacement sensor 411φ...Rotation sensor
412...Small groove for rotation speed measurement
Claims (2)
する浮上平板と;前記磁性部材の上方に対向し前記浮上
平板を電磁気力により吸引浮上させる磁性材継鉄と励磁
コイルからなる円筒状の軸方向制御用円筒電磁石と;前
記浮上平板及び円筒電磁石間の隙間を計測する変位セン
サと;該浮上平板の下方に対向し励磁コイルの励磁電流
により磁気飽和に近い磁気密度のリング状の継鉄部と、
該浮上平板の直径軸回りの運動を制御するための円周方
向に4分割した継鉄部と、該継鉄部に設けられ該継鉄部
と前記浮上平板との間の磁束を変化させる電磁石コイル
及び電磁石コアと、該電磁石コアを接続する連結継鉄と
からなる直径軸回り制御用電磁石とを備えたことを特徴
とする磁気浮上・駆動機構。(1) A levitation plate made of a magnetic member and an electric conductor and moved by magnetic levitation; a cylindrical shape made of a magnetic yoke and an excitation coil that face above the magnetic member and attract and levitate the levitation plate by electromagnetic force. a cylindrical electromagnet for controlling the axial direction; a displacement sensor for measuring the gap between the levitation flat plate and the cylindrical electromagnet; The iron department and
a yoke portion divided into four in the circumferential direction for controlling the movement of the levitation flat plate around the diameter axis; and an electromagnet provided in the yoke portion for changing the magnetic flux between the yoke portion and the levitation flat plate. A magnetic levitation/driving mechanism characterized by comprising a coil, an electromagnetic core, and an electromagnet for controlling the diameter axis, which is made up of a connecting yoke that connects the electromagnetic core.
運動させる切線方向に駆動する4個のリニアインダクシ
ョンサーボモータと、回転速度及び並進運動の変位量を
計測する回転センサ及び変位センサとを備えたことを特
徴とする請求項(1)記載の磁気浮上・駆動機構。(2) Four linear induction servo motors that face the electrical conductor and drive in the tangential direction to move the floating plate non-contact within its plane, and a rotation sensor and displacement sensor that measure rotational speed and translational displacement. The magnetic levitation/drive mechanism according to claim 1, further comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21042590A JP2752777B2 (en) | 1990-08-10 | 1990-08-10 | Magnetic levitation and drive |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21042590A JP2752777B2 (en) | 1990-08-10 | 1990-08-10 | Magnetic levitation and drive |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0494104A true JPH0494104A (en) | 1992-03-26 |
JP2752777B2 JP2752777B2 (en) | 1998-05-18 |
Family
ID=16589103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21042590A Expired - Fee Related JP2752777B2 (en) | 1990-08-10 | 1990-08-10 | Magnetic levitation and drive |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2752777B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004055607A3 (en) * | 2002-12-16 | 2004-12-16 | Koninkl Philips Electronics Nv | Apparatus for processing an object with high position accurancy |
-
1990
- 1990-08-10 JP JP21042590A patent/JP2752777B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004055607A3 (en) * | 2002-12-16 | 2004-12-16 | Koninkl Philips Electronics Nv | Apparatus for processing an object with high position accurancy |
US7375479B2 (en) | 2002-12-16 | 2008-05-20 | Koninklijke Philips Electronics, N.V. | Apparatus for processing an object with high position accurancy |
Also Published As
Publication number | Publication date |
---|---|
JP2752777B2 (en) | 1998-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6003230A (en) | Magnetic positioner having a single moving part | |
JPS61218355A (en) | Magnetically levitating actuator having rotation positioning function | |
JPS5938456B2 (en) | Electromagnetic device that drives, centers, and supports rotating parts | |
JP2000145773A (en) | Magnetic bearing device | |
EP0829887A2 (en) | Magnetic actuator with long travel in one direction | |
US4983869A (en) | Magnetic bearing | |
JPS61191254A (en) | Driving/positioning system | |
KR20100046155A (en) | Reduced-complexity self-bearing brushless dc motor | |
JPH07256503A (en) | Spindle apparatus | |
JPS6115560A (en) | Linear step motor | |
JPS5943220A (en) | Gimbal-controlled magnetic bearing | |
US4766358A (en) | Linear stepping motor | |
JPH09261805A (en) | Magnetic levitating actuator | |
JPH0494104A (en) | Magnetic levitation/driving device | |
JP3187982B2 (en) | Magnetic levitation device | |
JPWO2005039019A1 (en) | Actuator | |
JP2002161918A (en) | Magnetic bearing unit | |
JP2519537Y2 (en) | Magnetic bearing control circuit | |
WO2005045266A1 (en) | Power amplification device and magnetic bearing | |
JP2005061580A (en) | Magnetic bearing | |
JPH0785638B2 (en) | Rotating electric machine with magnetic bearing | |
JPH0674234A (en) | Repulsion magnetic levitation type rotation device | |
JP2004293598A (en) | Magnetic bearing | |
US20240200597A1 (en) | Combined Axial/Radial Magnetic Bearing | |
JPH02114834A (en) | Magnetic bearing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |