[go: up one dir, main page]

JPH0493822A - Nonlinear optical material and nonlinear optical element - Google Patents

Nonlinear optical material and nonlinear optical element

Info

Publication number
JPH0493822A
JPH0493822A JP20687290A JP20687290A JPH0493822A JP H0493822 A JPH0493822 A JP H0493822A JP 20687290 A JP20687290 A JP 20687290A JP 20687290 A JP20687290 A JP 20687290A JP H0493822 A JPH0493822 A JP H0493822A
Authority
JP
Japan
Prior art keywords
nonlinear optical
formula
nonlinear
optical
formulas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20687290A
Other languages
Japanese (ja)
Other versions
JP2846432B2 (en
Inventor
Naoki Oba
直樹 大庭
Akira Tomaru
暁 都丸
Takashi Kurihara
隆 栗原
Toshikuni Kaino
戒能 俊邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP20687290A priority Critical patent/JP2846432B2/en
Publication of JPH0493822A publication Critical patent/JPH0493822A/en
Application granted granted Critical
Publication of JP2846432B2 publication Critical patent/JP2846432B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To easily obtain the nonlinear optical material of a low loss and high efficiency by using a high polymer or a specific low-molcular material having high solubility in org. solvents. CONSTITUTION:This material contains the org. material having the structure expressed by formula I. In the formula I, pi electron conjugation rings may be the structures equal to each other or different from each other; X1 to Xn-1 and Y1 to Yn-1 are respectively either N or CH which may be equal to or different from each other; R and R' denote a substituent and at least either thereof exhibits the group expressed by formula II or III; n denotes 3 to 8 integer. In the formulas II, III, Z and Z' denote H or -OCOpH2p+1(p>=) and at least either thereof denotes a group exclusive of H; k>1, m>1, x and y>=3. The optical material of the low loss and high efficiency is obtd. in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、非線形光学材料に関するものであり、当該材
料は光力−シャッター、光双安定、光スイッチング等の
非線形光学効果を応用する光機能デバイスを構成する非
線形光学素子の材料として利用できる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a nonlinear optical material, and the material has optical functions that apply nonlinear optical effects such as optical force-shutter, optical bistability, and optical switching. It can be used as a material for nonlinear optical elements that make up devices.

〔従来の技術〕[Conventional technology]

従来この種の材料としてはポリジアセチレン、ポリアセ
チレン等の結晶性高分子が代表的な材料であり、その非
線形光学定数等の測定が行われている〔文献(1) :
 C、サウテレト(C,5auteret)ほか、フィ
ジカル レビュー レターズ(Phys、 Rev、 
Letter、)第36巻、第956〜959頁(19
76):]が、デバイス応用のために単結晶、あるいは
単結晶薄膜を作製する必要があり、良質結晶の作製は非
常に困難な場合が多く、光デバイスに用いるには光損失
が多く実用的な素子作製には不向きである。
Conventionally, crystalline polymers such as polydiacetylene and polyacetylene have been representative materials of this kind, and their nonlinear optical constants have been measured [Reference (1):
C,5auteret et al., Physical Review Letters (Phys, Rev,
Letter, ) Volume 36, pp. 956-959 (19
76):], it is necessary to produce single crystals or single crystal thin films for device applications, and it is often very difficult to produce high-quality crystals, and there is a high optical loss for use in optical devices, making it impractical. It is unsuitable for fabricating large-scale devices.

一方、上記の問題点を解決するため、非線形感受率の大
きな低分子を高分子に分散させたり、溶液に溶かした材
料を非線形デバイスの材料として用いる例がある。この
種の材料は光学的質損失が低いこと、導波路作製が容易
である点で有利である。
On the other hand, in order to solve the above-mentioned problems, there are examples in which a low molecule with a high nonlinear susceptibility is dispersed in a polymer, or a material dissolved in a solution is used as a material for a nonlinear device. This type of material is advantageous in that it has low optical quality loss and is easy to fabricate waveguides.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

一般的に非線形感受率の大きな低分子材料は非線形性に
関与するπ共役鎖をある程度以上長くする必要がある。
In general, for low-molecular materials with high nonlinear susceptibility, it is necessary to lengthen the π-conjugated chain, which is involved in nonlinearity, to a certain extent.

その結果分子自体が剛直となり、有機溶媒、高分子材料
への溶解性が非常に低くなる。このため、高分子、ある
いは溶媒へ分散させた非線形光学材料系は非線形光学定
数が現状では一般的にはそれほど大きくなく、実用的な
デバイスへの適用は困難である。
As a result, the molecule itself becomes rigid, and its solubility in organic solvents and polymeric materials becomes extremely low. For this reason, the nonlinear optical constants of nonlinear optical material systems dispersed in polymers or solvents are generally not very large at present, making it difficult to apply them to practical devices.

例えば、大きな非線形感受率を発現した低分子材料とし
てはπ共役鎖の末端に強い電子供与基、アミノ基等を持
つものが多い。具体的には5BAC:分子構造: 「1 DEANS :分子構造: ない。
For example, many low-molecular materials that exhibit large nonlinear susceptibility have strong electron-donating groups, amino groups, etc. at the terminals of their π-conjugated chains. Specifically, 5BAC: Molecular structure: "1 DEANS: Molecular structure: None.

本発明の目的は、上記の課題を解決した非線形光学材料
及び非線形光学素子を提供することにある。
An object of the present invention is to provide a nonlinear optical material and a nonlinear optical element that solve the above problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明を概説すれば、本発明の第1の発明は非線形光学
材料に関する発明であって、下記−般式I: 等が挙げられ、3次の非線形光学定数χ(3)値は10
−”esu程度と大きな値が報告されている〔文献(2
):栗原 隆はか、ケミカル フィジクス レターズ(
Chem、Phys、 Letter、)第165巻、
第171〜174頁(1990) )。
To summarize the present invention, the first invention of the present invention relates to a nonlinear optical material, which includes the following general formula I: etc., and the third-order nonlinear optical constant χ(3) value is 10
- Large values of approximately ``esu'' have been reported [Reference (2)
): Takashi Kurihara, Chemical Physics Letters (
Chem, Phys, Letter,) Volume 165,
171-174 (1990)).

これらの材料をデバイスに適用するためには、高分子材
料に分散させた形態で使用するのが損失面、加工の容易
性、安定性から考えて有利だが、高々数wt%までしか
溶解できないため、分散材料自体のχ(3)値は10−
”esu程度と低いχ(3)値しか得られず、有効な材
料となってい〔■〕 あり、相互に等しい構造でも異なる構造であってもよい
。X +”’=Xh−1及びY l 〜Y n −1は
、それぞれN若しくはCHのいずれかであり、相互に等
しくても異なっていてもよい。またR及びR′は置換基
を示すが、その少なくとも一方は、下記一般式■又は■
: (式中、Z及びZ′はH又は−〇(1:QCpH2,+
、 (式中、p≧1)を示すが、少なくとも・一方はH
以外の基を示す。k>、1、m>1) (式中、X及びy≧3)で表される基を示す。
In order to apply these materials to devices, it is advantageous to use them in the form of dispersion in polymeric materials in terms of loss, ease of processing, and stability, but since they can only be dissolved in amounts of a few wt% at most. , the χ(3) value of the dispersed material itself is 10−
It is an effective material because only a low χ(3) value of approximately ``esu'' can be obtained [■], and the structures may be the same or different. ~Y n -1 is either N or CH, and may be equal to or different from each other. Furthermore, R and R' represent substituents, and at least one of them is represented by the following general formula (■) or (■).
: (wherein Z and Z' are H or -〇(1:QCpH2, +
, (where p≧1), but at least one of H
Indicates a group other than k>, 1, m>1) (in the formula, X and y≧3).

またnは3〜8の整数を示す〕で表される構造を有する
有機材料を含有することを特徴とする。
Further, it is characterized by containing an organic material having a structure represented by the following formula: n is an integer of 3 to 8.

また、本発明の第2の発明は非線形光学素子に関する発
明であって、非線形屈折率あるいは非線形吸収係数を有
する光学媒質と、その他の光学素子とで構成される非線
形光学装置に用いられる非線形光学素子において、第1
の発明に記載のいずれかの材料を光学媒質とすることを
特徴とする。
Further, a second invention of the present invention relates to a nonlinear optical element, and is a nonlinear optical element used in a nonlinear optical device composed of an optical medium having a nonlinear refractive index or a nonlinear absorption coefficient and other optical elements. In the first
The invention is characterized by using any of the materials described in the invention as an optical medium.

本発明は、従来の有機材料を分散させた材料の問題点で
ある低い非線形性を改善するために、高分子、あるいは
有機溶媒への溶解性を高めた置換基を付与する手段によ
り、高い非線形性を発現することを可能とした材料系と
それを高分子あるいは溶媒へ分散させた材料の両者に関
したものである。
In order to improve the low nonlinearity that is a problem with conventional materials in which organic materials are dispersed, the present invention has developed a highly nonlinear It concerns both the material system that makes it possible to express this property and the material in which it is dispersed in polymers or solvents.

本発明では、溶解性を高狛た置換基を付与することによ
ってπ電子共役鎖に基づく光非線形性の低減を防ぐため
、π電子共役鎖に付随した電子供与基を構成するアミノ
骨格のみを溶解性を高めた置換基で化学修飾する手法に
より、溶液あるいは高分子への溶解度を高約だ材料を実
現している。
In the present invention, in order to prevent the reduction of optical nonlinearity due to the π-electron conjugated chain by adding a substituent with high solubility, only the amino skeleton constituting the electron donating group attached to the π-electron conjugated chain is dissolved. By chemically modifying the material with substituents that increase its properties, we have created materials with high solubility in solutions or polymers.

NO2等の電子吸引性の大きな基がある。There are groups with large electron-withdrawing properties such as NO2.

本発明の一般式CI]で表される化合物中のnの数を3
〜8とした材料については、同程度の溶解度及びχ(3
)値が得られた。しかし、nを9とすると溶解度が1%
以下となり約1×10−”esuの低いχ(3)値しか
得られながった。
The number of n in the compound represented by the general formula CI] of the present invention is 3
〜8 for materials with similar solubility and χ(3
) value was obtained. However, if n is 9, the solubility is 1%.
As a result, only a low χ(3) value of about 1×10 −”esu was obtained.

また、一般式〔■〕中のpが1〜4で同程度の結果が得
られた。
Furthermore, similar results were obtained when p in the general formula [■] was 1 to 4.

更に、本発明の非線形光学材料の実例としては、第1の
発明に言己載の有機材料の1種あるいは2種以上を高分
子あるいは溶液へ分散させたものがある。
Furthermore, as an example of the nonlinear optical material of the present invention, there is one in which one or more of the organic materials described in the first invention is dispersed in a polymer or a solution.

本発明の実施例において、分散媒体としては、酢酸エチ
ル、ポリメチルメタクリレート(PMMA)のみ記述し
ていたが、他の溶媒、高分子を用いても同程度の非線形
性が得られる。
In the examples of the present invention, only ethyl acetate and polymethyl methacrylate (PMMA) were described as the dispersion medium, but the same degree of nonlinearity can be obtained using other solvents or polymers.

〔実施例〕〔Example〕

以下、本発明を実施例により更に具体的に説明するが、
本発明はこれら実施例に限定されない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The invention is not limited to these examples.

実施例1 4−(N−エチル−N−ヒドロキシエチル)アミノ−ア
ニリンの0.2モルと2,5−ジクロロテレフタルアル
デヒドの0.1モルをテトラヒドロフラン(THF)中
に溶解させ、ベンゼントルエンスルホン酸を触媒にして
反応させた。
Example 1 0.2 mole of 4-(N-ethyl-N-hydroxyethyl)amino-aniline and 0.1 mole of 2,5-dichloroterephthalaldehyde are dissolved in tetrahydrofuran (THF) and benzenetoluenesulfonic acid was used as a catalyst to react.

溶媒除去後、得られる○H−8BAC 分子構造: しL 0.05モルとアセチルクロライド0.1モルをTHF
中で反応させ、本発明材料の一つであるA−3BAC 分子構造: を得た。
After removing the solvent, obtain ○H-8BAC Molecular structure: 0.05 mol of ShiL and 0.1 mol of acetyl chloride in THF
A-3BAC, which is one of the materials of the present invention, had the following molecular structure.

このA c−3BACを蒸着法によりガラス基板上に0
.1μm堆積させ、この材料のχ(3〕値を第3高調波
の強度から求めた。基本波1.9μmにおいてχ33)
値は10−”esu程度であった。
This A c-3BAC was deposited on a glass substrate by vapor deposition.
.. 1 μm was deposited, and the χ(3) value of this material was determined from the intensity of the third harmonic. χ33 at the fundamental wave of 1.9 μm)
The value was on the order of 10-''esu.

次にこの材料をPMMA中に分散させ、本発明の一つで
ある高分子分散材料を得た。5BACがPMMAに1w
t%までしか溶けないのに対し、Ac−3BACはPM
MAに20wt%まで溶解可能であった。
Next, this material was dispersed in PMMA to obtain a polymer-dispersed material according to the present invention. 5BAC is 1w to PMMA
Whereas Ac-3BAC dissolves only up to t%, PM
It was possible to dissolve up to 20 wt% in MA.

Ac−3BACの蒸着膜と同様にこの分散材料の薄膜を
スピンコーティングにより作製しく厚さ;0.1μm)
  χ(3)値を第3高調波の強度から求めたところ、
2 X 10−12esu程度であった。
Similar to the deposited film of Ac-3BAC, a thin film of this dispersed material was prepared by spin coating (thickness: 0.1 μm).
When the χ(3) value was calculated from the intensity of the third harmonic,
It was about 2 x 10-12 esu.

またこの材料を用いて、厚さ5mmの高分子ロッドを作
製し、三次の非線形光学効果(光(こより材料の屈折率
が変化する光力−効果)を利用した光力−シャッター素
子の実験を行った。その光学系を第1図に示す。1は直
線偏光成分をもつ信号光(波長: 0.84μm)  
2はゲート光(波長二0.7μm)   3は本発明の
材料サンプルである。4は偏光子、5はゲート光除去用
フィルター 6は光検出器である。2のゲート光を照射
しない場合は、4がクロスニコルに配置しであるため、
7の信号光は偏光子を通過できず、6の光検出器で検出
される光強度はOである。しかし、2のゲート光を3の
サンプル(こ照射した場合は3次の非線形光学効果によ
り材料の屈折率が変化し、直線偏光であったゲート光が
3のサンプル通過の際、楕円偏光に変化し、4の偏光子
を通過できるようになり、光検出器で信号光を観測する
ことが可能であり、光力−シャッター動作を確認した。
We also fabricated a polymer rod with a thickness of 5 mm using this material, and conducted experiments on a light-shutter element that utilizes the third-order nonlinear optical effect (the light-power effect in which the refractive index of the material changes). The optical system is shown in Figure 1. 1 is a signal light with a linearly polarized component (wavelength: 0.84 μm)
2 is a gate light (wavelength: 0.7 μm); 3 is a material sample of the present invention. 4 is a polarizer, 5 is a gate light removal filter, and 6 is a photodetector. If the gate light of 2 is not irradiated, 4 is arranged in crossed nicols, so
The signal light 7 cannot pass through the polarizer, and the light intensity detected by the photodetector 6 is O. However, when the gate light from No. 2 is irradiated onto the sample from No. 3, the refractive index of the material changes due to the third-order nonlinear optical effect, and the gate light, which was linearly polarized light, changes to elliptically polarized light when it passes through the sample No. 3. However, the signal light was able to pass through the polarizer No. 4, and the signal light could be observed with a photodetector, confirming the optical power-shutter operation.

求めたχ[31値は2、2 X 10−”esu程度で
あり、第3高調波)強度から求めたχ33)値とほぼ一
致した。スイッチング速度はnsオーダー以下の高速の
応答性を確認しtこ。
The obtained χ[31 value was approximately 2.2 × 10-"esu, which was almost the same as the χ33) value obtained from the third harmonic) intensity. The switching speed confirmed high-speed response of less than ns order. T-ko.

またこの材料の損失値としては0.1 dB/ cm以
下の値を得た。
Furthermore, the loss value of this material was less than 0.1 dB/cm.

実施例2 実施例1と同様の反応により、 Ac2−3BAC:分子構造 を得た。実施例1と同様に蒸着法(こより、Ac2−3
BACの蒸着膜を作製し、χ[31値を演1j定したと
ころ、はぼ10−”esu程度であった0また、同様に
材料をPMMA中に分散させたところ、Ac2−5BA
Cは3Qwt%まで溶解可能であった。試料の第3高調
波の強度を求約たところ、3 X 10−I2esu程
度であつtこ。上菖己実施例1と同様に光力−シャッタ
ー実験を行ったところ、ゲート光による信号光の検出力
(観測でき、光力−シャッター動作を確認した。
Example 2 Ac2-3BAC: Molecular structure was obtained by the same reaction as in Example 1. The same vapor deposition method as in Example 1 (Ac2-3
When a vapor deposited film of BAC was prepared and the χ[31 value was calculated, it was found to be approximately 10-"esu. Furthermore, when the material was similarly dispersed in PMMA, Ac2-5BA
C could be dissolved up to 3Qwt%. When the intensity of the third harmonic of the sample was calculated, it was approximately 3 x 10-I2esu. When an optical power-shutter experiment was conducted in the same manner as in Example 1, the detection power of the signal light by the gate light was observed (observable), and the optical power-shutter operation was confirmed.

実施例3 実施例1と同様の反応により、下記に示すHH−3BA
C:分子構造 しl を得た。この材料の蒸着膜のχ131値は10esu程
度であり、有機溶媒酢酸エチル中Iこ溶解させたところ
、40wt%まで溶解でき、ガラスセル中でのこの液状
試料の第3高調波の強度を求めたところ、4 X 10
−12esu程度であった。
Example 3 HH-3BA shown below was produced by the same reaction as in Example 1.
C: The molecular structure was obtained. The χ131 value of the deposited film of this material is about 10 esu, and when it was dissolved in the organic solvent ethyl acetate, it was able to dissolve up to 40 wt%, and the intensity of the third harmonic of this liquid sample in the glass cell was determined. By the way, 4 x 10
It was about -12 esu.

上記実施例1と同様に光力−シャッター実験を行ったと
ころ、ゲート光による信号光の検出が観測でき、光力−
シャッター動作を確認した。
When an optical power-shutter experiment was conducted in the same manner as in Example 1 above, detection of signal light by the gate light could be observed, and the optical power-shutter experiment was observed.
I checked the shutter operation.

実施例4 実施例3におけるHH−8BACと実施例2におけるA
c2−3BACの2種を同時にPMMAに分散させたと
ころ、HH−3BAC10wt%、Ac 2−3BAC
30wt%まで溶解することができ、χ33)値で4 
X 10−”esuを得た。HH−3BAC単独ではP
MMAには5wt%までしか溶けないのに対し、異種の
分子を混合することにより、PMMAへの溶解を上昇さ
せることができた。この材料においても同様にカーシャ
ッター動作を確認した。
Example 4 HH-8BAC in Example 3 and A in Example 2
When two types of c2-3BAC were simultaneously dispersed in PMMA, HH-3BAC10wt%, Ac2-3BAC
It can dissolve up to 30wt%, and the χ33) value is 4.
X 10-"esu was obtained. With HH-3BAC alone, P
Although it is only soluble up to 5 wt% in MMA, by mixing different types of molecules, it was possible to increase the solubility in PMMA. Kerr shutter operation was similarly confirmed for this material as well.

表1に本発明により提案したこの他の主な材料とその高
分子分散材料の第3高調波の強度より求めたχ13)値
を示す。
Table 1 shows the χ13) values determined from the intensity of the third harmonic of other main materials proposed by the present invention and their polymer-dispersed materials.

上記表1の化合物において式[11,1中のpの数を4
まで変更した低分子材料についても同様のことを試みた
が表1中に示されるものと同程度の溶解度であり、χ(
3)値についても大きな差異はなかった。
In the compounds of Table 1 above, the number of p in formula [11,1 is 4
We tried the same thing with low-molecular-weight materials that had been changed up to
3) There was no significant difference in the values.

実施例5 実施例1及び2に示した高分子分散材料をガラスキャピ
ラリー中で合成することにより、第2図に示す形状の光
ファイバーを作製した。コアの直径は125μm1フア
イバーの長さは、10cmである。このファイバーで、
実施例1と同様に光力−シャッター素子の実験を行った
ところ実施例1及び2で示したロッド形状の材料に比べ
て約10倍の信号光強度が得られた。なお、第2図中、
7はガラスキャピラリー 8は本発明の材料によるコア
である。
Example 5 An optical fiber having the shape shown in FIG. 2 was produced by synthesizing the polymer-dispersed materials shown in Examples 1 and 2 in a glass capillary. The diameter of the core is 125 μm and the length of one fiber is 10 cm. With this fiber,
When experiments were conducted on the optical force-shutter element in the same manner as in Example 1, a signal light intensity approximately 10 times greater than that of the rod-shaped material shown in Examples 1 and 2 was obtained. In addition, in Figure 2,
7 is a glass capillary; 8 is a core made of the material of the present invention.

実施例6 実施例1及び2に示した高分子分散材料をガラス基板上
にスピンコードすることにより、第3図に示す形状の導
波路を得た。膜厚は5μm、光路長は1 cmである。
Example 6 A waveguide having the shape shown in FIG. 3 was obtained by spin-coding the polymer-dispersed materials shown in Examples 1 and 2 onto a glass substrate. The film thickness is 5 μm and the optical path length is 1 cm.

実施例5と同様に光力−シャッター実験を行い比較した
ところ、ロッド形状の材料に比べて、約20倍の信号光
強度を得た。なお、第3図において、9は本発明の材料
による薄膜、10はガラス基板である。
When a light power-shutter experiment was conducted and compared in the same manner as in Example 5, a signal light intensity of about 20 times that of the rod-shaped material was obtained. In addition, in FIG. 3, 9 is a thin film made of the material of the present invention, and 10 is a glass substrate.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の材料は、高分子あるいは
有機溶媒への溶解性が高い低分子材料を用いるため、容
易に低損失でしかも高効率な非線形光学材料とすること
ができる利点を有している。このため低損失で有効な実
用的な非線形光学素子を容易に実現することができる。
As explained above, the material of the present invention has the advantage that it can be easily made into a low-loss and highly efficient nonlinear optical material because it uses a polymer or a low-molecular material with high solubility in organic solvents. are doing. Therefore, a practical nonlinear optical element that is low loss and effective can be easily realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の材料を用いた光力−シャッター実験の
測定系を示す概要図、第2図は本発明の光ファイバーの
構成例を示す図、第3図は本発明の導波路の構成例を示
す図である。 1・・・直線偏光成分をもつ信号光、2・・・ゲート光
、3・・・本発明の材料サンプル、4・・・偏光子、5
・・・ゲート光除去用フィルター 6・・・光検出器、
7・・・ガラスキャピラリー 8・・・本発明の材料に
よるコア、9・・・本発明の材料による薄膜、10・・
・ガラス基板
Fig. 1 is a schematic diagram showing a measurement system for an optical force-shutter experiment using the material of the present invention, Fig. 2 is a diagram showing an example of the configuration of an optical fiber of the present invention, and Fig. 3 is a diagram showing the configuration of a waveguide of the present invention. It is a figure which shows an example. DESCRIPTION OF SYMBOLS 1... Signal light having a linearly polarized component, 2... Gate light, 3... Material sample of the present invention, 4... Polarizer, 5
...Gate light removal filter 6...Photodetector,
7... Glass capillary 8... Core made of the material of the present invention, 9... Thin film made of the material of the present invention, 10...
・Glass substrate

Claims (1)

【特許請求の範囲】 1、下記一般式 I : ▲数式、化学式、表等があります▼ ・・・〔 I 〕 〔式中、▲数式、化学式、表等があります▼〜▲数式、
化学式、表等があります▼は、π電子共役環 であり、相互に等しい構造でも異なる構造であってもよ
い。X_1〜X_n_−_1及びY_1〜Y_n_−_
1は、それぞれN若しくはCHのいずれかであり、相互
に等しくても異なっていてもよい。またR及びR′は置
換基を示すが、その少なくとも一方は、下記一般式II又
はIII: ▲数式、化学式、表等があります▼・・・〔II〕 {式中、Z及びZ′はH又は−OCOC_pH_2_p
_+_1(式中、p≧1)を示すが、少なくとも一方は
H以外の基を示す。k>1、m>1}、 ▲数式、化学式、表等があります▼・・・〔II〕 (式中、x及びy≧3)で表される基を示す。 またnは3〜8の整数を示す〕で表される構造を有する
有機材料を含有することを特徴とする非線形光学材料。 2、請求項1に記載の有機材料の1種あるいは2種以上
を、高分子あるいは溶液へ分散させたことを特徴とする
非線形光学材料。 3、非線形屈折率あるいは非線形吸収係数を有する光学
媒質と、その他の光学素子とで構成される非線形光学装
置に用いられる非線形光学素子において、請求項1に記
載のいずれかの材料を光学媒質とすることを特徴とする
非線形光学素子。
[Claims] 1. The following general formula I: ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ ... [I] [In the formula, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ ~ ▲ Numerical formulas,
There are chemical formulas, tables, etc. ▼ is a π-electron conjugated ring, and they may have the same structure or different structures. X_1~X_n_-_1 and Y_1~Y_n_-_
1 is either N or CH, and may be equal to or different from each other. In addition, R and R' represent substituents, and at least one of them is represented by the following general formula II or III: ▲There are mathematical formulas, chemical formulas, tables, etc.▼... [II] {In the formula, Z and Z' are H or -OCOC_pH_2_p
___+_1 (in the formula, p≧1), and at least one of them represents a group other than H. k>1, m>1}, ▲There are mathematical formulas, chemical formulas, tables, etc.▼...[II] Indicates a group represented by (in the formula, x and y≧3). and n represents an integer of 3 to 8] A nonlinear optical material characterized by containing an organic material having a structure represented by the following. 2. A nonlinear optical material comprising one or more of the organic materials according to claim 1 dispersed in a polymer or a solution. 3. A nonlinear optical element used in a nonlinear optical device composed of an optical medium having a nonlinear refractive index or nonlinear absorption coefficient and other optical elements, in which any one of the materials according to claim 1 is used as the optical medium. A nonlinear optical element characterized by:
JP20687290A 1990-08-06 1990-08-06 Nonlinear optical material and nonlinear optical element Expired - Fee Related JP2846432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20687290A JP2846432B2 (en) 1990-08-06 1990-08-06 Nonlinear optical material and nonlinear optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20687290A JP2846432B2 (en) 1990-08-06 1990-08-06 Nonlinear optical material and nonlinear optical element

Publications (2)

Publication Number Publication Date
JPH0493822A true JPH0493822A (en) 1992-03-26
JP2846432B2 JP2846432B2 (en) 1999-01-13

Family

ID=16530439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20687290A Expired - Fee Related JP2846432B2 (en) 1990-08-06 1990-08-06 Nonlinear optical material and nonlinear optical element

Country Status (1)

Country Link
JP (1) JP2846432B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8866278B1 (en) 2011-10-10 2014-10-21 Amkor Technology, Inc. Semiconductor device with increased I/O configuration
US9406595B2 (en) 2011-09-30 2016-08-02 Mediatek Inc. Semiconductor package
US9631481B1 (en) 2011-01-27 2017-04-25 Amkor Technology, Inc. Semiconductor device including leadframe with a combination of leads and lands and method
US9673122B2 (en) 2014-05-02 2017-06-06 Amkor Technology, Inc. Micro lead frame structure having reinforcing portions and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9631481B1 (en) 2011-01-27 2017-04-25 Amkor Technology, Inc. Semiconductor device including leadframe with a combination of leads and lands and method
US9406595B2 (en) 2011-09-30 2016-08-02 Mediatek Inc. Semiconductor package
US8866278B1 (en) 2011-10-10 2014-10-21 Amkor Technology, Inc. Semiconductor device with increased I/O configuration
US9673122B2 (en) 2014-05-02 2017-06-06 Amkor Technology, Inc. Micro lead frame structure having reinforcing portions and method

Also Published As

Publication number Publication date
JP2846432B2 (en) 1999-01-13

Similar Documents

Publication Publication Date Title
Li et al. Some new design strategies for second-order nonlinear optical polymers and dendrimers
US4717508A (en) Organic nonlinear optical substrates
JP2865917B2 (en) Nonlinear polymerization optical layer
US4720355A (en) Organic nonlinear optical substrates
US4999139A (en) Organic nonlinear optical material and nonlinear optical device
JPS6296930A (en) Non-linear optical material and apparatus
EP0867753B1 (en) Organic nonlinear optical material and nonlinear optical element using the same
JPH03213822A (en) Polarized light nonsensitive linear waveguide photoelectric phase modulator
JPH0493822A (en) Nonlinear optical material and nonlinear optical element
Kajzar et al. Concentration variation of quadratic NLO susceptibility in PMMA-DR1 side chain polymer
Manea-Saghin et al. Second order nonlinear optical properties of poled films containing azobenzenes tailored with azulen-1-yl-pyridine
Mircea et al. Tuning NLO susceptibility in functionalized DNA
Clays et al. Nonlinear light scattering by organic molecules and materials
JPS62448A (en) Quinodimethane compound
JPH04353832A (en) Nonlinear optical material and nonlinear optical element
JP2813925B2 (en) Organic optical nonlinear materials and nonlinear devices
JP2636062B2 (en) Method for producing film-like nonlinear optical material
JPH06202177A (en) Organic nonlinear optical material and wavelength converter element using this material
JPH04226434A (en) Nonlinear optical material and nonlinear optical element
Rau et al. Novel high glass transition temperature polyurethanes functionalized with efficient CT chromophores for second order NLO applications
JPH05127203A (en) Cubic optical nonlinear material
JPH02252728A (en) Nonlinear organic optical material
Huijts et al. Construction of the second-order optical nonlinearity in an organic side-chain polymer
Bergmann et al. The synthesis and characterisation of nematic NLO polymer networks
JP3375459B2 (en) Organic material for nonlinear optical element and optical element using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees