[go: up one dir, main page]

JPH0493730A - Temperature measuring apparatus - Google Patents

Temperature measuring apparatus

Info

Publication number
JPH0493730A
JPH0493730A JP21297990A JP21297990A JPH0493730A JP H0493730 A JPH0493730 A JP H0493730A JP 21297990 A JP21297990 A JP 21297990A JP 21297990 A JP21297990 A JP 21297990A JP H0493730 A JPH0493730 A JP H0493730A
Authority
JP
Japan
Prior art keywords
temperature
substrate
light
infrared
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21297990A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawamura
博史 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP21297990A priority Critical patent/JPH0493730A/en
Publication of JPH0493730A publication Critical patent/JPH0493730A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To make it possible to measure the temperature of a substrate such as a semiconductor simply and accurately by utilizing the temperature dependency of a light absorbing end inherent to a material to be measured, and measuring the temperature of the material from the point where the intensity of transmitted light is largely changed. CONSTITUTION:In this infrared-ray measuring system, the film forming temperature of a GaAs substrate 2 in a molecular beam epitaxial device 3 is set at, e.g. 600 deg.C. Therefore, infrared rays are made to pass through a filter 5 which absorbs the infrared rays having the wavelength of 1.09 mum or longer so that 1.09 mum at the absorbing end of the substrate 2 at 600 deg.C can be efficiently measured. Then the infrared rays enter into an infrared radiation thermometer 6. When the amount of the infrared-ray radiation from an infrared-ray source 1 is increased, the intensity of the infrared rays passing the substrate 2 is also increased. Meanwhile, the substrate 2 is heated, and the absorbing end is shifted to the side of the long wavelength. Thus, the increase in transmitting infrared rays is suppressed. When the temperature of the substrate 2 becomes 600 deg.C, the absorbing end becomes a wavelength region which does not pass through the filter 5. Therefore, the incident infrared rays into the thermometer 6 are rapidly decreased. Errors due to the light transmittance through a window 4 and the like do not occur in this change. Therefore, the temperature of the substrate 2 which is set with the filter 5 can be measured with good reproducibility.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、測定対象の材料についての透過光の吸収端波
長が設定値になったことを検出して、その材料が設定温
度になったことを検出する/M度測測定装置関するもの
である。
[Detailed Description of the Invention] <Industrial Application Field> The present invention detects that the absorption edge wavelength of transmitted light of a material to be measured has reached a set value, and detects that the temperature of the material has reached the set value. The present invention relates to a /M meter measuring device for detecting.

〈従来の技術〉 現在、半導体産業の発展と共に、特にその製造技術が高
度化して、多種の分析装置及び製造装置が使用されるよ
うになっている。特に、分子線エヒタキシ(MBE )
装置のように極めて薄い膜や、超格子膜を、精密にエピ
タキシャル成長させる装置では、正確な温度制御を必要
とする装置が少なくない。そして、更に基板をヒータに
マウントしたときの汚染や熱歪などを防止し、加熱の均
一性を保つため放射(輻射)光照射による加熱を用いる
装置が増加している。
<Background Art> Currently, with the development of the semiconductor industry, its manufacturing technology has become particularly sophisticated, and a wide variety of analysis devices and manufacturing devices are now being used. In particular, molecular beam ethitaxy (MBE)
Many of the devices that precisely epitaxially grow extremely thin films or superlattice films require accurate temperature control. Further, in order to prevent contamination and thermal distortion when the substrate is mounted on a heater and to maintain uniformity of heating, an increasing number of devices use heating by irradiation with radiant light.

以上のように放射光の照射による加熱のときは熱電対に
よる温度測定は一般に困難である。それは光加熱を行な
うときは基板の熱容量が小さくしてあり、特に高真空中
で、かつ、その熱容量が小さいと熱電対との接触でも温
度が変わるなどの間題があるからである。他に、結晶成
長などのとき広く用いられている測定対象の放射光から
温度を測定する赤外放射温度計(パイロメータ)を用い
ることもできる。しかし、この赤外放射温度計は、装置
の外からガラス窓を通して測定するので、その窓のガラ
スの汚れで、分光透過率が変ったり、半導体が背後から
の雑音赤外線を透過させる等から正確な温度が測定でき
なくなることがあった。
As described above, it is generally difficult to measure temperature using a thermocouple when heating is performed by irradiation with synchrotron radiation. This is because when performing optical heating, the heat capacity of the substrate is small, and if the heat capacity is small, especially in a high vacuum, there are problems such as the temperature changing even when it comes in contact with a thermocouple. Alternatively, it is also possible to use an infrared radiation thermometer (pyrometer) that measures the temperature from the emitted light of the measurement target, which is widely used in crystal growth and the like. However, since this infrared radiation thermometer measures from outside the device through a glass window, the spectral transmittance may change due to dirt on the glass, or the semiconductor may transmit noise infrared rays from behind, making it difficult to accurately measure the temperature. Sometimes the temperature could not be measured.

更に、この赤外放射温度計は、装置によって窓のガラス
の厚さや種類などが異なって測定する赤外領域で分光透
過率が変わるので測定する装置が変わる度に、その温度
計の校正を行なうことになり、温度測定を繁雑にしてい
た。
Furthermore, the spectral transmittance of this infrared radiation thermometer changes depending on the device used, as the spectral transmittance changes in the infrared region measured depending on the device, such as the thickness and type of window glass, so the thermometer must be calibrated every time the device used for measurement changes. This made temperature measurement complicated.

以上のような半導体膜の温度測定の問題を解決する温度
測定として、次のような方法が提案されている。
The following methods have been proposed as temperature measurement methods to solve the above-mentioned problems in temperature measurement of semiconductor films.

その1つは、半導体基板の加熱のため照射した赤外光を
モノクロメータで分光分析して吸収端を測定する方法で
ある。(例えば、E、S−Hellmanet  al
、Journal  of  Cr37sta1.Gr
owth81 (1987)38−42 )、これはG
aAsなどの半導体の吸収端が温度によって移動するこ
とを利用して温度測定を行なうものである。また、他の
方法として、反射光エリプソメトリ(偏光解析法)によ
る半導体表面の屈折係数の測定から温度測定するものも
ある、(例えば、TakashiTomita  et
  aL Japanese  Journalof 
 Applied  Ph37sics、 25 (1
986)L925−927)。
One method is to use a monochromator to spectrally analyze infrared light irradiated to heat a semiconductor substrate to measure the absorption edge. (e.g. E, S-Hellmanet al
, Journal of Cr37sta1. Gr.
owth81 (1987) 38-42), this is G
Temperature measurement is performed by utilizing the fact that the absorption edge of a semiconductor such as aAs moves with temperature. Another method is to measure the temperature by measuring the refractive coefficient of the semiconductor surface using reflected light ellipsometry (for example, Takashi Tomita et al.
aL Japanese Journalof
Applied Ph37sics, 25 (1
986) L925-927).

〈発明が解決しようとする課題〉 以上で説明した方法による温度測定において、半導体基
板の分光分析を行ってその吸収端を求めるものは、この
ように吸収端波長の測定に分光強度分布から測定し、測
定した吸収端波長をその半導体に対応させて温度に換算
するなど簡便性に欠け、測定に時間がかかるという問題
があった。又エリプソメl−IJによる温度測定では精
密な測定が必要になるので測定器、特に、その光学系の
正確な調整と、精密で迅速な操作が必要になっていた。
<Problems to be Solved by the Invention> In temperature measurement using the method described above, the absorption edge of the semiconductor substrate is determined by performing spectroscopic analysis. However, there was a problem in that the measured absorption edge wavelength was converted into a temperature corresponding to the semiconductor, which lacked simplicity, and the measurement took a long time. Furthermore, since temperature measurement using the ellipsome I-IJ requires precise measurement, accurate adjustment of the measuring instrument, especially its optical system, and precise and quick operation are required.

以上のように半導体基板を広い範囲にわたって精密な温
度測定を行なうのは困難であるが、このような半導体基
板については、その結晶成長、又は、分析を行っている
ときの温度だけを精度よく測定においては一般的に温度
の絶対値を直接測定するより、測定が容易な一定値にな
る定点を決めて、その定点温度からの相対的温度差を測
定する方が正確な測定が可能になる。
As mentioned above, it is difficult to accurately measure the temperature of a semiconductor substrate over a wide range, but it is possible to accurately measure only the temperature of such semiconductor substrates during crystal growth or analysis. In general, rather than directly measuring the absolute value of temperature, it is more accurate to determine a fixed point where the temperature is a constant value, which is easy to measure, and then measure the relative temperature difference from that fixed point temperature.

本発明は、以上のような半導体、絶縁体等の基板の温度
測定装置のもつ課題を解消し、その温度測定に必要な条
件を満たしてその半導体等の基板温度を簡便に、かつ、
正確に検出できる温度測定装置を提供することを目的と
している。
The present invention solves the above-mentioned problems of the temperature measurement device for substrates such as semiconductors and insulators, satisfies the conditions necessary for temperature measurement, and easily measures the temperature of substrates such as semiconductors.
The purpose is to provide a temperature measuring device that can accurately detect temperature.

〈課額を解決するための手段〉 本発明による温度測定は、定点的な測定を行なうもので
ある。即ち、材料の温度を、その材料固有の特定波長以
上の波長の光を透過させる吸収端を用いて検出するもの
である。
<Means for solving charges> Temperature measurement according to the present invention is performed at fixed points. That is, the temperature of a material is detected using an absorption edge that transmits light having a wavelength equal to or longer than a specific wavelength unique to the material.

以上は、半導体、絶縁体等の材料の光吸収端はその材料
のバンドギャップの大きさで決まり、史に、そのバンド
ギャップの大きさはその材料の温度に対応して変化する
ことを利用して測定するものである。
The above is based on the fact that the optical absorption edge of materials such as semiconductors and insulators is determined by the size of the bandgap of that material, and that, historically, the size of the bandgap changes depending on the temperature of the material. It is measured by

例えば、GaAsではその光吸収端は赤外領域にあるが
、そのバンドギャップkE(eV)、、!:し、基板温
度をT(K)とすると、 E(T)−1,519−45,405XIO−’ XT
2/(204+T)]      ・・・(1で表され
る。
For example, in GaAs, its optical absorption edge is in the infrared region, but its band gap kE (eV)...! :If the substrate temperature is T(K), then E(T)-1,519-45,405XIO-' XT
2/(204+T)] ...(Represented by 1.

又、バンドギャップEと光吸収端波長λ(μm)の間に
は次の関係式が成立する。
Further, the following relational expression holds between the band gap E and the optical absorption edge wavelength λ (μm).

λ−1,24/E          ・・・(2)以
上の(1)式と(2)式から、例えばGaAs温度Tが
500℃のとき光吸収端波長λは1.04μmになり、
T=60(Mcのときλ=1.09.amになる。
λ-1,24/E ... (2) From the above equations (1) and (2), for example, when the GaAs temperature T is 500°C, the optical absorption edge wavelength λ is 1.04 μm,
T=60 (When Mc, λ=1.09.am.

このときバンドギャップのエネルギーより小さいエネル
ギーの光、っ筐り光吸収端波長より長い波長の光はGa
Asを透過し、バンドギャップのエネルギーより大きい
エネルギーの光、っま9光吸収端波長より短かい波長の
光は吸収されることになる。
At this time, light with energy smaller than the energy of the band gap, and light with a wavelength longer than the optical absorption edge wavelength, are Ga
Light that passes through As and has an energy greater than the energy of the band gap, and light that has a wavelength shorter than the optical absorption edge wavelength, is absorbed.

以上の関係を用いて、次のような構成からGaAs基板
の温度を測定している。先ず、温度測定するGaAs基
板の裏面側に赤外線放射による加熱装置を設置し、基板
の表面側に1.09μm以下の波長の光のみ透過させる
フィルタを通した後、赤外線強度計で測定する測定系を
設ける。これで、赤外線加熱装置の呂力全上げてGaA
s基板の温度を徐々に上昇させると600℃になる迄は
GaAs基板は109μmより短かい波長の赤外線が透
過するので赤外線強度計に対応した値が指示されるが、
その基板温度が、600℃になると109μmより波長
の短かい光はその基板を透過しなくなるので、赤外線強
度計の指示値が急激に減少することになる。つまり、こ
の赤外線強度計の指示値は、急aに低下して零に近くな
る点が600cを示すことになる。
Using the above relationship, the temperature of the GaAs substrate is measured from the following configuration. First, a heating device using infrared radiation is installed on the back side of the GaAs substrate whose temperature is to be measured, and after passing through a filter that only transmits light with a wavelength of 1.09 μm or less on the front side of the substrate, a measurement system is used in which the temperature is measured with an infrared intensity meter. will be established. With this, you can increase the power of the infrared heating device to its full potential and use GaA.
If you gradually raise the temperature of the s-substrate until it reaches 600℃, the GaAs substrate will transmit infrared rays with wavelengths shorter than 109 μm, so the infrared intensity meter will indicate the corresponding value.
When the temperature of the substrate reaches 600° C., light with a wavelength shorter than 109 μm no longer passes through the substrate, so that the value indicated by the infrared intensity meter rapidly decreases. In other words, the indicated value of this infrared intensity meter shows 600c at the point where it suddenly decreases to a and approaches zero.

又、以上i1.09μmの波長のみ測定しても、同様な
fAll定を行なうことができる。
Further, even if only the wavelength of i1.09 μm is measured, a similar fAll determination can be made.

〈作 用〉 本発明は、温度測定の対象にした材料での試料によって
決まる吸収端が温度により変化するのを利用してその試
料の温度を測定するものである。
<Function> The present invention measures the temperature of a sample by utilizing the fact that the absorption edge of the material whose temperature is measured changes depending on the sample.

その測定も、所定の温度での試料の吸収端波長以下の波
長の光のみ通過させるフィルタを通過させた光か、その
吸収端波長の光のみを測定する状態にして、試料の温度
を上げるよう加熱すると、その試料の温度上昇により吸
収端波長が対応して長波長側にシフトする。従って、試
料が所定の温度に達すると透過光が急激に低下し零に近
い値になる。以上から、試料が所定温度に達したことを
容易に検出できる。
In this measurement, the temperature of the sample is increased by either passing the light through a filter that only passes light with a wavelength below the absorption edge wavelength of the sample at a given temperature, or by measuring only the light at the absorption edge wavelength. When heated, the absorption edge wavelength correspondingly shifts to longer wavelengths due to the rise in temperature of the sample. Therefore, when the sample reaches a predetermined temperature, the transmitted light rapidly decreases to a value close to zero. From the above, it is possible to easily detect that the sample has reached a predetermined temperature.

〈実施例〉 以下、本発明の実施例を図面を参照して説明する。<Example> Embodiments of the present invention will be described below with reference to the drawings.

第1図に示したのが、本発明の温度測定装置の一実施例
の概要構成である。これは一部のみ示した分子線エピタ
キシ装置(MBE装置)3と、それに設置したMBE薄
膜を形成するGaAs基板2の温度測定装置を示すもの
である。G a A、 s基板2は、厚さ450μmで
ノンドープの半絶縁性GaAs基板であり、通常の方法
で脱脂、エンチング等の前処理を行ない基板の表面を清
浄化した後、赤外線源lの放射光によりダイレクトヒー
テングできる図示しない基板ホルダーに装着してあり、
この基板2と赤外光源lは、MBE装置3内に設置され
ている。又、赤外線源1ば、基板2のヒーターと基板2
の温度測定を行なう赤外線源として利用され、その基板
2を透過した赤外線は、M B E装置3に設けられた
窓4を通って温度測定のための赤外線計測系へ入射する
配置になっている。
FIG. 1 shows a schematic configuration of an embodiment of the temperature measuring device of the present invention. This shows a molecular beam epitaxy device (MBE device) 3, only a portion of which is shown, and a temperature measuring device installed therein for a GaAs substrate 2 on which an MBE thin film is to be formed. The G a A, s substrate 2 is a non-doped, semi-insulating GaAs substrate with a thickness of 450 μm, and after cleaning the surface of the substrate by performing pre-treatment such as degreasing and etching using the usual method, the substrate 2 is irradiated with an infrared ray source 1. It is attached to a board holder (not shown) that can be directly heated by light.
The substrate 2 and the infrared light source 1 are installed in the MBE device 3. In addition, the infrared source 1, the heater of the substrate 2, and the substrate 2
The infrared rays transmitted through the substrate 2 are arranged to enter the infrared measurement system for temperature measurement through a window 4 provided in the MBE device 3. .

以上の赤外線計測系は、その基板2のMBE装置3での
成嘆温度を600℃に設定したのでGaAs基板2の6
00℃における吸収端の109μmを効率よく測定でき
るよう109μm以上の波長の赤外光を吸収するフィル
タ5を通した上赤外放射温度計6に入射させている。
In the above infrared measurement system, since the growth temperature of the substrate 2 in the MBE device 3 was set to 600°C,
In order to efficiently measure the absorption edge of 109 μm at 00° C., the infrared light is passed through a filter 5 that absorbs infrared light with a wavelength of 109 μm or more, and then enters an upper infrared radiation thermometer 6.

以上の状態にして、赤外線源lへの印加電力を一定速度
で増大して基板2の温度を上昇させたときの赤外1測針
6への入力と各部の関連を示したのが第2図と第3図で
ある。
The second section shows the relationship between the input to the infrared 1 needle 6 and each part when the temperature of the substrate 2 is raised by increasing the power applied to the infrared source 1 at a constant rate under the above conditions. Figure 3.

第2図では、フィルタ5とGaAs基板2について透過
率を縦軸にし、それに対応する光の波長を横軸にした分
光透過率を示している。この第2図fa)id基板2を
600℃に加熱した状態で、その基板2の吸収端がフィ
ルタ5の透光波長の外になり、基板2透過光が温度計6
に入射していないことを示し、第2図(b)は基板2が
500℃でその吸収端がフィルタ5の透光波長内にあり
、温度計6に、基板2の透過光が入射していることを示
している。
FIG. 2 shows the spectral transmittance of the filter 5 and the GaAs substrate 2, with the vertical axis representing the transmittance and the corresponding wavelength of light representing the horizontal axis. When the id substrate 2 in FIG.
Figure 2(b) shows that the substrate 2 is at 500°C and its absorption edge is within the transmission wavelength of the filter 5, and the transmitted light of the substrate 2 is incident on the thermometer 6. It shows that there is.

第3図は、前記のように赤外光源1への、印加電力を増
加し、放射赤外線強度を増大させ、基板2の温度を上昇
させたときの赤外線温度計6へ入射される赤外線強度の
時間経過を示している。
FIG. 3 shows the infrared intensity incident on the infrared thermometer 6 when the power applied to the infrared light source 1 is increased, the radiated infrared intensity is increased, and the temperature of the substrate 2 is raised as described above. It shows the passage of time.

この第3図の縦軸は温度計6への入射強度で、横軸は経
過時間である。
The vertical axis of FIG. 3 is the intensity of light incident on the thermometer 6, and the horizontal axis is the elapsed time.

この第3図では、第1図に示した温度測定装置で赤外光
源lK電力を入力し、その入力電力を一定速度で増加し
ている状態を示している。このとき、赤外光源1からの
赤外線放射量が増大し、基板2を透過する赤外線の強度
も増大するが、一方この赤外線の照射により基板2が加
熱されてきてその吸収端が長波長側にシフトし透過赤外
光の増加を抑えられるt、基板2の温度が600℃にな
ると、その吸収端がフィルタ5の透過しない波長領域に
なるので温度計6への入射赤外線が急激に低下する。こ
の赤外線入射の低下は敵側(℃)程度の極めて狭い範囲
における急激な変化になる。
FIG. 3 shows a state in which the infrared light source lK power is input to the temperature measuring device shown in FIG. 1, and the input power is being increased at a constant rate. At this time, the amount of infrared radiation from the infrared light source 1 increases, and the intensity of the infrared rays transmitted through the substrate 2 also increases, but on the other hand, the substrate 2 is heated by the irradiation of this infrared rays, and its absorption edge shifts to the longer wavelength side. When the temperature of the substrate 2 reaches 600° C., the absorption edge of the substrate 2 becomes a wavelength region that is not transmitted by the filter 5, so that the infrared light incident on the thermometer 6 rapidly decreases. This decrease in the incidence of infrared rays results in a sudden change in an extremely narrow range of the enemy's side (°C).

この変化は基板2と赤外放射温度計の間に設けられた窓
4や大気などによる光透過率により誤差が発生すること
がないので、以上のフィルタ4で設定した基板2の温度
を再現性よく測定できる。
This change does not cause errors due to light transmittance due to the window 4 provided between the substrate 2 and the infrared radiation thermometer or the atmosphere, so the temperature of the substrate 2 set by the above filter 4 can be reproducibly Can be measured well.

以上は、本発明の温度測定装置を、一定波長以下の波長
の光を透過する特性のフィルりを用いる実施例で説明し
たが、本発明は、以上の実施例によって限定されるもの
でなく、実施例の、フィルりと赤外放射温度計でなく、
設定した温度におけるその基板の吸収端波長の透過光の
みを狭帯域で測定するモノクロメータを用いても実施例
と同じように温度測定を行なうことができる。
Above, the temperature measuring device of the present invention has been explained using an example using a filter having a characteristic of transmitting light having a wavelength below a certain wavelength, but the present invention is not limited to the above example. Instead of the filler and infrared radiation thermometer of the example,
Temperature measurement can also be carried out in the same manner as in the embodiment using a monochromator that measures only the transmitted light at the absorption edge wavelength of the substrate at a set temperature in a narrow band.

以上の構成の温度測定装置で、基板の測定温度を変更す
るとき、フィルりを用いるものは別の分光透過特性のフ
ィルタと取り換えることで対応するが、モノクロメータ
を用いるものは検圧波長の変更設定のみで任意の温度の
検出に対応することが可゛能である。
When changing the measured temperature of the substrate with a temperature measuring device configured as described above, if it uses a filter, you can do so by replacing it with a filter with a different spectral transmission characteristic, but if you use a monochromator, you can change the measurement wavelength. It is possible to detect any temperature by just setting it.

又、測定する基板の材料もGaAsのみでなく、温度に
よってバンドギャップの幅が変化して、その吸収端も変
化する半導体又は絶縁体についても使用する光源、フィ
ルり、スペクトロメータ等の波長範囲を変えることで温
度測定に本発明の方法を用いることができる。
In addition, the material of the substrate to be measured is not only GaAs, but also semiconductors or insulators whose band gap width changes depending on temperature, and whose absorption edge also changes.The wavelength range of the light source, filter, spectrometer, etc. The method of the present invention can be used for temperature measurement by changing.

〈発明の効果〉 本発明の温度測定装置は、測定する材料に固有の光吸収
端の温度依存性を利用して、透過光の強度が大きく変化
する点から材料の温度を測定するので、光の測定経路に
存在するガラスやノイズ光に影響されないから、極めて
正確に、かつ、簡便・迅速に温度測定を行なうことがで
きる。
<Effects of the Invention> The temperature measuring device of the present invention utilizes the temperature dependence of the light absorption edge unique to the material to be measured to measure the temperature of the material from the point where the intensity of transmitted light changes significantly. Since it is not affected by glass or noise light present in the measurement path, temperature can be measured extremely accurately, easily, and quickly.

なお、上記温度測定装置、及び、材料基板の加熱装置等
をコンピュータに接続して基板温度を、所定の温度に精
度よく自動制御することが容易にできる。
Note that by connecting the temperature measuring device, the material substrate heating device, etc. to a computer, it is easy to automatically control the substrate temperature to a predetermined temperature with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(1本発明の温度測定装置の一実施例の概要を示
す構成図、第2図は実施例のフィルタ及び温度を変えた
ときのGaA s基板についての分光透過率を示す図、
第3図は実施例のG’ a A s基板温度に対応した
透過赤外線強度を示す図である。 l・・・赤外線光源、   2・・・GaAs基板。 3 ・MBE装置it、    4・・・窓、   5
・・・フィルタ、  6・・・赤外放射温度計。 0.7 08  0q/、0  、/、/   /、2
j憂 (声1) 第2図 代理人 弁理士 梅 1) 勝(他2名)箒! 図
FIG. 1 (1) is a configuration diagram showing an overview of an embodiment of the temperature measuring device of the present invention; FIG. 2 is a diagram showing the spectral transmittance of a GaAs substrate when changing the filter and temperature of the embodiment;
FIG. 3 is a diagram showing the intensity of transmitted infrared rays corresponding to the G' a As substrate temperature of the example. l...Infrared light source, 2...GaAs substrate. 3 ・MBE device it, 4...window, 5
...filter, 6...infrared radiation thermometer. 0.7 08 0q/, 0 , /, / /, 2
j Ui (Voice 1) Figure 2 Agent Patent Attorney Ume 1) Katsu (and 2 others) Houki! figure

Claims (1)

【特許請求の範囲】 1、温度測定する材料の光吸収端波長以下の波長の光を
含む光源の光を該材料に照射して、前記材料の透過光か
ら分離した前記材料の設定温度における光吸収端波長以
下の波長の光での光強度の変化度から前記材料の温度検
出をすることを特徴とする温度測定装置。 2、前記光吸収端波長以下の光の分離が、前記設定温度
における前記材料の光吸収端波長以下の波長の光のみ透
過させる光フィルタであることを特徴とする請求項1記
載の温度測定装置。 3、前記光吸収端波長以下の波長の光強度の検出が、前
記材料の設定温度における光吸収端波長に設定した狭帯
域のモノクロメータであることを特徴とする請求項1記
載の温度測定装置。
[Claims] 1. Light from a light source containing light with a wavelength below the optical absorption edge wavelength of the material whose temperature is to be measured is irradiated onto the material, and light at a set temperature of the material is separated from light transmitted through the material. A temperature measurement device characterized in that the temperature of the material is detected from the degree of change in light intensity of light having a wavelength below the absorption edge wavelength. 2. The temperature measurement device according to claim 1, wherein the separation of the light having a wavelength below the light absorption edge wavelength is an optical filter that transmits only light having a wavelength below the light absorption edge wavelength of the material at the set temperature. . 3. The temperature measuring device according to claim 1, wherein the detection of the light intensity of a wavelength equal to or less than the optical absorption edge wavelength is performed using a narrow band monochromator set to the optical absorption edge wavelength at a set temperature of the material. .
JP21297990A 1990-08-09 1990-08-09 Temperature measuring apparatus Pending JPH0493730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21297990A JPH0493730A (en) 1990-08-09 1990-08-09 Temperature measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21297990A JPH0493730A (en) 1990-08-09 1990-08-09 Temperature measuring apparatus

Publications (1)

Publication Number Publication Date
JPH0493730A true JPH0493730A (en) 1992-03-26

Family

ID=16631464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21297990A Pending JPH0493730A (en) 1990-08-09 1990-08-09 Temperature measuring apparatus

Country Status (1)

Country Link
JP (1) JPH0493730A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001153727A (en) * 1999-07-06 2001-06-08 Applied Materials Inc Thermally processing substrate
JP2005536049A (en) * 2002-08-13 2005-11-24 ラム リサーチ コーポレーション Method and apparatus for in-situ monitoring of substrate temperature by emitted electromagnetic radiation
JP2010519521A (en) * 2007-02-16 2010-06-03 アプライド マテリアルズ インコーポレイテッド Substrate temperature measurement by infrared transmission

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001153727A (en) * 1999-07-06 2001-06-08 Applied Materials Inc Thermally processing substrate
JP4689010B2 (en) * 1999-07-06 2011-05-25 アプライド マテリアルズ インコーポレイテッド Heat treatment substrate
JP2005536049A (en) * 2002-08-13 2005-11-24 ラム リサーチ コーポレーション Method and apparatus for in-situ monitoring of substrate temperature by emitted electromagnetic radiation
JP2010519521A (en) * 2007-02-16 2010-06-03 アプライド マテリアルズ インコーポレイテッド Substrate temperature measurement by infrared transmission

Similar Documents

Publication Publication Date Title
US5628564A (en) Method and apparatus for wavevector selective pyrometry in rapid thermal processing systems
US5568978A (en) Optical apparatus and method for measuring temperature of a substrate material with a temperature dependent band gap
US5118200A (en) Method and apparatus for temperature measurements
Jellison Jr et al. Optical functions of silicon at elevated temperatures
CA2136886C (en) Apparatus, system and method for real-time wafer temperature measurement based on light scattering
US9239265B2 (en) Apparatus and method for real time measurement of substrate temperatures for use in semiconductor growth and wafer processing
US6116779A (en) Method for determining the temperature of semiconductor substrates from bandgap spectra
US8786841B2 (en) Thin film temperature measurement using optical absorption edge wavelength
CN101258387A (en) Method and system for determining optical properties of semiconductor wafers
EP0329447B1 (en) Apparatus for determining the temperature of wafers or thin layers
US5098199A (en) Reflectance method to determine and control the temperature of thin layers or wafers and their surfaces with special application to semiconductors
US5618461A (en) Reflectance method for accurate process calibration in semiconductor wafer heat treatment
US5467732A (en) Device processing involving an optical interferometric thermometry
US5258602A (en) Technique for precision temperature measurements of a semiconductor layer or wafer, based on its optical properties at selected wavelengths
US20200025631A1 (en) Temperature measurement using etalons
US6174081B1 (en) Specular reflection optical bandgap thermometry
CN105136310B (en) Ultraviolet temperature measuring method and device for MOCVD epitaxial wafer surface temperature measurement
CA2030572A1 (en) Silicon wafer temperature measurement by optical transmission monitoring
JPH0493730A (en) Temperature measuring apparatus
JPH04130746A (en) Radiation thermometer for wafer temperature measurement and wafer temperature measurement method
US5167452A (en) Transmission method to determine and control the temperature of wafers or thin layers with special application to semiconductors
JPH10111186A (en) Apparatus and method for measuring temperature of semiconductor substrate
JP3600873B2 (en) Substrate temperature measurement unit
US7283218B2 (en) Method and apparatus for the determination of characteristic layer parameters at high temperatures
JPH01114727A (en) Radiation temperature measuring instrument