[go: up one dir, main page]

JPH0493065A - Structure of semiconductor device - Google Patents

Structure of semiconductor device

Info

Publication number
JPH0493065A
JPH0493065A JP2210820A JP21082090A JPH0493065A JP H0493065 A JPH0493065 A JP H0493065A JP 2210820 A JP2210820 A JP 2210820A JP 21082090 A JP21082090 A JP 21082090A JP H0493065 A JPH0493065 A JP H0493065A
Authority
JP
Japan
Prior art keywords
electrode
wiring layer
metal layer
barrier metal
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2210820A
Other languages
Japanese (ja)
Inventor
Koji Kato
加藤 晃次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2210820A priority Critical patent/JPH0493065A/en
Publication of JPH0493065A publication Critical patent/JPH0493065A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To prevent a title device from interfering with a wiring layer without increasing processes by simultaneously forming a barrier metal layer held between an electrode for holding a ferroelectric film and a wiring layer, a barrier metal layer held between a region other than said electrode and the wiring layer. CONSTITUTION:There are formed on a P type Si substrate an insulating film 102 for device isolation, and an N type diffusion layer 103, an N type diffusion layer 104, a gate electrode 105, a first interlayer insulating film 106, an electrode 108, a ferroelectric film 107, an electrode 109, and a second interlayer insulating film 110, and thereafter a connection hole is formed. Then, a barrier metal layer 111 is formed. A wiring layer 112 is formed and a metal layer 111 and a wiring layer 112 are formed simultaneously into a predetermined pattern by photoetching, to yield a semiconductor device. With this process, there can be formed simultaneously a metal layer 11 to be held between the electrode 109 and the wiring layer 112 and a metal layer 113 to be held between a region 104 other than said electrodes and a wiring layer 114, and hence an interaction between the electrode 109 and the wiring layer 112 and an interaction between the region 104 and the wiring layer 114 can be prevented without increasing additional processes.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、強誘電体を用いた、メモ!へ 持に電気的に
書き換え可能な不揮発性メモリの構造、及び製造方法に
関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a memo! using ferroelectric material. The present invention particularly relates to the structure and manufacturing method of electrically rewritable nonvolatile memory.

[発明の概要] 本発明は、強誘電体膜を用いた、メモリの製造方法にお
いて、強誘電体膜を挟むように形成された電極と前記電
極に接続される配線層との間に挟まれるべきバリアメタ
ル層、及び前記電極以外の領域とその領域に接続される
配線層との間に挟まれるべきバリアメタル層とを、同時
に形成する事によって、工程を短縮する事ができる。
[Summary of the Invention] The present invention provides a method for manufacturing a memory using a ferroelectric film, in which a ferroelectric film is sandwiched between electrodes formed to sandwich the ferroelectric film and a wiring layer connected to the electrodes. By simultaneously forming the barrier metal layer to be formed and the barrier metal layer to be sandwiched between the region other than the electrode and the wiring layer connected to the region, the process can be shortened.

F従来の技術] 従来の半導体不揮発性メモリとしては、絶縁ゲート中の
トラップまたは浮遊ケートにシリコン基板からの電荷を
注入することによりシリコン基板の表面ポテンシャルが
変調される現象を用いた、MIS型トランジスタが一般
的に使用されており、EPROM (紫外線消去型不揮
発性メモリ)やEEPROM (電気的書換え可能型不
揮発性メモリ)などとして実用化されている。
F Prior Art] As a conventional semiconductor non-volatile memory, an MIS type transistor uses a phenomenon in which the surface potential of a silicon substrate is modulated by injecting charge from the silicon substrate into a trap or floating gate in an insulated gate. is commonly used and has been put into practical use as EPROM (ultraviolet erasable nonvolatile memory) and EEPROM (electrically rewritable nonvolatile memory).

[発明が解決しようとする課題] しかしこれらの不揮発性メモリは、情報の書換え電圧が
、通常20V前後と高いことや、書換え時間が非常に長
い(例えばE E P ROMの場合数十m s e 
c 、)等の欠点を有する。また、情報の書換え回数が
、約102回程度であり、非常に少なく、繰り返し使用
する場合には問題が多い。
[Problems to be Solved by the Invention] However, in these nonvolatile memories, the voltage for rewriting information is usually high, around 20 V, and the rewriting time is extremely long (for example, in the case of EEPROM, it takes several tens of msec).
c,), etc. Further, the number of times information is rewritten is about 102 times, which is very small, and there are many problems when using it repeatedly.

電気的に分極が反転可能である強誘電体を用いた、不揮
発性メモリについては、書き込み時間と、読みだし時間
が原理的にほぼ同じであり、また電源を切っても分極は
保持されるため、理想的な不揮発性メモリとなる可能性
を有する。この様な強誘電体を用いた不揮発性メモリに
ついては、例えば米国特許4149302のように、シ
リコン基板上に強誘電体からなるキャパシタを集積した
構造や、米国特許3832700のようにM I S型
トランジスタのケート部分に強誘電体膜を配置した不揮
発性メモリなどの提案がなされている。また、最近では
第2図のようなMO3型半導体装置に積層した構造の不
揮発性メモリがIEDM’ 87pp、850−851
に提案されている。
For nonvolatile memory that uses ferroelectric materials whose polarization can be electrically reversed, the write time and read time are basically the same, and the polarization is maintained even when the power is turned off. , has the potential to become an ideal nonvolatile memory. Regarding non-volatile memories using such ferroelectric materials, for example, there are structures in which ferroelectric capacitors are integrated on a silicon substrate as in U.S. Pat. No. 4,149,302, and M I S type transistors as in U.S. Pat. Proposals have been made for non-volatile memories in which a ferroelectric film is placed on the gate portion of the device. Recently, a non-volatile memory having a structure stacked on an MO3 type semiconductor device as shown in Fig. 2 has been published in IEDM' 87pp, 850-851.
has been proposed.

第2図において、(201)はP型Si基板であり、 
(202、)は素子分離用のLOCO3酸化膜、 (2
03)はソースとなるN型拡散層であり、(204)は
ドレインとなるN型拡散層である。
In FIG. 2, (201) is a P-type Si substrate,
(202,) is a LOCO3 oxide film for element isolation, (2
03) is an N-type diffusion layer that becomes a source, and (204) is an N-type diffusion layer that becomes a drain.

(205)ケート電極てあり、 (206)は層間絶縁
膜である。(、207ンが強誘電体膜であり、電極(2
08>と(209)により挟まれ、キャパシタを構成し
ている。(210)は第2層間絶縁膜であり、 (21
1)が配線電極となるA]である。
(205) is a gate electrode, and (206) is an interlayer insulating film. (, 207 is the ferroelectric film, and the electrode (2
08> and (209), forming a capacitor. (210) is the second interlayer insulating film, (21
1) is A] which becomes a wiring electrode.

この様にMO8型半導体装置の上部に積層した構造では
、強誘電体膜の電極と半導体基板上のソース、ドレイン
となる高濃度拡散層との配線は第3図のようにA1等を
用いて行なわなければならない。このような構造を持つ
半導体装置に熱処理を加えると、AI等の配線層とソー
ス、ドレインとなる高濃度拡散層との間の相互反応が起
きると同時に、A1等の配線層と強誘電体膜を挟む電極
との間にも相互反応が起き、どちらも素子特性を劣化さ
せるという課題を有する。そこで、本発明はこのような
課題を解決するもので、その目的とするところは、同一
工程で前記二速りの相互反応を防ぐバリアメタル層を形
成し、強誘電体を用いた優れた半導体装置、特に不揮発
性メモリを、低コストに提供する事にある。
In this structure stacked on top of the MO8 type semiconductor device, the wiring between the electrode of the ferroelectric film and the high concentration diffusion layer which becomes the source and drain on the semiconductor substrate is made using A1 etc. as shown in Figure 3. must be done. When a semiconductor device with such a structure is subjected to heat treatment, an interaction occurs between the wiring layer such as AI and the high concentration diffusion layer that becomes the source and drain, and at the same time, the wiring layer such as A1 and the ferroelectric film There is also a problem that mutual reactions occur between the electrodes and the electrodes that sandwich them, and both deteriorate the device characteristics. Therefore, the present invention is intended to solve these problems, and its purpose is to form a barrier metal layer that prevents the two-speed mutual reaction in the same process, thereby creating an excellent semiconductor using ferroelectric material. The purpose is to provide devices, especially nonvolatile memory, at low cost.

[課題を解決するための手段] 本発明の半導体装置は、強誘電体膜が、能動素子が形成
された同一半導体基板上に強誘電体膜を挟むように形成
された電極を介して集積された半導体装置において、 前記強誘電体膜を挟むように形成された電極と前記電極
に接続される配線層との間に挟まれたバリアメタル層を
有し、 前記半導体装置の製造方法において、 前記強誘電体膜を挟むように形成された電極と前記電極
に接続される配線層との間に挟まれるべきバリアメタル
層、及び前記電極以外の領域とその領域に接続される配
線層との間に挟まれるべきバリアメタル層とを、同時に
形成する工程を含むことを特徴とする。
[Means for Solving the Problems] A semiconductor device of the present invention has a ferroelectric film integrated on the same semiconductor substrate on which active elements are formed via electrodes formed to sandwich the ferroelectric film. The semiconductor device includes a barrier metal layer sandwiched between electrodes formed to sandwich the ferroelectric film and a wiring layer connected to the electrodes, and the method for manufacturing the semiconductor device, further comprising: A barrier metal layer to be sandwiched between an electrode formed to sandwich a ferroelectric film and a wiring layer connected to the electrode, and between a region other than the electrode and a wiring layer connected to that region. The method is characterized in that it includes a step of simultaneously forming a barrier metal layer to be sandwiched between the two layers.

[実施例] 第1図(a)〜(d)は、本発明の半導体装置の一実施
例における主要工程断面図である。以下、第1図にした
がい、本発明の半導体装置を説明する。ここでは説明の
都合上Si基板を用い、Nチャンネルトランジスタを用
いた例につき説明する。
[Embodiment] FIGS. 1(a) to 1(d) are sectional views of main steps in an embodiment of the semiconductor device of the present invention. The semiconductor device of the present invention will be described below with reference to FIG. Here, for convenience of explanation, an example using a Si substrate and an N-channel transistor will be described.

(第1図(a)) (101)はP型Si基板であり、例えば2゜Ω・cm
の比抵抗のウェハを用いる。(102)は素子分離用の
絶縁膜であり、例えば、従来技術であるLOCO3法に
より酸化膜を600OA形成する。(103)はソース
となるN型拡散層であり、例えばリンを80keV5x
l○I5c m −2イオン注入することによって形成
する。(104)はドレインとなるN型拡散層であり、
 (103)と同時に形成する。< 105 、)はゲ
ート電極であり、例えばリンでドープされたホリシリコ
ンを用いる。(、l 06 )は第1層間絶縁膜であり
、例えば化学的気相成長法によりリンガラスを4000
A形成する。
(Figure 1(a)) (101) is a P-type Si substrate, for example, 2゜Ω・cm
A wafer with a specific resistance of (102) is an insulating film for element isolation, and for example, an oxide film with a thickness of 600 OA is formed by the conventional LOCO3 method. (103) is an N-type diffusion layer that becomes a source, and for example, phosphorus at 80keV5x
It is formed by implanting l○I5c m -2 ions. (104) is an N-type diffusion layer that becomes a drain,
(103) is formed simultaneously. <105,) is a gate electrode, for example, made of polysilicon doped with phosphorus. (, l 06 ) is the first interlayer insulating film, for example, 4000 phosphorus glass is formed by chemical vapor deposition.
Form A.

(108)は強誘電体膜を挟む一方の電極であり、例え
ばptをスパッタ法により、100OA形成する。(1
07)は強誘電体膜であり、例えばPbTiO3をスパ
ッタ法により、2000人形成する。(109)は強誘
電体膜を挟む、もう一方の電極であり、(108)と同
様にして形成する。(110)は第2層間絶縁膜であり
、例えば化学的気相成長法によりリンガラスを4000
人形成した後、従来からの技術である、フォト・エツチ
ングによって、接続孔を形成する。
(108) is one electrode sandwiching the ferroelectric film, and is made of, for example, PT with a thickness of 100 OA by sputtering. (1
07) is a ferroelectric film, and 2000 layers of PbTiO3 are formed by sputtering, for example. (109) is the other electrode sandwiching the ferroelectric film, and is formed in the same manner as (108). (110) is the second interlayer insulating film, for example, 4000 phosphorus glass is formed by chemical vapor deposition.
After the formation, connection holes are formed by photo-etching, which is a conventional technique.

(第1図(b)) (111)は本発明の主旨による、バリアメタル層であ
り、例えばスパッタ法により、TiNを500人形成す
る。この時、酸素を含む雰囲気中でスパッタする事によ
り、TiNに酸素を含ませる事が望ましい。
(FIG. 1(b)) (111) is a barrier metal layer according to the gist of the present invention, and 500 layers of TiN are formed by, for example, a sputtering method. At this time, it is desirable to cause TiN to contain oxygen by sputtering in an atmosphere containing oxygen.

(第1図(C)) (112)は配線層であり、例えばA1をスパッタ法に
より、5000人形成する。
(FIG. 1(C)) (112) is a wiring layer, and for example, 5000 layers A1 are formed by sputtering.

(第1図(dン) バリアメタル層(111)と配線層(112)をフォト
・エツチングにより、同時に所定のパターンに形成し、
本発明の実施例による、半導体装置を得る。
(Fig. 1 (d)) The barrier metal layer (111) and the wiring layer (112) are simultaneously formed into a predetermined pattern by photo-etching,
A semiconductor device according to an embodiment of the present invention is obtained.

第1図のような工程にすることにより、強誘電体膜を挟
む電極(109)と、前記電極に接続される配線M(1
12)との間に挟まれるべきバリアメタル層(111)
、及び前記電極以外の領域(ここではドレイン領域(1
04))と、前記領域に接続される配線層(114)と
の間に挟まれるべきバリアメタル層(113)とを同時
に形成する事ができ、工程を増やす事無しに、強誘電体
膜を挟む電極(109)と前記電極に接続される配線層
(112)との間の相互反応、及びドレイン領域(10
4、)とドレイン領域(104)に接続される配線層(
114)との間の相互反応を防ぐ事が可能である。
By performing the process as shown in FIG. 1, the electrode (109) sandwiching the ferroelectric film and the wiring M (109) connected to the electrode are formed.
12) Barrier metal layer (111) to be sandwiched between
, and a region other than the electrode (here, the drain region (1
04)) and the barrier metal layer (113) to be sandwiched between the wiring layer (114) connected to the region can be formed simultaneously, and the ferroelectric film can be formed without increasing the number of steps. Interaction between the sandwiching electrode (109) and the wiring layer (112) connected to said electrode, and the drain region (10
4,) and the wiring layer (104) connected to the drain region (104).
114) can be prevented.

さて、第1図において、 (’ 111 )及び(11
3)のバリアメタルがない場合、500°Cの熱処理を
行う事によって、ソース、ドレイン領域のPN接合が破
壊され、さらに(107)、(108)、(109)か
らなる強誘電体キャパシタのヒステリシスがなくな?)
(すなわち強誘電性が失われ)、比誘電率も、熱処理前
は500たったものが、20となった。これに対して、
本発明の実施例によれば、600 ’Cの熱処理に対し
ても上記変化は起こらなかった。
Now, in Figure 1, (' 111 ) and (11
If there is no barrier metal in 3), heat treatment at 500°C will destroy the PN junction in the source and drain regions, and further reduce the hysteresis of the ferroelectric capacitor consisting of (107), (108), and (109). Is it missing? )
(In other words, the ferroelectricity was lost), and the dielectric constant was 20, which was 500 before the heat treatment. On the contrary,
According to the example of the present invention, the above change did not occur even after heat treatment at 600'C.

以上の説明においては、主に不揮発性メモリについて説
明したが、強誘電体の比誘電率が大きいことを材用した
メモリ(DRAMなど)にも本発明が応用できることは
言うまでもない。
Although the above description has mainly been about non-volatile memories, it goes without saying that the present invention can also be applied to memories (such as DRAM) that use ferroelectric materials having a high dielectric constant.

[発明の効果J 本発明は、強誘電体膜を挟む電極と、前記itiに接続
される配線層との間に挟まれるべきバリアメタル層、及
び前記電極以外の領域と、前記領域に接続される配線層
との朋に挟まれるべきバリアメタル層とを同時に形成す
るようにしたため、工程を増やす事無しに、強誘電体膜
を挟む電極と前記電極に接続される配線層との間の相互
反応、及びドレイン領域とトレイン領域に接続される配
線層との間の相互反応を防ぐ事が可能となり、耐熱性に
優れた半導体装置を安価に製造できるという効果を有す
る。
[Effect of the Invention J] The present invention provides a barrier metal layer to be sandwiched between electrodes sandwiching a ferroelectric film and a wiring layer connected to the iti, and a region other than the electrode and a region connected to the region. Since the barrier metal layer to be sandwiched between the wiring layer and the wiring layer to be connected is formed at the same time, the interconnection layer between the electrode sandwiching the ferroelectric film and the wiring layer connected to the electrode can be easily formed without increasing the number of steps. This makes it possible to prevent reactions and mutual reactions between the drain region and the wiring layer connected to the train region, and has the effect that a semiconductor device with excellent heat resistance can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は本発明の実施例による、半導体
装置の主要工程断面図である。 第2図は従来の技術による、半導体記憶装置の主要断面
図である。 101・ 102・ 103・ 104・ 105・ 107・ 108・ 109・ 110・ 111.113・ 112.114・・ 201・ 202・ 203・ 204・ 205・ 206・ 207・・・・ ・シリコン基板 ・素子分離膜 ・ソース領域 ・ドレイン領域 ゲート電極 ・第1層間絶縁膜 ・強誘電体膜 ・下部電極 ・上部電極 ・第2層間絶縁膜 ・バリアメタル層 ・・・・配線層 ・シリコン基板 ・素子分離膜 ・ソース領域 ・ドレイン領域 ・ゲート電極 ・第1層間絶縁膜 ・強誘電体膜
FIGS. 1(a) to 1(d) are cross-sectional views of main steps of a semiconductor device according to an embodiment of the present invention. FIG. 2 is a main cross-sectional view of a semiconductor memory device according to the prior art. 101・ 102・ 103・ 104・ 105・ 107・ 108・ 109・ 110・ 111.113・ 112.114・・ 201・ 202・ 203・ 204・ 205・ 206・ 207・・・Silicon substrate/element isolation Film, source region, drain region Gate electrode, first interlayer insulating film, ferroelectric film, lower electrode, upper electrode, second interlayer insulating film, barrier metal layer... wiring layer, silicon substrate, element isolation film, Source region, drain region, gate electrode, first interlayer insulating film, ferroelectric film

Claims (4)

【特許請求の範囲】[Claims] (1)強誘電体膜が、能動素子が形成された同一半導体
基板上に強誘電体膜を挟むように形成された電極を介し
て集積された半導体装置において、前記強誘電体膜を挟
むように形成された電極と、前記電極に接続される配線
層との間に挟まれた、バリアメタル層を有する事を特徴
とする半導体装置の構造。
(1) In a semiconductor device in which a ferroelectric film is integrated on the same semiconductor substrate on which active elements are formed via electrodes formed to sandwich the ferroelectric film, 1. A structure of a semiconductor device comprising a barrier metal layer sandwiched between an electrode formed on the semiconductor device and a wiring layer connected to the electrode.
(2)前記強誘電体膜を挟むように形成された電極と、
前記電極に接続される配線層との間に挟まれるべきバリ
アメタル層、及び前記電極以外の領域と、その領域に接
続される配線層との間に挟まれるべきバリアメタル層と
を、同時に形成する工程を含むことを特徴とする、請求
項(1)記載の半導体装置の製造方法。
(2) electrodes formed to sandwich the ferroelectric film;
simultaneously forming a barrier metal layer to be sandwiched between a wiring layer connected to the electrode and a barrier metal layer to be sandwiched between a region other than the electrode and a wiring layer connected to that region; 2. The method of manufacturing a semiconductor device according to claim 1, further comprising the step of:
(3)前記バリアメタル層が、窒化チタン(以下TiN
と略す)を主成分とする事を特徴とする、請求項(1)
記載の半導体装置の構造。
(3) The barrier metal layer is made of titanium nitride (hereinafter referred to as TiN).
Claim (1) characterized in that the main component is
Structure of the described semiconductor device.
(4)前記TiNを主成分とするバリアメタル層が、酸
素を含む事を特徴とする、請求項(1)記載の半導体装
置の構造。
(4) The structure of the semiconductor device according to claim (1), wherein the barrier metal layer containing TiN as a main component contains oxygen.
JP2210820A 1990-08-09 1990-08-09 Structure of semiconductor device Pending JPH0493065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2210820A JPH0493065A (en) 1990-08-09 1990-08-09 Structure of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2210820A JPH0493065A (en) 1990-08-09 1990-08-09 Structure of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0493065A true JPH0493065A (en) 1992-03-25

Family

ID=16595665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2210820A Pending JPH0493065A (en) 1990-08-09 1990-08-09 Structure of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0493065A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5627391A (en) * 1994-06-28 1997-05-06 Matsushita Electronics Corporation Semiconductor device and method of manufacturing the same
US5719416A (en) * 1991-12-13 1998-02-17 Symetrix Corporation Integrated circuit with layered superlattice material compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719416A (en) * 1991-12-13 1998-02-17 Symetrix Corporation Integrated circuit with layered superlattice material compound
US5627391A (en) * 1994-06-28 1997-05-06 Matsushita Electronics Corporation Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JPH04158570A (en) Structure of semiconductor device and manufacture thereof
JP2817500B2 (en) Nonvolatile semiconductor memory device
JP4080078B2 (en) C-axis oriented thin film ferroelectric transistor memory cell and manufacturing method thereof
JP3092140B2 (en) Method for manufacturing semiconductor device
EP0495114A1 (en) Semiconductor device
JPH02232973A (en) semiconductor equipment
WO1992002955A1 (en) Semiconductor device
JPH0493065A (en) Structure of semiconductor device
JP3303479B2 (en) Thin film transistor
JPH0480959A (en) Semiconductor device
JP3111416B2 (en) Semiconductor device
JP3120477B2 (en) Semiconductor device
JP3387850B2 (en) Method for manufacturing semiconductor device
JPH0329186B2 (en)
JP2918098B2 (en) Semiconductor nonvolatile memory
JP3270020B2 (en) Semiconductor device
EP0506969A1 (en) Semiconductor device
JP3345781B2 (en) Method for manufacturing semiconductor device
JP2000124409A (en) Structure of semiconductor memory device formed by use of ferroelectric substance
JPH0437171A (en) Manufacturing method of semiconductor device
JP2000082793A (en) Method for manufacturing semiconductor device
JP2000031434A (en) Semiconductor device
JPH11177037A (en) Mfs ferroelectric storage element and its manufacture
JP2000082794A (en) Semiconductor device
JPH04196485A (en) semiconductor equipment