[go: up one dir, main page]

JPH0485922A - Manufacturing method of silicon thin film - Google Patents

Manufacturing method of silicon thin film

Info

Publication number
JPH0485922A
JPH0485922A JP20002190A JP20002190A JPH0485922A JP H0485922 A JPH0485922 A JP H0485922A JP 20002190 A JP20002190 A JP 20002190A JP 20002190 A JP20002190 A JP 20002190A JP H0485922 A JPH0485922 A JP H0485922A
Authority
JP
Japan
Prior art keywords
thin film
silicon layer
silicon thin
under
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20002190A
Other languages
Japanese (ja)
Other versions
JP2592984B2 (en
Inventor
Toru Ueda
徹 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2200021A priority Critical patent/JP2592984B2/en
Publication of JPH0485922A publication Critical patent/JPH0485922A/en
Application granted granted Critical
Publication of JP2592984B2 publication Critical patent/JP2592984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To effectively form a polycrystalline silicon thin film in which crystal defects are remarkably reduced by a method wherein an amorphous silicon layer is formed on an insulating substrate by a vapor growth method, it is crystallized by processing under an inert gas atmosphere, and it is anneal- processed at a specific temperature under the inert gas atmosphere. CONSTITUTION:An amorphous silicon layer 2' under a nitrogeon gas circulation is formed on a quartz substrate 1 by a CVD method, and a substrate for forming the amorphous silicon layer is heat-processed at 500 to 700 deg.C under the nitrogeon gas circulation to convert it into the polycrystalline silicon layer 2 of crystal grain diameter 0.5mum. Next, the substrate formed multiple crystal silicon layer is anneal-processed at a temperature of 900 deg.C or highe under the nitrogeon gas circulation with employment of a lamp anneal device, and a silicon thin film 4 wherein crystal defects one improved is obtained.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、シリコン薄膜の製造方法に関する。[Detailed description of the invention] (b) Industrial application fields The present invention relates to a method for manufacturing a silicon thin film.

さらに詳しくは各種半導体素子の基材や母材となるノリ
コン薄膜の製造方法に関する。
More specifically, the present invention relates to a method for manufacturing Noricon thin films that serve as base materials and base materials for various semiconductor devices.

(ロ)従来の技術 従来から、各種半導体素子の基材や母材としてシリコン
薄1[i(厚み500人〜1μm程度)が用いられてお
り、このシリコン薄膜の物理化学的特性が半導体素子の
性能に大きな影響を及ぼすことが知られている。
(b) Conventional technology Traditionally, silicon thin film (with a thickness of about 500 to 1 μm) has been used as a base material or parent material for various semiconductor devices, and the physicochemical properties of this silicon thin film are It is known to have a significant impact on performance.

例えば、シリコン薄膜からなる薄膜トランジスタ(TP
T)を利用した5−RAMにおいては、素子の低消費電
流化の為に、TPTのリーク電流の低減と、メモリセル
の安定化の為に、TPTのオン電流の増大が要求される
。そして、この要求性能を満たすには、気相成長して得
られ1こ多結晶シリコン薄膜中における結晶粒界、結晶
粒内の欠陥、すなわち局在準位をできるだけ低減させる
ことが必要である。
For example, a thin film transistor (TP) made of a silicon thin film
In a 5-RAM using TPT, it is required to reduce the leakage current of the TPT in order to reduce the current consumption of the element, and to increase the on-state current of the TPT in order to stabilize the memory cell. In order to satisfy this required performance, it is necessary to reduce as much as possible the crystal grain boundaries and defects within the crystal grains, that is, the localized levels in the monocrystalline silicon thin film obtained by vapor phase growth.

例えば、シリコン薄膜を形成する代表的な手法として、
SiH4を原料ガスとして用い、不活性ガス雰囲気下、
約600℃程度の温度下で多結晶ノリコンを気相成長す
る方法が知られている。しかし、このような方法では、
結晶性の大きな(例えば、数μa+)多結晶シリコン薄
膜を得るのは困難であり、結晶欠陥ことに結晶粒界での
欠陥が減少されたシリコン薄膜は得られない。
For example, a typical method for forming a silicon thin film is
Using SiH4 as a source gas, under an inert gas atmosphere,
A method is known in which polycrystalline noricon is grown in a vapor phase at a temperature of about 600°C. However, in such a method,
It is difficult to obtain a polycrystalline silicon thin film with high crystallinity (for example, several μa+), and it is impossible to obtain a silicon thin film in which crystal defects, especially defects at grain boundaries, are reduced.

そこで、SiH4又は5itHsを原料ガスとして用い
、不活性ガス雰囲気下約500℃の温度下で非晶質シリ
コンを気相成長させ、次いで同じく不活性ガス雰囲気下
で600℃程度の温度で処理して多結晶化させる方法ら
行われている(非晶質−多結晶化法)。
Therefore, using SiH4 or 5itHs as a source gas, amorphous silicon is grown in a vapor phase at a temperature of about 500°C in an inert gas atmosphere, and then treated at a temperature of about 600°C in the same inert gas atmosphere. Polycrystalline methods are being used (amorphous-polycrystalline method).

(ハ)発明が解決しようとする課題 上記非晶質−多結晶化法においては、大きな結晶粒(場
合によっては05μm以上)の多結晶シリコン薄膜を得
ることができる。
(c) Problems to be Solved by the Invention In the amorphous-polycrystalline method described above, a polycrystalline silicon thin film with large crystal grains (in some cases, 05 μm or more) can be obtained.

しかしながら、このようにして得られ1こ多結晶シリコ
ン薄膜には結晶粒中に多数の欠陥が存在するという問題
があった。
However, the polycrystalline silicon thin film obtained in this manner has a problem in that many defects exist in the crystal grains.

本発明はかかる状況下なされたものであり、ことに結晶
欠陥が著しく減少された多結晶シリコン薄膜を効率良く
形成することができる方法を提供しようとするものであ
る。
The present invention has been made under such circumstances, and particularly aims to provide a method that can efficiently form a polycrystalline silicon thin film in which crystal defects are significantly reduced.

(ニ)課題を解決するための手段 かくして本発明によれば、絶縁基板上に、非晶質シリコ
ン層を気相成長法で形成し、この非晶質シリコン層を不
活性ガス雰囲気下で約500〜700℃の温度で処理し
て結晶化させ、次いで不活性ガス雰囲気下で900℃以
上の温度でアニール処理することからなるシリコン薄膜
の製造方法が提供される。
(d) Means for Solving the Problems Thus, according to the present invention, an amorphous silicon layer is formed on an insulating substrate by a vapor phase growth method, and this amorphous silicon layer is grown in an inert gas atmosphere. A method of manufacturing a silicon thin film is provided, which comprises crystallizing the silicon thin film by treating at a temperature of 500 to 700°C, and then annealing at a temperature of 900°C or higher in an inert gas atmosphere.

本発明は、従来の非晶質−多結晶化法で得られた多結晶
ノリコン薄膜を、特定の高温下でアニル処理することに
より、結晶欠陥か著しく減少された多結晶シリコン薄膜
が得られるという事実の発見に基づくものである。
The present invention claims that by annealing a polycrystalline silicon thin film obtained by the conventional amorphous-polycrystalization method at a specific high temperature, a polycrystalline silicon thin film with significantly reduced crystal defects can be obtained. It is based on factual findings.

本発明では、まず、熱酸化したSi、石英等の絶縁基板
上に非晶質ノリコン層が形成される。この非晶質ノリコ
ン層は原料ガスとしてSiH4,5itHa等のンラン
やボリンラン類を用い、公知の気相成長法で形成するこ
とができる。通常、不活性ガス中550〜570”C程
度温I下で気相成長を行うことにり、非晶質シリコン層
を効率良く形成することができる。但し、前述したごと
く、600℃程度の多結晶シリコンの気相成長条件下で
シリコン層を形成し、これにノリコノイオンをイオン注
入(例えば、ドーズI 2 X L O15am−’、
エネルギ40KeV) して非晶質化させた、非晶質ノ
リコン層を用いることもできる。
In the present invention, first, an amorphous Noricon layer is formed on an insulating substrate of thermally oxidized Si, quartz, or the like. This amorphous Noricon layer can be formed by a known vapor phase growth method using Nran or Borin Ran such as SiH4,5itHa as a raw material gas. Normally, an amorphous silicon layer can be efficiently formed by vapor phase growth in an inert gas at a temperature of about 550 to 570"C. However, as mentioned above, amorphous silicon layers can be grown at a temperature of about 600"C. A silicon layer is formed under crystalline silicon vapor phase growth conditions, and Norikono ions are ion-implanted into it (for example, at a dose of I 2 X L O15am-',
It is also possible to use an amorphous Noricon layer made amorphous by applying an energy of 40 KeV.

かかる非晶質ノリコン層は次いで不活性ガス雰囲気下で
約500〜700℃、好ましくは600〜650 ’C
の温度で結晶化処理に付される。処理時間は、通常48
〜96時間程度で充分であり、これにより非晶質ノリコ
ン層は固相成長して多結晶シリコン層に変換される。な
お、この際の不活性ガスとしては、例えば窒素ガス、ア
ルゴンガス等が適している。
Such amorphous Noricon layer is then heated at about 500-700'C, preferably 600-650'C under an inert gas atmosphere.
It is subjected to crystallization treatment at a temperature of . Processing time is usually 48
About 96 hours is sufficient, whereby the amorphous Noricon layer undergoes solid phase growth and is converted into a polycrystalline silicon layer. Note that, as the inert gas at this time, for example, nitrogen gas, argon gas, etc. are suitable.

このようにして得られた多結晶シリコン層は、次いでア
ニール処理に付される。アニール処理は、上記と同じく
不活性ガス雰囲気下で行われ、処理温度は900℃以上
とされ、通常、l0QO−1150℃とするのが好まし
い。
The polycrystalline silicon layer thus obtained is then subjected to an annealing treatment. The annealing treatment is carried out in the same inert gas atmosphere as described above, and the treatment temperature is 900°C or higher, preferably 10QO-1150°C.

900℃未満では、結晶欠陥が充分に減少された多結晶
シリコン薄膜を得ることが困難である。ここで処理時間
はランプアニール法を用いた場合には、通常30〜30
0秒程度とするのが適しており、100〜200秒とす
るのが好ましい。
At temperatures below 900° C., it is difficult to obtain a polycrystalline silicon thin film with sufficiently reduced crystal defects. Here, the processing time is usually 30 to 30 minutes when using the lamp annealing method.
Approximately 0 seconds is suitable, and preferably 100 to 200 seconds.

このようにして得られたシリコン薄膜は、結晶粒界、結
品位内の欠陥が著しく減少したものであり、種々の半導
体素子の基材、母材として役立つしのである。
The silicon thin film thus obtained has significantly reduced defects at grain boundaries and crystal grains, and is useful as a base material for various semiconductor devices.

(ホ)作用 不活性ガス雰囲気下、900℃以上のアニール処理を行
うことにより、比較的大粒径の多結晶ノリコン薄層中の
結品内座欠陥が著しく減少されることとなる。
(e) Function: By performing annealing treatment at 900° C. or higher in an inert gas atmosphere, crystal insemination defects in a thin layer of polycrystalline noricon with a relatively large grain size are significantly reduced.

(へ)実施例 以下、実施例により本発明をさらに詳しく説明する。(f) Example Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 (非晶質ノリコン層の形成) まず、第1図(a)に示すように、石英基板1上にSi
H,を原料ガスとするCVD法により窒素ガス流通下約
500人の厚さの非晶質シリコン層2゛を形成した。こ
の際のCVDの条件は以下の通りである。
Example 1 (Formation of amorphous Noricon layer) First, as shown in FIG. 1(a), Si was deposited on a quartz substrate 1.
An amorphous silicon layer with a thickness of approximately 500 mm was formed by CVD using H, as a raw material gas under nitrogen gas flow. The CVD conditions at this time are as follows.

堆積温度二500℃ 堆積速度:〜10人/win 圧    カニ D、3Torr 流通(SiHa) : 100sec+nN、流量: 
300sccm (多結晶化) 上記非晶質シリコン層形成基板を、窒素ガス流通下、6
00℃で96時間加熱処理することにより、非晶質ンリ
コン層2゛を第1図(b)に示すように結晶粒径約0.
5μmの多結晶ノリコン層2に変換させた。なお、図中
3は多結晶シリコン層中に存在する結晶欠陥を示すもの
である。
Deposition temperature: 2500°C Deposition rate: ~10 people/win Pressure Crab D, 3 Torr Distribution (SiHa): 100 sec + nN, flow rate:
300 sccm (Polycrystalization) The above amorphous silicon layer forming substrate was heated for 6 hours under nitrogen gas flow.
By heat-treating at 00°C for 96 hours, the amorphous silicon layer 2' has a crystal grain size of approximately 0.0°C as shown in FIG. 1(b).
It was converted into a polycrystalline Noricon layer 2 with a thickness of 5 μm. Note that 3 in the figure indicates a crystal defect existing in the polycrystalline silicon layer.

(高温アニール) 次いで、上記多結晶シリコン層形成基板を、窒素ガス流
通下、ランプアニール装置を用いて1150℃の温度で
150秒間アニール処理することにより、第1図に示さ
れるように、結晶欠陥が改善されたシリコン薄膜4を得
た。
(High-temperature annealing) Next, the polycrystalline silicon layer-formed substrate is annealed at a temperature of 1150° C. for 150 seconds under nitrogen gas flow using a lamp annealing device to eliminate crystal defects as shown in FIG. A silicon thin film 4 with improved properties was obtained.

なお、このシリコン薄膜4の結晶欠陥については、ES
R(IE子ススピン共鳴によって評価を行ったが、それ
により、高温アニールをしない従来の多結晶シリコン薄
膜に比して、約1710であり、短時間の高温アニール
処理にも拘わらず、欠陥の量が著しく減少していること
が確認された。
Regarding crystal defects in this silicon thin film 4, ES
R (Evaluation was performed by IE electron spin resonance, and it was found that it was approximately 1710 compared to a conventional polycrystalline silicon thin film that was not subjected to high-temperature annealing, and the amount of defects was reduced despite the short-time high-temperature annealing treatment. It was confirmed that there was a significant decrease in

なお、上記実施例では、ランプアニール装置によって加
熱を行ったか、電気炉を用いて1000℃で30分間高
温アニール処理を行っても同様の結果が得られた。
In the above examples, similar results were obtained even when heating was performed using a lamp annealing device or high-temperature annealing treatment was performed at 1000° C. for 30 minutes using an electric furnace.

実施例2 SitHaを原料ガスとして、下記条件で非晶質シリコ
ン層を形成する以外、実施例1と同様にして500人の
シリコン薄膜4を形成した。
Example 2 A silicon thin film 4 of 500 people was formed in the same manner as in Example 1 except that an amorphous silicon layer was formed under the following conditions using SitHa as a source gas.

堆積温度二500℃ 堆積速度二〜70、入/min 圧     カニ Q、2Torr 流通(SiJa) : 1001005c、流量: 3
00sec@ このようにして得られたシリコン薄膜は、実施例1と同
様に、欠陥が著しく減少されたものであった。なお、本
実施例では、結晶粒径が1μmを越える多結晶シリコン
薄膜を得た(実施例1より大)。
Deposition temperature: 2500°C Deposition rate: 2-70, input/min Pressure: Crab Q, 2 Torr Distribution (SiJa): 1001005c, flow rate: 3
00sec@ The silicon thin film thus obtained had significantly fewer defects, as in Example 1. In this example, a polycrystalline silicon thin film with a crystal grain size exceeding 1 μm was obtained (larger than Example 1).

(ト)発明の効果 本発明によれば、結晶粒径が大きく、かつ粒内に欠陥の
少なく多結晶シリコン薄膜を形成゛することができ、こ
れを用いることにより、とくにリーク電流が小さくオン
電流の大きいTPTを作製することができる。
(G) Effects of the Invention According to the present invention, it is possible to form a polycrystalline silicon thin film having a large crystal grain size and few defects within the grains, and by using this, the leakage current is particularly small and the on-state current is small. It is possible to produce a TPT with a large value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(c)は、本発明のシリコン薄膜の製造
方法の製造工程を示す構成説明図である。 第1図 (a) l・・・・・石英基板、2・・・・多結晶ンリコン層、
2° ・・・・非晶質シリコン層、 3・・・・・欠陥、4・・・・・・ノリコン薄膜。 (b)
FIGS. 1(a) to 1(c) are structural explanatory diagrams showing the manufacturing steps of the silicon thin film manufacturing method of the present invention. Fig. 1(a) l: quartz substrate, 2: polycrystalline silicon layer,
2°...Amorphous silicon layer, 3...Defect, 4...Noricon thin film. (b)

Claims (1)

【特許請求の範囲】[Claims] 1.絶縁基板上に、非晶質シリコン層を気相成長法で形
成し、この非晶質シリコン層を不活性ガス雰囲気下で約
500〜700℃の温度で処理して結晶化させ、次いで
不活性ガス雰囲気下で900℃以上の温度でアニール処
理することからなるシリコン薄膜の製造方法。
1. An amorphous silicon layer is formed on an insulating substrate by a vapor phase growth method, and this amorphous silicon layer is crystallized by treatment at a temperature of about 500 to 700°C in an inert gas atmosphere, and then an inert A method for producing a silicon thin film, which comprises annealing at a temperature of 900° C. or higher in a gas atmosphere.
JP2200021A 1990-07-28 1990-07-28 Manufacturing method of silicon thin film Expired - Fee Related JP2592984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2200021A JP2592984B2 (en) 1990-07-28 1990-07-28 Manufacturing method of silicon thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2200021A JP2592984B2 (en) 1990-07-28 1990-07-28 Manufacturing method of silicon thin film

Publications (2)

Publication Number Publication Date
JPH0485922A true JPH0485922A (en) 1992-03-18
JP2592984B2 JP2592984B2 (en) 1997-03-19

Family

ID=16417494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2200021A Expired - Fee Related JP2592984B2 (en) 1990-07-28 1990-07-28 Manufacturing method of silicon thin film

Country Status (1)

Country Link
JP (1) JP2592984B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6964890B1 (en) 1992-03-17 2005-11-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
JP2010530642A (en) * 2007-06-19 2010-09-09 サンディスク スリーディー,エルエルシー Junction diode with reduced reverse current

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01270309A (en) * 1988-04-22 1989-10-27 Seiko Epson Corp Thin film formation method
JPH02154416A (en) * 1988-12-07 1990-06-13 Hitachi Ltd Method for manufacturing semiconductor single crystal film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01270309A (en) * 1988-04-22 1989-10-27 Seiko Epson Corp Thin film formation method
JPH02154416A (en) * 1988-12-07 1990-06-13 Hitachi Ltd Method for manufacturing semiconductor single crystal film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6964890B1 (en) 1992-03-17 2005-11-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US7564057B1 (en) 1992-03-17 2009-07-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an aluminum nitride film
JP2010530642A (en) * 2007-06-19 2010-09-09 サンディスク スリーディー,エルエルシー Junction diode with reduced reverse current

Also Published As

Publication number Publication date
JP2592984B2 (en) 1997-03-19

Similar Documents

Publication Publication Date Title
US5275851A (en) Low temperature crystallization and patterning of amorphous silicon films on electrically insulating substrates
JPS6310573A (en) Manufacturing method of semiconductor device
US5624873A (en) Enhanced crystallization of amorphous films
US5470619A (en) Method of the production of polycrystalline silicon thin films
JPS6178119A (en) Manufacture of semiconductor
JPH02148831A (en) Laser annealing method and thin film semiconductor device
KR19980036973A (en) Method of manufacturing polycrystalline thin film using microwave
JP2746606B2 (en) Method for producing large-particle polycrystalline film
JPH0485922A (en) Manufacturing method of silicon thin film
JP3287834B2 (en) Heat treatment method for polycrystalline semiconductor thin film
JP3082164B2 (en) Laser processing method and semiconductor device
JPS58182816A (en) Recrystallizing method of silicon family semiconductor material
JP3093762B2 (en) Method for manufacturing semiconductor device
JPH0555142A (en) Crystallizing method for amorphous semiconductor layer
JPH02188499A (en) Production of polycrystal silicon film having large crystal grain diameter
JP3278237B2 (en) Method for manufacturing thin film transistor
JPH04120721A (en) Semiconductor device and manufacture thereof
JP3837527B2 (en) Method for producing strained semiconductor single crystal
KR960026967A (en) Polycrystalline Thin Film Transistor and Manufacturing Method Thereof
JPH04196312A (en) Manufacture of semiconductor thin film
JPH03257818A (en) Manufacturing method of semiconductor device
JPS6276514A (en) Manufacture of semiconductor device
JPH10116795A (en) Equipment for manufacturing semiconductor material
JPH033325A (en) Formation of polycrystalline silicon film in semiconductor device
JPH04311039A (en) Manufacturing method of thin film transistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees