JPH0485516A - Image forming element - Google Patents
Image forming elementInfo
- Publication number
- JPH0485516A JPH0485516A JP2201857A JP20185790A JPH0485516A JP H0485516 A JPH0485516 A JP H0485516A JP 2201857 A JP2201857 A JP 2201857A JP 20185790 A JP20185790 A JP 20185790A JP H0485516 A JPH0485516 A JP H0485516A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- light
- reflective surfaces
- image
- array
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 claims description 21
- 238000003384 imaging method Methods 0.000 claims description 16
- 230000004075 alteration Effects 0.000 abstract description 7
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 7
- 238000003491 array Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Lenses (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、ファクシミリや電子複写機、LEDプリンタ
等に使われる結像素子に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an imaging element used in facsimiles, electronic copying machines, LED printers, and the like.
ファクシミリや電子複写機、LEDプリンタ等には、ラ
イン上の被写体を等倍率でセンサや感光ドラム上に投影
する光学部品が使われている。Facsimile machines, electronic copying machines, LED printers, and the like use optical components that project objects on a line onto a sensor or photosensitive drum at the same magnification.
従来、この様な光学部品としては、
■ 中心から半径方向に屈折率が連続的に変化する円柱
状の透明体をアレイにした、いわゆるロッドレンズアレ
イ、
■ 球面レンズのアレイを形成した板を多層(三層にす
ることが多い)に重ね合わせたもの、例えば、特公昭4
9−8893号公報、特開昭57−104923号公報
、特開昭57−66414号公報など■ ダハプリズム
とレンズの組み合わせによる正立等倍光学系をアレイ状
に配列したもの、例えば特開昭61−210319号公
報、特開昭56−117201号公報、特開昭56−1
26801号公報、特開昭56−140301号公報、
特開昭56−149002号公報、特開昭60−254
018号公報、特開昭60−254019号公報号公報
、特開昭60−254020号公報、特開昭61−23
3714号公報、特開昭62−91902号公報、特開
昭62−201417号公報などがある。Conventionally, such optical components include: ■ A so-called rod lens array, which is an array of cylindrical transparent bodies whose refractive index changes continuously in the radial direction from the center, and ■ A multilayer plate that forms an array of spherical lenses. (often three layers), for example, Tokuko Sho 4
9-8893, JP-A-57-104923, JP-A-57-66414, etc. ■ An erect equal-magnification optical system arranged in an array by combining a roof prism and a lens, for example, JP-A-61 -210319, JP-A-56-117201, JP-A-56-1
No. 26801, Japanese Unexamined Patent Publication No. 140301/1983,
JP-A-56-149002, JP-A-60-254
018, JP 60-254019, JP 60-254020, JP 61-23
3714, JP-A-62-91902, and JP-A-62-201417.
上記従来の光学部品■では、円柱状の透明体に屈折率の
分布を形成すること、またこれを精密に制御することが
必要であるが、これには特殊なノウ2、つを必要とし、
容易でない。また特に径の大きなロッドレンズを作るこ
とは特に困難であるため、レンズと被写体との距離を大
きくとりたいときにはF値が低下し、暗い光学系になっ
てしまう。In the above-mentioned conventional optical component (2), it is necessary to form a refractive index distribution in a cylindrical transparent body and to precisely control this, but this requires special know-how.
It's not easy. Furthermore, it is particularly difficult to make a rod lens with a particularly large diameter, so when it is desired to increase the distance between the lens and the subject, the F value decreases, resulting in a dark optical system.
次に上記従来の光学部品■では、レンズアレイの各層の
単レンズの光軸を十分な精度で合わせることが難しく、
特に長いアレイを作ることは困難である。Next, with the conventional optical component (■) mentioned above, it is difficult to align the optical axes of the single lenses in each layer of the lens array with sufficient precision.
It is difficult to make particularly long arrays.
加えて゛上記従来の光学部品■と■では、光線の屈折角
の積算が大きくなるため、色収差が大きくなり易いとい
う不都合がある。In addition, the conventional optical components (1) and (2) described above have the disadvantage that chromatic aberration tends to increase because the sum of the refraction angles of light rays becomes large.
一方上記従来の光学部品■は、像の反転にダハプリズム
(或いはルーフミラー)を使うために屈折角の積算は小
さく、色収差は小さい。しかしながらプリズム(ルーフ
ミラー)とレンズの軸合わせを精度良く行うことが難し
い。On the other hand, the conventional optical component (2) uses a roof prism (or roof mirror) to invert the image, so the integrated refraction angle is small and the chromatic aberration is small. However, it is difficult to precisely align the axes of the prism (roof mirror) and lens.
更に上記従来の光学部品■〜■に共通して、レンズの光
軸上と周辺での明るさの違いによって、周期的な光量ム
ラを生じる恐れがある。Furthermore, in common with the above-mentioned conventional optical components (1) to (4), there is a risk that periodic unevenness in the amount of light may occur due to the difference in brightness on the optical axis of the lens and in the periphery.
本発明の解決しようとする課題は、特に難しいノウハウ
を必要とせず、製作が容易で、色収差が小さく、光量ム
ラを生じない投影光学部品を提供することである。The problem to be solved by the present invention is to provide a projection optical component that does not require particularly difficult know-how, is easy to manufacture, has small chromatic aberration, and does not cause unevenness in light amount.
本発明による結像素子は、
頂角がπ/2の谷をなす反射面の対が、反射面の交わる
谷線に垂直な方向に多数配列してなる反射面群と、この
反射面群に平行に配列した焦点距離の互い゛に等しい多
数のレンズ素子とを有する光学素子であって、レンズ素
子の幅は、反射面対の並ぶ間隔の1.5以上の半整数倍
、好ましくは、3倍以上であることを特徴とするもので
ある。The imaging element according to the present invention includes a reflective surface group in which a large number of pairs of reflective surfaces forming a valley with an apex angle of π/2 are arranged in a direction perpendicular to the valley line where the reflective surfaces intersect, and this reflective surface group. An optical element having a large number of lens elements arranged in parallel and having the same focal length, and the width of the lens elements is a half-integral multiple of 1.5 or more, preferably 3, of the distance between the reflective surface pairs. It is characterized by being more than twice as large.
また、この発明の好ましい態様において、上記結像素子
に、被写体からの入射光と像を結ぶ出射光を分けるため
の反射手段を設けて、利用することができる。Further, in a preferred embodiment of the present invention, the imaging element can be provided with a reflection means for separating the incident light from the subject and the output light that forms an image.
さらに請求項4記載の好ましい態様において、上記の光
学部品の反射面群の前に、反射面対の配列方向に垂直な
遮光面を配列して、コントラストを改善することができ
る。Furthermore, in a preferred embodiment of claim 4, contrast can be improved by arranging a light-shielding surface perpendicular to the arrangement direction of the pair of reflective surfaces in front of the group of reflective surfaces of the optical component.
本発明の結像素子は、レンズ素子とその背後に置かれた
微小な反射面対の列によって、一方向に成立した等倍結
像単位を、多数配列してライン上の像を投影するもので
ある。The imaging element of the present invention projects a line image by arranging a large number of equal-magnification imaging units established in one direction by a lens element and a row of minute reflective surface pairs placed behind the lens element. It is.
上記構成による作用を、図面を参照して詳細に説明する
。The operation of the above configuration will be explained in detail with reference to the drawings.
第1図は、反射面対に断面図であって、直角に交わる二
つの反射面による反射を示したものである。この図から
両度射面に垂直な面内でこの様子を見ると、反射光は入
射光と平行逆向きに進むことが分かる。FIG. 1 is a cross-sectional view of a pair of reflective surfaces, showing reflection by two reflective surfaces that intersect at right angles. If you look at this situation in a plane perpendicular to both incidence planes from this figure, you will see that the reflected light travels parallel to and in the opposite direction to the incident light.
次に第4図のように、上述の反射面対が短いピッチで並
んだ反射面群lとこの前に置かれたレンズ素子4による
反射を説明する。Next, as shown in FIG. 4, reflection by the above-mentioned reflective surface group 1 arranged at a short pitch and the lens element 4 placed in front of it will be explained.
第2図はレンズの焦点2から発した光が反射面群1によ
って反射する様子を、反射面対の稜線に垂直な面内でみ
たものである。これらの光線はレンズで平行光にされ、
反射面群で平行逆向きに反射するため、レンズで再び点
2の位置に集光する。FIG. 2 shows how light emitted from the focal point 2 of the lens is reflected by the group of reflective surfaces 1, as seen in a plane perpendicular to the ridgeline of the pair of reflective surfaces. These rays are made parallel by a lens,
Since the light is reflected in parallel and opposite directions by the group of reflective surfaces, the light is focused again at point 2 by the lens.
次に第3図はこれを反射面対の配列方向に垂直な面内で
みたもので、反射面対は平面鏡と同等な機能を果たし、
被写体の点2の像は3の位置に結ばれる。Next, Figure 3 shows this as seen in a plane perpendicular to the arrangement direction of the pair of reflective surfaces, and the pair of reflective surfaces performs the same function as a plane mirror.
The image of point 2 on the subject is focused at position 3.
この結果、第4図に於いて焦点面上の点2の像3が得ら
れ、この像はX方向には成立等倍像、y方向には倒立等
倍像である。As a result, in FIG. 4, an image 3 of point 2 on the focal plane is obtained, and this image is a real life-size image in the X direction and an inverted life-size image in the y direction.
第4図は本発明による実施例に一つである。FIG. 4 shows one embodiment of the present invention.
この様な極めて単純な構成によって、本発明の結像素子
は
■前記レンズアレイ■■で必要だった、面倒な軸合わせ
が不要となり、かつ
0色収差はレンズ−枝分にすぎない、
という性質を持つ。With such a very simple configuration, the imaging element of the present invention eliminates the need for troublesome axis alignment, which was required in the lens array, and has the property that zero chromatic aberration is just a lens branch. have
先ず、上記■について説明する。First, the above item (2) will be explained.
本発明の反射面群1を、レンズ素子と等しい間隔の、頂
角がπ/2の谷をなす反射面対の配列で置き換え、各レ
ンズ素子に一つの反射面対を対応させると、前述の従来
の光学部品■と同様の結像素子になる。これらの結像素
子はレンズと反射面対の位置を正しく合わせる必要があ
り、これらの位置関係がずれると明るさのムラ等の性能
の低下を生じることになる。特にこのずれが半周期にな
ると、はとんど像は得られない。If the reflective surface group 1 of the present invention is replaced with an array of reflective surface pairs forming a valley with an apex angle of π/2 and having the same spacing as the lens elements, and each lens element is associated with one reflective surface pair, the above-mentioned It becomes an imaging element similar to the conventional optical component (2). In these imaging elements, it is necessary to correctly align the lens and the pair of reflective surfaces, and if these positions are misaligned, performance degradation such as uneven brightness will occur. In particular, if this shift becomes half a period, it is almost impossible to obtain an image.
本発明では、レンズ素子の幅を、反射面対の並ぶ間隔の
1.5以上の半整数倍にすることによってこの問題を解
決している。In the present invention, this problem is solved by making the width of the lens element a half-integer multiple of 1.5 or more of the spacing between the reflective surface pairs.
この様子を第19図で説明する。ここではレンズの幅が
反射面対のピッチの1.5倍の場合を示しているが、他
の半整数倍の場合についても同様の推論が成り立つ。This situation will be explained with reference to FIG. Although the case where the width of the lens is 1.5 times the pitch of the pair of reflective surfaces is shown here, the same reasoning holds true for cases where the width is another half-integer multiple.
同図では反射面対とレンズの位置関係を三つに分類しで
ある。同図(a)に於いて、反射面対のピッチを1とす
るとき
p−+−+;r=0.5
、゛、 2 p + 2 q = 1
となり、有効な反射面の幅は1となる。In the figure, the positional relationship between the reflective surface pair and the lens is classified into three categories. In the same figure (a), when the pitch of the pair of reflective surfaces is 1, p−+−+; r=0.5,゛, 2 p + 2 q = 1, and the effective width of the reflective surface is 1. becomes.
また(t)) (C)の場合も明らかに有効な反射面
の幅は1となるから、すべての場合について1になるこ
とがわかる。Also, in the case of (t)) (C), the effective width of the reflecting surface is clearly 1, so it can be seen that it is 1 in all cases.
従って、後述する第5図以降の実施例にあるように、矩
形のレンズ素子を使った場合には、反射面とレンズ素子
の位置のずれからくる明るさムラは生じないことになる
。なお、第4図のように円形のレンズを使う場合には、
若干のムラを生じることになる。Therefore, when a rectangular lens element is used, as in the embodiments shown in FIG. 5 and subsequent figures to be described later, unevenness in brightness due to the positional shift between the reflective surface and the lens element will not occur. In addition, when using a circular lens as shown in Figure 4,
This will result in some unevenness.
次に、請求項2に記載する好ましい態様においては、反
射面対のピッチをレンズ素子の幅に比べて十分小゛さく
とることによって、この位置合わせの必要を省くもので
ある。反射面とレンズ素子の位置のずれからくる明るさ
ムラは、せいぜい反射面一対外が有効になるか無効にな
るかの変動である。従ってレンズ素子当たりの反射面対
数が多(なればこの変動の割合は減少する。実用的には
明るさムラは少なくとも50%以内であることが望まれ
るが、そのためにはレンズ素子の幅は、反射面対の並ぶ
間隔の3倍以上であることが望ましい。Next, in a preferred embodiment described in claim 2, the need for this positioning is omitted by making the pitch of the pair of reflective surfaces sufficiently smaller than the width of the lens element. The unevenness in brightness caused by the positional shift between the reflective surface and the lens element is at most a variation in whether one pair of reflective surfaces is effective or ineffective. Therefore, if the number of reflective surfaces per lens element is large, the rate of this variation will be reduced.Practically speaking, it is desirable that the brightness unevenness is at least within 50%, but to achieve this, the width of the lens element must be It is desirable that the distance be at least three times the distance between the reflective surface pairs.
更に望ましくは、5〜10倍以上である。このようにレ
ンズ素子に比較して反射面対の幅が十分小さい場合には
、第4図のように円形レンズを使う場合にも反射面とレ
ンズ素子の位置のずれからくる明るさムラはほとんど生
じない。More preferably, it is 5 to 10 times or more. In this way, if the width of the reflective surface pair is sufficiently small compared to the lens element, even when using a circular lens as shown in Figure 4, there will be almost no unevenness in brightness due to the misalignment of the reflective surface and the lens element. Does not occur.
いずれの場合にも、あるレンズ素子に入射した光が、反
射後に隣のレンズ素子に入って迷光とならないよう、遮
光手段13を各レンズ間に設けると良い。この様子を第
9図(a)の平面図および第18図の斜視図に示す。こ
れは黒色塗装で十分である。In either case, it is preferable to provide a light shielding means 13 between each lens so that the light incident on one lens element does not enter an adjacent lens element after reflection and become stray light. This situation is shown in the plan view of FIG. 9(a) and the perspective view of FIG. 18. Black paint is sufficient for this.
本結像素子では、第15図(a)のように反射面対の片
面のみに反射する成分が迷光となり、コントラストを下
げる原因となる。請求項4に記載する好ましい態様にお
いては、第15図(1))のように遮光面6をおくこと
によって、この様な迷光を取り除くものである。In this imaging element, as shown in FIG. 15(a), the component reflected only on one side of the pair of reflective surfaces becomes stray light, causing a reduction in contrast. In a preferred embodiment described in claim 4, such stray light is removed by providing a light shielding surface 6 as shown in FIG. 15(1)).
遮光面6は光を吸収する黒色の薄い板であって、反射面
対の配列方向に垂直におかれている。図のように反射面
群と遮光面が同じ媒質中にある場合は遮光面の幅dと間
隔りは
d ≧ D
の関係にあれば十分である。なぜならこれによって入射
光の内の入射角がπ/4以上の成分がカットされ、π/
4以下の入射光について(a)のような反射光の反射角
はπ/4以上であるから、この成分も100%カットさ
れることになる。The light shielding surface 6 is a thin black plate that absorbs light, and is placed perpendicular to the direction in which the reflective surface pairs are arranged. When the reflective surface group and the light shielding surface are in the same medium as shown in the figure, it is sufficient that the width d and the interval of the light shielding surface satisfy the relationship d≧D. This is because the components of the incident light whose angle of incidence is π/4 or more are cut, and
Since the reflection angle of the reflected light as shown in (a) for incident light of 4 or less is π/4 or more, this component is also cut 100%.
東13図(a)のように、屈折率がJ2 以上の透明板
に形成された微小な直角プリズムで反射面群を構成する
場合には、
θ。==−’ (1/ n )
但し n:屈折率
で表される臨界角θ6以下でプリズム面に入射した光が
ほとんど透過してしまうために、第14図に示すように
、龜に−n sin (π/4−θ。)を満たすに以上
の角度で入射する光の反射は少ない。従って遮光面がな
くとも第15図の場合に比べて迷光はかなり少ない。但
しこれによってレンズ列の各レンズ素子の視野角が限ら
れるために、像位置が東16図の位置8よりレンズ列に
近いと、各レンズ間に像が極端に暗い部分ができる。こ
れを避けるためには同図の位置9にように、8の位置よ
り遠い位置に像位置を置かなければならない。As shown in Fig. 13 (a), when the reflective surface group is composed of minute right-angle prisms formed on a transparent plate with a refractive index of J2 or more, θ. ==-' (1/n) However, n: Since most of the light incident on the prism surface is transmitted at a critical angle θ6 or less expressed by the refractive index, as shown in Figure 14, -n is applied to the lens. There is little reflection of light incident at an angle that satisfies sin (π/4−θ.). Therefore, even without a light shielding surface, stray light is considerably less than in the case of FIG. 15. However, since this limits the viewing angle of each lens element in the lens array, if the image position is closer to the lens array than position 8 in Fig. 16, an extremely dark portion of the image will be created between each lens. In order to avoid this, the image position must be placed at a position farther than position 8, such as position 9 in the figure.
言い替えれば 2LtanlC≧T (但し、Lはレンズ列と像面の距離) となるように、設定すれば良い。In other words 2LtanlC≧T (However, L is the distance between the lens array and the image plane) You can set it so that
いずれにせよこの場合は像に周期Tの明るさムラを生じ
易いため、Tの値の決定には注意が必要である。反射面
を金Rミラー等にする場合はこのようなムラは生じにく
いが、レンズの収差の点からもTは小さい方がよい。In any case, in this case, brightness unevenness with period T is likely to occur in the image, so care must be taken in determining the value of T. Although such unevenness is less likely to occur when the reflective surface is made of a gold R mirror or the like, it is better for T to be small from the viewpoint of lens aberration.
このようにプリズムを使う場合には、遮光面を設置する
場合も、第13図(b)のように屈折率がJ2 以上の
透明媒体中に光を吸収する遮光面7を設けたものを、反
射プリズムに光学的に接着する形をとれば、入射光が屈
折により、全て臨界角θ、(<π/4)の光線になるこ
とと、媒体表面で迷光成分が反射する効果を考えれば、
遮光面の幅dと間隔りは
d ≧ D/2
の関係にあれば十分であり、第15図の場合に比べて薄
くすることができる。When using a prism in this way, even when installing a light-shielding surface, a light-shielding surface 7 that absorbs light is provided in a transparent medium with a refractive index of J2 or higher, as shown in FIG. 13(b). If it is optically bonded to a reflecting prism, the incident light will be refracted and become a ray of light at the critical angle θ, (<π/4), and considering the effect of stray light components being reflected on the medium surface,
It is sufficient that the width d of the light shielding surface and the interval satisfy the relationship d≧D/2, and the width can be made thinner than in the case of FIG. 15.
以上は遮光面を反射面群の直前に置く場合を示したが、
光路中の他の場所に置くことも可能である。しかしなが
ら反射面群からみて被写体側と像側の両方に設置するこ
とが好ましく、また遮光面が像に明るさムラを作らない
ようにするためには、被写体及び像からなるべく離れた
位置に置くことが好ましいため、反射面群の直前に置く
ことが最も好ましい。The above example shows the case where the light-shielding surface is placed just in front of the reflective surface group, but
It is also possible to place it elsewhere in the optical path. However, it is preferable to install the light-shielding surface on both the subject side and the image side when viewed from the group of reflective surfaces, and in order to prevent the light-shielding surface from creating uneven brightness in the image, it should be placed as far away from the subject and image as possible. Therefore, it is most preferable to place it immediately in front of the reflective surface group.
以下、実施例を使って本発明をより具体的に説明する。 Hereinafter, the present invention will be explained more specifically using Examples.
第5図〜第7図、第10図に示す態様は本発明請求項3
に記載する実施例であり、反射面対のピッチの選び方に
よって請求項1あるいは2記載の実施例をとなる。全て
反射面群1をプリズム列として形成しており、プリズム
面には金属蒸着による増反射処理がなされている。The embodiments shown in FIGS. 5 to 7 and 10 are claimed in claim 3 of the present invention.
This is an embodiment described in Claim 1 or 2 depending on how the pitch of the reflective surface pair is selected. In all cases, the reflective surface group 1 is formed as a prism row, and the prism surfaces are treated to increase reflection by metal vapor deposition.
第5図に示す態様は、レンズアレイ6とプリズム列を一
体成形したもので、ここでは反射面5を使って被写体面
と像面が平行になるようにしてあり、点2の像が3の位
置に得られる。The embodiment shown in FIG. 5 is one in which a lens array 6 and a prism row are integrally molded. Here, a reflective surface 5 is used to make the subject plane and image plane parallel, so that the image of point 2 is Get into position.
第6図に示す態様は、ハーフミラ−の面7を持つビーム
スプリッタ−を反射手段として使ったもので、ビームス
プリッタ−を使って被写体側と像側を分けており、被写
体面と像面とは垂直になる。The embodiment shown in Fig. 6 uses a beam splitter with a half mirror surface 7 as a reflecting means.The beam splitter is used to separate the object side and the image side, and the object side and the image side are different from each other. Become vertical.
第7図に示す態様はレンズアレイ4とビームスプリッタ
−を一体にしたもので、被写体面と像面とは垂直′にな
る。In the embodiment shown in FIG. 7, the lens array 4 and the beam splitter are integrated, and the object plane and the image plane are perpendicular to each other.
第8図に示す態様は像側と被写体側に別々にレンズアレ
イを設けた比較例で、原理的には結像するが、両レンズ
アレイの軸を正確に合わせることが困難であり、またX
方向の明るさムラを生じ易く、好ましくない。The embodiment shown in Fig. 8 is a comparative example in which lens arrays are provided separately on the image side and the subject side, and although images can be formed in principle, it is difficult to accurately align the axes of both lens arrays, and
This is not preferable because it tends to cause uneven brightness in the direction.
第10図に示す態様はレンズアレイ4と反射面5を一体
にしたものである。In the embodiment shown in FIG. 10, the lens array 4 and the reflective surface 5 are integrated.
第6図、第7図のようにビームスプリッタ−を使うもの
では、像を結ぶ光は[被写体からの光×ビームスプリッ
タ−の透過率×反射率]だけであり、被写体からの光の
十以下である。第11図に示す態様は第6図にレンズア
レイとプリズム列をもう一列追加したもので、これによ
って第6図の倍の明るさが得られる。ここで両レンズア
レイのレンズ素子の位置をX方向にずらすことによって
、第6図で生じる明るさムラを減じることも可能である
。When using a beam splitter as shown in Figures 6 and 7, the only light that forms an image is [light from the subject x beam splitter transmittance x reflectance], which is less than 10% of the light from the subject. It is. The embodiment shown in FIG. 11 is obtained by adding one more lens array and prism row to FIG. 6, and thereby obtains twice the brightness as in FIG. 6. By shifting the positions of the lens elements of both lens arrays in the X direction, it is also possible to reduce the uneven brightness that occurs in FIG. 6.
次に請求項4に記載した遮光面を導入する反射面群例を
第12図(b)に、これとレンズアレイを組み合わせた
ものを同図(a)に示す。また第9図(+))の様にレ
ンズ間の遮光手段13を深く切れ込んだものとすること
によって、遮光面とすることもできる。Next, FIG. 12(b) shows an example of a reflective surface group in which the light-shielding surface described in claim 4 is introduced, and FIG. 12(a) shows a combination of this and a lens array. Further, as shown in FIG. 9 (+), the light shielding means 13 between the lenses may be deeply cut to serve as a light shielding surface.
本結像素子が実際に使われる場合の例を第10図のタイ
プを例にとり、第17図に示した。必要な長さの結像素
子部品を用いて、原稿11の等倍像をイメージセンサ1
2上に投影して電気的な信号を得る、画像読取装置の例
である。FIG. 17 shows an example in which the present imaging element is actually used, taking the type shown in FIG. 10 as an example. Using an imaging element component of the required length, a life-size image of the original 11 is captured by the image sensor 1.
This is an example of an image reading device that obtains an electrical signal by projecting the image onto 2.
本発明はレンズアレイと反射面対の列を組み合せという
構成により、本発明の結像素子は■ 前記従来レンズア
レイ■や■で必要だった、面倒な軸合わせを不要し、
■ 色収差をレンズ−枝分にするという性質を持つ。The present invention has a configuration in which a lens array and a row of reflective surface pairs are combined, so that the imaging element of the present invention: (1) eliminates the troublesome axis alignment that was required with the conventional lens arrays (2) and (2); and (2) eliminates chromatic aberration from the lens. It has the property of branching.
従って、一方向に長いライン上の像を投影し、コンパク
トかつ単純な構造で製作が容易な投影光学系を構成する
ことができる。Therefore, it is possible to construct a projection optical system that projects an image on a long line in one direction, has a compact and simple structure, and is easy to manufacture.
第1〜4図は本発明の基本原理を説明する説明図、
第5図〜第7図は本発明の実施例であり、それぞれ(a
)は斜視図、(b)はX軸に垂直な断面図、第8図は比
較例であり、それぞれ(a)は斜視図、(b)はX軸に
垂直な断面図、
第9図は本発明の実施例の部分図、
第10図は本発明の実施例であり、それぞれ(a)は斜
視図、(b)はX軸に垂直な断面図、第11図は第6図
の態様にレンズアレイとプリズム列をもう一列追加した
本発明の実施例であり、それぞれ(a)は斜視図、(b
)はX軸に垂直な断面図、
第12図は本発明の実施例の部分図、
第13図は本発明による遮光面の効果を示す原理図、
第14図はプリズム列を反射面群に使用する説明図、
第15図は本発明による遮光面の効果を示す原理図、
第16図はプリズム列を反射面群に使用する説明図、
第17図は本発明の応用例を示す斜視図、第18図は本
発明の実施例の部分図、
第19図は本発明によるレンズアレイと反射面群の関係
を示す説明図である。
9 ・
被写体(像)の位置
結像素子
原稿
イメージセンサ
遮光部材
特許出願人 三菱レイヨン株式会社
反射面群
被写体く点)
像
レンズ素子
反射面
遮光面
ハーフミラ−面
つながった像が得られる位置
′H2図
く2丸〉
(b)
第6図
第3図
第4図
<a)
(b)
第7図
第9図
第10図
(a)
<b>
w113図
)In2図
(a)
(b)
第12図
<b>
第」5図
w116図
第17図
1i18図
wi19図Figures 1 to 4 are explanatory diagrams for explaining the basic principle of the present invention, and Figures 5 to 7 are examples of the present invention.
) is a perspective view, (b) is a cross-sectional view perpendicular to the X-axis, and FIG. 8 is a comparative example. (a) is a perspective view, (b) is a cross-sectional view perpendicular to the X-axis, and FIG. FIG. 10 is a partial view of an embodiment of the present invention, in which (a) is a perspective view, (b) is a sectional view perpendicular to the X axis, and FIG. 11 is an embodiment of the embodiment of FIG. 6. This is an embodiment of the present invention in which another lens array and prism row are added to the above, and (a) is a perspective view, and (b) is a perspective view.
) is a sectional view perpendicular to the X-axis, Fig. 12 is a partial view of an embodiment of the present invention, Fig. 13 is a principle diagram showing the effect of the light shielding surface according to the present invention, and Fig. 14 shows a prism array as a reflective surface group. Fig. 15 is a principle diagram showing the effect of the light shielding surface according to the present invention; Fig. 16 is an explanatory diagram showing the use of a prism array as a reflective surface group; Fig. 17 is a perspective view showing an example of application of the present invention. , FIG. 18 is a partial diagram of an embodiment of the present invention, and FIG. 19 is an explanatory diagram showing the relationship between the lens array and the reflective surface group according to the present invention. 9 ・Position of subject (image) Imaging element Document image sensor Light-shielding member Patent applicant Mitsubishi Rayon Co., Ltd. Reflective surface group Subject) Image lens element Reflective surface Light-shielding surface Half mirror surface Position where a connected image can be obtained 'H2 diagram (b) Fig. 6 Fig. 3 Fig. 4 <a) (b) Fig. 7 Fig. 9 Fig. 10 (a) <b> w113 Fig.) In2 Fig. (a) (b) Fig. 12 Figure <b> 5th figure w116 figure 17 figure 1i18 figure wi19 figure
Claims (1)
交わる谷線に垂直な方向に多数配列してなる反射面群と
、これに平行に配列した焦点距離の互いに等しい多数の
レンズ素子とを有する光学素子であって、該レンズ素子
の幅は、該反射面対の並ぶ間隔の1.5以上の半整数倍
であることを特徴とする結像素子。 2、頂角がπ/2の谷をなす反射面の対が、該反射面の
交わる谷線に垂直な方向に多数配列してなる反射面群と
、これに平行に配列した焦点距離の互いに等しい多数の
レンズ素子とを有する光学素子であって、該レンズ素子
の幅は、該反射面対の並ぶ間隔の3倍以上であることを
特徴とする結像素子。 3、請求項1、2のいずれかに記載の光学部品の反射面
群の前に、反射面対の配列方向に垂直な遮光面を配列し
てなる結像素子。 4、請求項1〜3の結像素子に、レンズ素子及び反射面
対の配列方向と平行な少なくとも一つの反射手段を有す
る光学素子。[Claims] 1. A reflective surface group in which a large number of pairs of reflective surfaces forming a valley with an apex angle of π/2 are arranged in a direction perpendicular to the valley line where the reflective surfaces intersect; An optical element having a large number of arranged lens elements having the same focal length, characterized in that the width of the lens elements is a half-integer multiple of 1.5 or more of the spacing between the reflective surface pairs. Imaging element. 2. A reflective surface group in which a large number of pairs of reflective surfaces forming a valley with an apex angle of π/2 are arranged in a direction perpendicular to the valley line where the reflective surfaces intersect, and a group of reflective surfaces arranged parallel to this and each other at focal lengths. 1. An optical element having an equal number of lens elements, wherein the width of the lens element is three times or more the distance between the pair of reflective surfaces. 3. An imaging element comprising a light-shielding surface perpendicular to the arrangement direction of the pair of reflective surfaces arranged in front of the group of reflective surfaces of the optical component according to claim 1 or 2. 4. An optical element having at least one reflecting means parallel to the arrangement direction of the lens element and the pair of reflecting surfaces in the imaging element according to any one of claims 1 to 3.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2201857A JPH0485516A (en) | 1990-07-30 | 1990-07-30 | Image forming element |
US07/733,984 US5150259A (en) | 1990-07-30 | 1991-07-22 | Optical imaging device |
DE69126480T DE69126480T2 (en) | 1990-07-30 | 1991-07-29 | Optical imaging device |
EP95115692A EP0694795A3 (en) | 1990-07-30 | 1991-07-29 | Optical imaging device |
EP91306912A EP0469820B1 (en) | 1990-07-30 | 1991-07-29 | Optical imaging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2201857A JPH0485516A (en) | 1990-07-30 | 1990-07-30 | Image forming element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0485516A true JPH0485516A (en) | 1992-03-18 |
Family
ID=16448038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2201857A Pending JPH0485516A (en) | 1990-07-30 | 1990-07-30 | Image forming element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0485516A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014021346A (en) * | 2012-07-20 | 2014-02-03 | Ricoh Co Ltd | Imaging optical system, print head, image forming device, and image reading device |
JP2014178346A (en) * | 2013-03-13 | 2014-09-25 | Ricoh Co Ltd | Imaging optical system, printer head, and image forming apparatus |
-
1990
- 1990-07-30 JP JP2201857A patent/JPH0485516A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014021346A (en) * | 2012-07-20 | 2014-02-03 | Ricoh Co Ltd | Imaging optical system, print head, image forming device, and image reading device |
JP2014178346A (en) * | 2013-03-13 | 2014-09-25 | Ricoh Co Ltd | Imaging optical system, printer head, and image forming apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2403094A1 (en) | High acuity lens system | |
US6177667B1 (en) | Imaging device | |
JPH0658482B2 (en) | Focus adjustment detector | |
JPS58106511A (en) | Focusing detecting optical system | |
EP0694795A2 (en) | Optical imaging device | |
US4736225A (en) | Slit exposure projection device | |
JPH03175402A (en) | Optical transmission plate | |
US6783246B2 (en) | Ghost image prevention element for imaging optical system | |
JPH10153751A (en) | Image forming element | |
JPH0485516A (en) | Image forming element | |
US5452384A (en) | Optical integrated lensed connector for focussing oblique incident light | |
US4289377A (en) | Projecting apparatus | |
CN114391246B (en) | Image reading device | |
JPH11215303A (en) | Close contact type image sensor | |
JPH0485515A (en) | Image forming element | |
JP3745542B2 (en) | Array-like imaging element and method for producing the same | |
JP2002048906A (en) | Diffraction optical device and optical system having the same, photographing device and observation device | |
JPS5916888Y2 (en) | optical coupling device | |
JP3258083B2 (en) | Dove prism assembly, imaging element unit and line imaging element | |
JPH0485513A (en) | Optical component | |
JP3258085B2 (en) | Line imaging device | |
JPH04130411A (en) | Image-formation element | |
JPH06250119A (en) | Image forming element | |
JP3179162B2 (en) | Focus detection device | |
JPH07120699A (en) | Line imaging element |