[go: up one dir, main page]

JPH0483227A - Liquid crystal display element and its manufacture - Google Patents

Liquid crystal display element and its manufacture

Info

Publication number
JPH0483227A
JPH0483227A JP20050690A JP20050690A JPH0483227A JP H0483227 A JPH0483227 A JP H0483227A JP 20050690 A JP20050690 A JP 20050690A JP 20050690 A JP20050690 A JP 20050690A JP H0483227 A JPH0483227 A JP H0483227A
Authority
JP
Japan
Prior art keywords
electrode
substrate
liquid crystal
sealing material
conductive particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20050690A
Other languages
Japanese (ja)
Inventor
Satoru Shinsenji
秦泉寺 哲
Yoshitake Hayashi
祥剛 林
Hideki Matsukawa
松川 秀樹
Kazuyuki Nonaka
野中 和志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20050690A priority Critical patent/JPH0483227A/en
Publication of JPH0483227A publication Critical patent/JPH0483227A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To obtain the liquid crystal element of high quality which is a one-surface substrate lead-out type by using a seal material, formed by mixing conductive particles which have elasticity equal to or larger than the elasticity of spacers, with resin. CONSTITUTION:A liquid crystal layer 5 whose periphery is surrounded with the seal material 6 containing the mixed spacers 7 is sandwiched in the gap between a signal electrode substrate 1b which has plural signal electrodes 3 and a scanning electrode substrate 1a which has plural scanning electrodes 2 and a lead-out electrode 9 which is formed overlapping with the seal material 6 is provided to the signal electrode substrate 1b or scanning electrode substrate 1a; and the electrodes on the substrate facing the substrate equipped with the lead-out electrode 9 are constituted overlapping with the seal material 6 and the conductive particles are mixed with the seal material. Further, the spacers and conductive particles which differ in elasticity and particle size are mixed with the seal material. For example, a material formed by mixing spacers 7 for electrode gap holding, gas fiber, and the conductive particles with thermosetting epoxy resin is used as the seal material 6 for, for example, 1a. Consequently, the liquid crystal display element which is the one-surface substrate lead-out type is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、単純マトリックス方式液晶表示素子に関し、
とくに一方の基板上の電極と対向する基板上の電極をス
ペーサを用いて電気的に接続する液晶表示素子およびそ
の製造方法に関する。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a simple matrix type liquid crystal display element.
In particular, the present invention relates to a liquid crystal display element in which an electrode on one substrate and an electrode on an opposing substrate are electrically connected using a spacer, and a method for manufacturing the same.

従来の技術 近年ワードプロセッサやコンピュータを中心とする情報
機器の小型、高性能化に伴い、それに用いる表示素子の
特性向上と薄型、軽量化も強く望まれており、フラット
デイスプレィが主流になりつつある。
Conventional technology In recent years, as information devices such as word processors and computers have become smaller and more sophisticated, there has been a strong desire for display elements used in them to be thinner and lighter, with improved characteristics, and flat displays are becoming mainstream. .

フラットデイスプレィには、プラズマ素子。The flat display has a plasma element.

EL素子、液晶表示素子を使ったものなどがあるが、中
でも液晶表示素子は薄型、軽量、低消費電力、カラー化
の面で優れており、広く応用されつつある。
There are devices using EL elements and liquid crystal display elements, among which liquid crystal display elements are superior in terms of thinness, light weight, low power consumption, and color display, and are being widely applied.

以下に従来の液晶表示素子について説明する。A conventional liquid crystal display element will be explained below.

第411Z(a)および(1))は、従来の液晶表示素
子を構成する電極基板の平面図、第5図(a)は従来の
液晶表示素子の平面図、第55(b)は要部拡大断面図
である。信号電極3と走査電極2が直交するようにそれ
ぞれ信号電極基板1b、走査電極基板la上に別々に設
けられ、基板間にはノール材6、スペーサ7、配向膜4
.液晶層5が挟持されており、液晶を注入口10から注
入後封口樹脂11で封口されている。このように従来の
液晶表示素子では各端子電極は両基板のそれぞれの面か
ら取り出されている。
411Z(a) and (1)) are a plan view of an electrode substrate constituting a conventional liquid crystal display element, FIG. 5(a) is a plan view of a conventional liquid crystal display element, and 55(b) is a main part. It is an enlarged sectional view. The signal electrode 3 and the scanning electrode 2 are separately provided on the signal electrode substrate 1b and the scanning electrode substrate la so as to be perpendicular to each other, and a knoll material 6, a spacer 7, and an alignment film 4 are provided between the substrates.
.. A liquid crystal layer 5 is sandwiched, and after liquid crystal is injected from an injection port 10, it is sealed with a sealing resin 11. In this way, in the conventional liquid crystal display element, each terminal electrode is taken out from each side of both substrates.

発明が解決しようとする課題 このような従来の構成では、端子電極からのリードの取
り出しが両方の基板上となるうえ、対向する面に取り出
し電極が形成されるので、外部電気回路との接続時に液
晶パネルを裏返す工程が必要である。
Problems to be Solved by the Invention In such a conventional configuration, the leads from the terminal electrodes are taken out on both substrates, and the lead-out electrodes are formed on opposing surfaces, so when connecting to an external electric circuit, A process of flipping the liquid crystal panel is required.

また、COG実装方式においては基板の周辺部に搭載し
た駆動LSIへの入力信号や電源の供給のために引出し
t極上に無電解めっきなどによる金属導体配線を必要と
するが、従来の構成ではこれが信号電極基板、走査電極
基板両方の引出し電極部に必要となるため、生産性、製
造コストの面で問題が多い。
In addition, the COG mounting method requires metal conductor wiring by electroless plating on the top of the drawer t in order to supply input signals and power to the drive LSI mounted on the periphery of the board, but in the conventional configuration, this is not possible. Since it is necessary for the extraction electrode portions of both the signal electrode substrate and the scanning electrode substrate, there are many problems in terms of productivity and manufacturing cost.

本発明はこのような課題を解決するもので、信号電極と
走査電極との接続をどちらか一方の基板のみで行う、高
品位な片面基板取り出しタイプの液晶表示素子を提供す
ることを目的とするものである。
The present invention solves these problems, and aims to provide a high-quality, single-sided substrate-extracted type liquid crystal display element in which connection between signal electrodes and scanning electrodes is made using only one of the substrates. It is something.

課題を解決するための手段 対向する複数の信号電極を有する信号電極基板と複数の
走査電極を有する走査電極基板との間隙に、周辺をスペ
ーサを混入したシール材で囲まれた液晶層を挟持し、信
号電極基板または走査電極基板にシール材と重なるよう
に形成された引出し電極を有し、前記引出し電極を備え
た基板に対向する基板上の電極は前記シール材と重なる
ように構成され、かつシール材に導電性粒子を混入する
ことにより前記引出し電極と相対向する基板上の電極と
の電気的な接続を取るようにしたものである。
Means for Solving the Problem A liquid crystal layer surrounded by a sealing material mixed with spacers is sandwiched between a signal electrode substrate having a plurality of opposing signal electrodes and a scanning electrode substrate having a plurality of scanning electrodes. , a signal electrode substrate or a scanning electrode substrate has an extraction electrode formed to overlap with a sealing material, and an electrode on a substrate opposite to the substrate provided with the extraction electrode is configured to overlap with the sealing material, and By mixing conductive particles into the sealing material, electrical connection is established between the extraction electrode and the electrode on the opposing substrate.

作用 この構成によれば、取り出しtiを液晶表示素子を構成
する信号電極2走査電極基板のいずれか一方で引き出す
ことができ、片面基板取り出しタイプの液晶表示素子が
可能となる。また、シール材に弾力性と粒径の異なるス
ペーサと導電性粒子を混入することにより、信較性の高
い画電極の接続と高精度のセルギャップを同時に実現さ
せることができる。
According to this configuration, the extraction ti can be extracted from either one of the signal electrodes 2 and the scanning electrode substrate constituting the liquid crystal display element, making it possible to provide a single-sided substrate extraction type liquid crystal display element. Furthermore, by mixing spacers and conductive particles with different elasticities and particle sizes in the sealing material, highly reliable picture electrode connections and highly accurate cell gaps can be realized at the same time.

実施例 以下、本発明の実施例を図面を参照しながら説明する。Example Embodiments of the present invention will be described below with reference to the drawings.

なお、第1図、第2図において第4図。In addition, FIG. 4 in FIGS. 1 and 2.

第5図と同一箇所については同一番号を付した。The same parts as in Figure 5 are given the same numbers.

(実施例1) 第1図(a)およびら)に本発明の実施例1〜3の液晶
表示素子を形成する電極基板の構成を示す。第2図(a
)および(b)に本発明の実施例1〜3の液晶表示素子
の構成を示す。
(Example 1) FIGS. 1(a) and 1(a) show the configurations of electrode substrates forming liquid crystal display elements of Examples 1 to 3 of the present invention. Figure 2 (a
) and (b) show the structures of the liquid crystal display elements of Examples 1 to 3 of the present invention.

図に示すように、まず対向する電極基板1a。As shown in the figure, first, the opposing electrode substrates 1a.

1bの片方にシール材6として、熱硬化型エポキシ樹脂
中に電極間隙保持用スペーサ7として平均線径6.5μ
mのガラス繊W(ヤング率=9×103kg/ma2)
を1.5wt%、導電性粒子8として平均粒径7.0μ
mのポリスチレン架橋重合体表面にニッケルを無電解め
っきにより厚み0.1μmにめっきしたもの(ヤング率
:5X10”kg/mm”)を1. Ow t%混入し
たものをスクリーン印刷法により印刷した。つぎに2枚
の電極基板を適当価のスペーサ(ポリスチレン架橋重合
体、図示せず)を挟持して貼合わせた後、スペーサ7と
導電性粒子8の大きさが等しくなるまで加圧圧縮し、導
電性粒子によって上下電極が電気的に接続された後、シ
ール材を硬化する。この工程により走査電極2と信号電
極基板Ib上に設けられた引出し用走査電極9とが電気
的に接続される。この後、シール材で囲まれた電極基板
1a、lbの間隙に液晶5を液晶注入口10から注入し
、その後液晶注入口10を紫外線硬化型樹脂11で封口
し液晶表示素子を作製した。
1b as a sealing material 6, and a spacer 7 for maintaining an electrode gap in a thermosetting epoxy resin with an average wire diameter of 6.5μ.
m glass fiber W (Young's modulus = 9 x 103 kg/ma2)
1.5wt%, average particle size 7.0μ as conductive particles 8
The surface of a cross-linked polystyrene polymer of 1.m is plated with nickel to a thickness of 0.1 μm by electroless plating (Young's modulus: 5×10”kg/mm”). The sample containing Ow t% was printed by a screen printing method. Next, the two electrode substrates are pasted together with a spacer (polystyrene crosslinked polymer, not shown) of an appropriate value sandwiched therebetween, and then compressed under pressure until the size of the spacer 7 and the conductive particles 8 become equal. After the upper and lower electrodes are electrically connected by the conductive particles, the sealing material is cured. Through this step, the scan electrode 2 and the lead-out scan electrode 9 provided on the signal electrode substrate Ib are electrically connected. Thereafter, the liquid crystal 5 was injected into the gap between the electrode substrates 1a and lb surrounded by the sealing material through the liquid crystal injection port 10, and then the liquid crystal injection port 10 was sealed with an ultraviolet curing resin 11 to produce a liquid crystal display element.

そして上記のように作製された液晶表示素子を(1)高
温放置70℃ l000h、(2)低温放置40°C1
000h、(3)湿中放置60°C/95% 1000
h、(4)熱衝撃−40〜85°C1000サイクルの
試験を行ったが接続を含む配線抵抗に何らの変化も見ら
れなかった。また、シールの際のセルギャップを測定し
たところ6.5μm±0,05μmと非常に均一な液晶
セルが作製されていることも確認された。
The liquid crystal display element manufactured as described above was (1) left at high temperature at 70°C for 1000 hours, (2) left at low temperature at 40°C.
000h, (3) Humidity 60°C/95% 1000
h. (4) Thermal shock test was conducted at -40 to 85°C for 1000 cycles, but no change was observed in the wiring resistance including connections. Furthermore, when the cell gap during sealing was measured, it was confirmed that a very uniform liquid crystal cell was produced, which was 6.5 μm±0.05 μm.

(実施例2) 第2図(a)およびら)に本発明の実施例2の液晶表示
素子の構成を示す。図に示すように、対向する電極基板
1a、lbの片方にシール材6として、熱硬化型エポキ
シ樹脂中に電極間隙保持用スペーサ7として平均線径4
0μmのガラス繊維(ヤング率: 9 X I O” 
kg/mm2)を1.5 w t%、導電性粒子8とし
て平均粒径4.5μmのポリスチレン架橋重合体の表面
にニッケルを無電解めっきにより厚み0.1μmめっき
したもの(ヤング率:5×102kg/mm” )を1
.0 w t%混入したものをスクリーン印刷法により
印刷した。つぎに2枚の電極基板を適当価のスペーサ(
ポリスチレン架橋重合体、図示せず)を挟持して貼合わ
せた後、スペーサ7と導電性粒子8の大きさが等しくな
るまで加圧圧縮し、導電性粒子8によって上下電極が電
気的に接続された後、シール材を硬化する。この工程に
より走査電極2と信号電極基板Ib上に設けられた引出
し用走査電極9とが電気的に接続される。この後、シー
ル材で囲まれた電極基板1a1bの間隙に液晶5を液晶
注入口10より注入し、その後液晶注入口10を紫外線
硬化型樹脂11で封口し液晶表示素子を作製した。
(Example 2) FIGS. 2(a) and 2(a) show the structure of a liquid crystal display element according to Example 2 of the present invention. As shown in the figure, a sealing material 6 is placed on one side of the opposing electrode substrates 1a and lb, and a spacer 7 for maintaining an electrode gap is placed in a thermosetting epoxy resin with an average wire diameter of 4.
0 μm glass fiber (Young's modulus: 9 X I O"
kg/mm2) and 1.5 wt% of conductive particles 8, the surface of a polystyrene crosslinked polymer with an average particle size of 4.5 μm was plated with nickel to a thickness of 0.1 μm by electroless plating (Young's modulus: 5× 102kg/mm”) to 1
.. The sample containing 0 wt% was printed by screen printing. Next, connect the two electrode substrates with an appropriate spacer (
After sandwiching and bonding a polystyrene cross-linked polymer (not shown), the spacer 7 and the conductive particles 8 are compressed under pressure until they are equal in size, and the conductive particles 8 electrically connect the upper and lower electrodes. After that, harden the sealant. Through this step, the scan electrode 2 and the lead-out scan electrode 9 provided on the signal electrode substrate Ib are electrically connected. Thereafter, the liquid crystal 5 was injected into the gap between the electrode substrates 1a1b surrounded by the sealing material through the liquid crystal injection port 10, and then the liquid crystal injection port 10 was sealed with an ultraviolet curing resin 11 to produce a liquid crystal display element.

そして上記のように作製された液晶表示素子を(1)高
温放置70°C1000h、(2)低温放置−40°C
1000h、(3)湿中放置60°C/95%1000
h、(4)熱衝NJ−40〜85°C100Oサイクル
の試験を行ったが接続を含む配線抵抗に何らの変化も見
られなかった。また、シールの際のセルギャップを測定
したところ4.0 +0.05μmと非常に均一な液晶
セルが作製されていることも確認された。
The liquid crystal display element prepared as above was (1) left at high temperature at 70°C for 1000 hours, (2) left at low temperature at -40°C.
1000h, (3) Humidity 60°C/95% 1000
h. (4) Heat bombardment NJ-40~85°C 100O cycle test was conducted, but no change was observed in wiring resistance including connection. Furthermore, when the cell gap during sealing was measured, it was found that a very uniform liquid crystal cell was produced, which was 4.0 +0.05 μm.

(実施例3) 第2図(alおよび(b)に本発明の実施例3の液晶表
示素子の構成を示す。
(Example 3) FIG. 2 (al and (b)) shows the structure of a liquid crystal display element according to Example 3 of the present invention.

図に示すように対向する電極基板1a  Ibの片方に
シール材6として、熱硬化型エボキン樹脂中に電極間隙
保持用スペーサ7として平均粒径5.5μmのガラス粒
子(ヤング率lX103kg/ml1lりを1.swt
%、導電性粒子1oとして平均粒径5.7μmのガラス
粒子にニッケルを無電解めっきにより厚み0.1μmめ
っきしたもの(ヤング率: 9 X l 02kg/m
m2)を0.5 w t%混入したものをスクリーン印
刷法により印刷した。つぎに2枚の電極基板を適当価の
スペーサ(ポリスチレン架橋重合体、図示せず)を挟持
して貼合わせた後、スペーサ7と導電性粒子1oの大き
さが等しくなるまで加圧圧縮し、導電性粒子によって上
下電極が電気的に接続された後、シール材6を硬化する
。この工程により走査電極2と信号電極基板Ib上に設
けられた引出し用走査電極9とが電気的に接続される。
As shown in the figure, glass particles with an average particle size of 5.5 μm (Young's modulus 1×103 kg/ml 1 liter) were used as a sealing material 6 on one side of the opposing electrode substrates 1a and 1b, and as a spacer 7 for maintaining an electrode gap in thermosetting Evokin resin. 1.swt
%, conductive particles 1o are glass particles with an average particle size of 5.7 μm plated with nickel to a thickness of 0.1 μm by electroless plating (Young's modulus: 9 X l 02 kg/m
A sample containing 0.5 wt% of m2) was printed by screen printing. Next, the two electrode substrates are pasted together with a spacer (polystyrene crosslinked polymer, not shown) of an appropriate value sandwiched therebetween, and then compressed under pressure until the size of the spacer 7 and the conductive particles 1o become equal. After the upper and lower electrodes are electrically connected by the conductive particles, the sealing material 6 is cured. Through this step, the scan electrode 2 and the lead-out scan electrode 9 provided on the signal electrode substrate Ib are electrically connected.

この後、シール材で囲まれた電極基@1a、lbの間隙
に液晶5を液晶注入口10より注入し、その後液晶注入
口1oを紫外線硬化型樹脂11で封口し液晶表示素子を
作製しそして上記のように作製された液晶表示素子を(
1)高温放置70°c  1oooh、(2)低温放置
40’C1000h、(3)湿中放置60°C/95%
1000h、(4)熱衝撃−40〜85“C100○サ
イクルの試験を行ったが接続を含む配線抵抗に何らの変
化も見られなかった。また、シールの際のセルギャップ
を測定したところ5.5±0.05μmと非常に均一な
液晶セルが作製されていることも確認された。
After that, the liquid crystal 5 is injected into the gap between the electrode bases @1a and lb surrounded by the sealing material from the liquid crystal injection port 10, and then the liquid crystal injection port 1o is sealed with an ultraviolet curable resin 11 to produce a liquid crystal display element. The liquid crystal display element prepared as above (
1) High temperature storage at 70°C 1oooh, (2) Low temperature storage at 40'C 1000h, (3) Humidity storage at 60°C/95%
1000 hours, (4) thermal shock -40 to 85" C100○ cycle test, but no change was observed in wiring resistance including connection. Also, when the cell gap during sealing was measured, 5. It was also confirmed that a very uniform liquid crystal cell of 5±0.05 μm was produced.

なお、本実施例ではスペーサ7と導電性粒子8の2種類
の材料の粒径差δについてのべているが、スペーサ7と
導電性粒子8の粒径差と要求セルギャップの間には第3
回に示すような関係がある。
Although this example describes the particle size difference δ between two types of materials, the spacer 7 and the conductive particles 8, there is a difference between the particle size difference between the spacer 7 and the conductive particles 8 and the required cell gap. 3
There is a relationship as shown in the following.

スペーサの直径d、を固定し、導電性粒子の直径ddを
変えていくと粒径差δが0.8μmを超えると、作製さ
れるセルギャップdが要求するセルギャップd5よりも
大きくなり、ばらつきも大きくなる。すなわち、粒径差
δを大きくしすぎてシールを加圧、硬化すると所望のセ
ルギャップd5が得られなくなり、ばらつきも大きくな
る。したがって電気的接続の高い信較性と高精度なセル
ギヤ7プdsを両立させるには粒径差δを08μm以下
にする必要がある。導電性粒子のヤング率は加圧圧縮に
より変形し、かつ反発力を保持できれば良く1〜101
0X102/門2が適当である。
When the diameter d of the spacer is fixed and the diameter dd of the conductive particles is changed, if the particle size difference δ exceeds 0.8 μm, the created cell gap d will be larger than the required cell gap d5, and there will be variations. also becomes larger. That is, if the particle size difference δ is made too large and the seal is pressurized and hardened, the desired cell gap d5 will not be obtained and variations will increase. Therefore, in order to achieve both high reliability of electrical connection and highly accurate cell gear 7ds, it is necessary to make the particle size difference δ 08 μm or less. The Young's modulus of the conductive particles is preferably 1 to 101 as long as they can be deformed by pressure compression and retain repulsive force.
0x102/gate 2 is suitable.

また、本実施例ではノール材として熱硬化型樹脂を用い
ているが、紫外線硬化型樹脂を用いても実現可能である
Further, in this embodiment, a thermosetting resin is used as the nol material, but it is also possible to use an ultraviolet curable resin.

また、本実施例ではシール材中のスペーサとセル内のス
ペーサの関係には触れてないが、セル内のスペーサより
シール材中のスペーサの径が大きいか、もしくは同し径
であることが望ましい。
Also, although this example does not mention the relationship between the spacer in the seal material and the spacer in the cell, it is desirable that the spacer in the seal material has a larger diameter than the spacer in the cell, or that they have the same diameter. .

発明の効果 以上の実施例の説明からも明らかなように本発明によれ
ば、同一基板上で信号電極と走査電極とを外部回路に接
続ができるので製造ラインで液晶表示素子を裏返す工程
を必要とせず、さらにCOG実装に対応するために端子
接続部分に・金属皮膜を形成する際にも、どちらか一方
の基板のみに金属皮膜を形成すればよくコスト的にも有
利である。また、シール材に混入するスペーサと導電性
粒子の弾力性と粒径に差を持たせているため、高い信顛
性の電気的接続と高精度のセルギャップの形成が可能と
なった。
Effects of the Invention As is clear from the above description of the embodiments, according to the present invention, the signal electrodes and scanning electrodes can be connected to an external circuit on the same substrate, which eliminates the need for a step of turning over the liquid crystal display element on the manufacturing line. Furthermore, when forming a metal film on the terminal connection portion to support COG mounting, it is sufficient to form the metal film on only one of the substrates, which is advantageous in terms of cost. In addition, because the spacer and conductive particles mixed in the sealing material have different elasticity and particle size, it is possible to form highly reliable electrical connections and highly accurate cell gaps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の実施例1〜3の液晶表示素子の
走査電極基板の平面図、第1図(b)は同信号電極基板
の平面図、第2図(a)は同液晶表示素子の平面図、第
2図(b)は同要部拡大断面図、第3図は同スペーサと
導電粒子の粒径差とセルギャップの関係を示すグラフ、
第4図(alは従来の液晶表示素子の走査電極基板の平
面図、第4図(b)は同信号電極基板の平面図、第5図
(a)は同液晶表示素子の平面図、第5図(b)は同要
部拡大断面図である。 1a・・・・・・走査電極基板、1b・・・・・・信号
電極基板、2・・・・・・走査電極、3・・・・・・信
号電極、4・・・・・・配向膜、5・・・・・・液晶w
、6・・・・・・シール材、7・・・・・・スペーサ、
8・・・・・・導電性粒子、9・・・・・・引出し用走
査電極、lO・・・・・・液晶注入口、11・・・・・
・紫外線硬化型樹脂、d5・・・・・・スペーサの直径
、dd・・・・・・導電性粒子の直径。 代理人の氏名 弁理士 粟野重孝 はか1名第 図 第 図 穐号EJ& 脇辻へコ 粒任先♂(♂=d区 d5ン(/LI”T’l) 第 (cL) 第 図 (α) 図 %奴!3纒1ひ訂1
FIG. 1(a) is a plan view of the scanning electrode substrate of the liquid crystal display elements of Examples 1 to 3 of the present invention, FIG. 1(b) is a plan view of the same signal electrode substrate, and FIG. 2(a) is the same. A plan view of the liquid crystal display element, FIG. 2(b) is an enlarged sectional view of the same essential part, and FIG. 3 is a graph showing the relationship between the particle size difference between the spacer and conductive particles and the cell gap.
Fig. 4 (al is a plan view of the scanning electrode substrate of the conventional liquid crystal display element, Fig. 4 (b) is a plan view of the same signal electrode substrate, Fig. 5 (a) is a plan view of the same liquid crystal display element, 5(b) is an enlarged sectional view of the same essential parts. 1a...Scanning electrode substrate, 1b...Signal electrode substrate, 2...Scanning electrode, 3... ...Signal electrode, 4...Alignment film, 5...Liquid crystal w
, 6... Seal material, 7... Spacer,
8... Conductive particles, 9... Scanning electrode for extraction, lO... Liquid crystal injection port, 11...
- Ultraviolet curing resin, d5...Diameter of spacer, dd...Diameter of conductive particles. Name of agent: Patent attorney Shigetaka Awano (1 person) Figure 1 (EJ & Wakitsuji) (♂ = d-ku d5n (/LI”T'l) Figure 1 (cL) Figure (α) ) Figure % guy! 3 editions 1 revision 1

Claims (3)

【特許請求の範囲】[Claims] (1)対向する複数の信号電極を有する信号電極基板と
複数の走査電極を有する走査電極基板との間隙に、周辺
をスペーサを混入したシール材で囲まれた液晶層を挟持
し、信号電極基板または走査電極基板にシール材と重な
るように形成された引出し電極を有し、前記引出し電極
を備えた基板に対向する基板上の電極は前記シール材と
重なるように構成され、かつシール材に導電性粒子を混
入することにより前記引出し電極と相対向する基板上の
電極とを電気的に接続して構成される液晶表示素子にあ
って、スペーサの弾性率と同じかまたは大きい弾性率を
もつ導電性粒子を樹脂中に混入したシール材を用いる液
晶表示素子。
(1) A liquid crystal layer surrounded by a sealing material mixed with spacers is sandwiched between a signal electrode substrate having a plurality of opposing signal electrodes and a scanning electrode substrate having a plurality of scanning electrodes, and the signal electrode substrate is Alternatively, the scanning electrode substrate has an extraction electrode formed to overlap with a sealing material, and an electrode on a substrate opposite to the substrate provided with the extraction electrode is configured to overlap with the sealing material and conductive to the sealing material. In a liquid crystal display element configured by electrically connecting the extraction electrode and an electrode on an opposing substrate by mixing conductive particles, the conductive element has an elastic modulus equal to or larger than that of the spacer. A liquid crystal display element that uses a sealing material containing sexual particles mixed into a resin.
(2)スペーサの直径よりも大きい直径の導電性粒子で
、その直径差が0.8μm以下であるスペーサと導電性
粒子を混入したシール材を用いる請求項(1)記載の液
晶表示素子。
(2) The liquid crystal display element according to claim (1), wherein a sealing material is used in which a spacer and conductive particles are mixed, which are conductive particles having a diameter larger than that of the spacer, and the difference in diameter is 0.8 μm or less.
(3)対向する複数の信号電極を有する信号電極基板と
複数の走査電極を有する走査電極基板との間隙に、周辺
をスペーサを混入したシール材で囲まれた液晶層を挟持
し、信号電極基板または走査電極基板にシール材と重な
るように形成された引出し電極を有し、前記引出し電極
を備えた基板に相対向する基板上の電極は前記シール材
と重なるように構成され、かつシール材に導電性粒子を
混入することにより前記引出し電極と相対向する基板上
の電極とを電気的に接続した液晶表示素子にあって、ス
ペーサと導電性粒子を樹脂中に混入して形成したシール
材を印刷した基板と対向する基板とを貼合わせた導電性
粒子とスペーサの大きさが等しくなるまで加圧した後、
シール材を硬化する請求項1、2のいずれかに記載の液
晶表示素子の製造方法。
(3) A liquid crystal layer surrounded by a sealing material mixed with spacers is sandwiched between a signal electrode substrate having a plurality of opposing signal electrodes and a scanning electrode substrate having a plurality of scanning electrodes, and the signal electrode substrate is Alternatively, the scanning electrode substrate has an extraction electrode formed to overlap with a sealing material, and an electrode on a substrate facing the substrate provided with the extraction electrode is configured to overlap with the sealing material, and the electrode is formed to overlap with the sealing material. In a liquid crystal display element in which the extraction electrode and the electrode on the opposing substrate are electrically connected by mixing conductive particles, a sealing material formed by mixing a spacer and conductive particles in a resin is used. After pressing the printed substrate and the opposing substrate together until the conductive particles and spacers are equal in size,
3. The method for manufacturing a liquid crystal display element according to claim 1, wherein the sealing material is cured.
JP20050690A 1990-07-26 1990-07-26 Liquid crystal display element and its manufacture Pending JPH0483227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20050690A JPH0483227A (en) 1990-07-26 1990-07-26 Liquid crystal display element and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20050690A JPH0483227A (en) 1990-07-26 1990-07-26 Liquid crystal display element and its manufacture

Publications (1)

Publication Number Publication Date
JPH0483227A true JPH0483227A (en) 1992-03-17

Family

ID=16425449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20050690A Pending JPH0483227A (en) 1990-07-26 1990-07-26 Liquid crystal display element and its manufacture

Country Status (1)

Country Link
JP (1) JPH0483227A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098984A (en) * 2000-09-21 2002-04-05 Toshiba Corp Liquid crystal display device and method of manufacturing its counter substrate
US6486936B1 (en) * 1999-05-25 2002-11-26 Nec Corporation Liquid crystal panel with seal containing hard and soft spacers
US6724448B2 (en) 1999-12-24 2004-04-20 Seiko Epson Corporation Liquid crystal display device and manufacturing method by compression bonding
KR100525226B1 (en) * 1999-01-06 2005-10-28 마츠시타 덴끼 산교 가부시키가이샤 Liquid crystal display panel
US6980275B1 (en) 1993-09-20 2005-12-27 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
JP2007087818A (en) * 2005-09-22 2007-04-05 Shinshu Univ Organic electroluminescence device with electrode terminals
JP2007148454A (en) * 2007-03-13 2007-06-14 Sharp Corp Manufacturing method for liquid crystal display device
JP2007212813A (en) * 2006-02-10 2007-08-23 Epson Imaging Devices Corp Liquid crystal device and electronic apparatus
US7443478B2 (en) 1997-03-27 2008-10-28 Semiconductor Energy Laboratory Co., Ltd. Contact structure
US20110205475A1 (en) * 2005-02-25 2011-08-25 Semiconductor Energy Laboratory Co., Ltd. Liquid Crystal Display Device
WO2014043891A1 (en) * 2012-09-19 2014-03-27 深圳市华星光电技术有限公司 Display panel and manufacturing method thereof

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7525629B2 (en) 1993-09-20 2009-04-28 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device comprising drive circuits that include thin film transistors formed on both substrates
US6980275B1 (en) 1993-09-20 2005-12-27 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US7697102B2 (en) 1997-03-27 2010-04-13 Semiconductor Energy Laboratory Co., Ltd Contact structure
US7760316B2 (en) 1997-03-27 2010-07-20 Semiconductor Energy Laboratory Co., Ltd. Contact structure
US9217901B2 (en) 1997-03-27 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Contact structure
US8908138B2 (en) 1997-03-27 2014-12-09 Semiconductor Energy Laboratory Co., Ltd. Contact structure
US7443478B2 (en) 1997-03-27 2008-10-28 Semiconductor Energy Laboratory Co., Ltd. Contact structure
US7561242B2 (en) 1997-03-27 2009-07-14 Semiconductor Energy Laboratory Co., Ltd. Contact structure
US7616273B2 (en) 1997-03-27 2009-11-10 Semiconductor Energy Laboratory Co., Ltd. Contact structure
KR100525226B1 (en) * 1999-01-06 2005-10-28 마츠시타 덴끼 산교 가부시키가이샤 Liquid crystal display panel
US6486936B1 (en) * 1999-05-25 2002-11-26 Nec Corporation Liquid crystal panel with seal containing hard and soft spacers
US6724448B2 (en) 1999-12-24 2004-04-20 Seiko Epson Corporation Liquid crystal display device and manufacturing method by compression bonding
KR100428520B1 (en) * 1999-12-24 2004-04-29 세이코 엡슨 가부시키가이샤 Manufacturing method for liquid crystal device
JP2002098984A (en) * 2000-09-21 2002-04-05 Toshiba Corp Liquid crystal display device and method of manufacturing its counter substrate
US20110205475A1 (en) * 2005-02-25 2011-08-25 Semiconductor Energy Laboratory Co., Ltd. Liquid Crystal Display Device
US8792073B2 (en) 2005-02-25 2014-07-29 Semiconductor Energy Laboratory Co., Ltd Liquid crystal display device
JP2007087818A (en) * 2005-09-22 2007-04-05 Shinshu Univ Organic electroluminescence device with electrode terminals
JP2007212813A (en) * 2006-02-10 2007-08-23 Epson Imaging Devices Corp Liquid crystal device and electronic apparatus
JP2007148454A (en) * 2007-03-13 2007-06-14 Sharp Corp Manufacturing method for liquid crystal display device
WO2014043891A1 (en) * 2012-09-19 2014-03-27 深圳市华星光电技术有限公司 Display panel and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5717476A (en) Liquid crystal display device and manfacturing method therefor
US6466294B1 (en) Liquid crystal display panel using sealing adhesive containing conductive particles
JPH0483227A (en) Liquid crystal display element and its manufacture
JPS62218937A (en) Liquid crystal display pannel
US20060103803A1 (en) Panel for liquid crystal display, liquid crystal display including the panel, and methods for manufacturing the same
USRE37945E1 (en) Liquid crystal display device and manufacturing method thereof
JPH04324825A (en) Liquid crystal display element and manufacture thereof
JPS60108822A (en) Terminal connecting method of liquid crystal display element
JPS6329729A (en) Liquid crystal cell
JPH07114030A (en) Liquid crystal display device
JPH11133454A (en) Liquid crystal display device
JP2911480B2 (en) Electro-optical cell, manufacturing method thereof, and liquid crystal cell
JP2004212446A (en) Liquid crystal element and manufacturing method thereof
JP2000259092A (en) Electro-optic device
JP3015703B2 (en) Liquid crystal display
KR0154809B1 (en) Lcd device
JPS6155872A (en) Soldering structure of multiterminal
JPH06118425A (en) Liquid crystal display element
JP2000284307A (en) Chip-on glass liquid crystal display device
JPH02181119A (en) Liquid crystal display element
KR19990048959A (en) Liquid crystal panel
JPH1124091A (en) Manufacture of liquid crystal display element
JPH03174515A (en) Liquid crystal display element
JPS61179487A (en) Liquid crystal display panel
JPS60247619A (en) liquid crystal display