JPH0483153A - Corrosion detecting system and water quality control system - Google Patents
Corrosion detecting system and water quality control systemInfo
- Publication number
- JPH0483153A JPH0483153A JP2198519A JP19851990A JPH0483153A JP H0483153 A JPH0483153 A JP H0483153A JP 2198519 A JP2198519 A JP 2198519A JP 19851990 A JP19851990 A JP 19851990A JP H0483153 A JPH0483153 A JP H0483153A
- Authority
- JP
- Japan
- Prior art keywords
- corrosion
- potential difference
- potential
- environment monitoring
- detection system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005260 corrosion Methods 0.000 title claims abstract description 156
- 230000007797 corrosion Effects 0.000 title claims abstract description 156
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 55
- 238000003908 quality control method Methods 0.000 title claims description 17
- 238000012544 monitoring process Methods 0.000 claims abstract description 41
- 238000001514 detection method Methods 0.000 claims description 37
- 238000005336 cracking Methods 0.000 claims description 36
- 239000001257 hydrogen Substances 0.000 claims description 19
- 229910052739 hydrogen Inorganic materials 0.000 claims description 19
- 238000002347 injection Methods 0.000 claims description 17
- 239000007924 injection Substances 0.000 claims description 17
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 15
- 239000001301 oxygen Substances 0.000 claims description 15
- 229910052760 oxygen Inorganic materials 0.000 claims description 15
- 239000002184 metal Substances 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000007789 gas Substances 0.000 claims description 9
- 150000002500 ions Chemical class 0.000 claims description 9
- 150000002739 metals Chemical class 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 238000003466 welding Methods 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 7
- 239000007769 metal material Substances 0.000 claims description 6
- 239000007921 spray Substances 0.000 claims description 5
- 230000002123 temporal effect Effects 0.000 claims description 5
- 229910002089 NOx Inorganic materials 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 3
- 239000004327 boric acid Substances 0.000 claims description 3
- 238000000746 purification Methods 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 2
- 238000005259 measurement Methods 0.000 abstract description 8
- 238000006243 chemical reaction Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 description 20
- 241000196324 Embryophyta Species 0.000 description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 15
- 238000000034 method Methods 0.000 description 15
- 239000000243 solution Substances 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 8
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical group [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 7
- 230000007423 decrease Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 3
- 229910018967 Pt—Rh Inorganic materials 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- -1 iron ions Chemical class 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000000941 radioactive substance Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、腐食環境にさらされている構造材の健全性向
上に係り、特にその孔食及び応力腐食割れなどの腐食発
生を検知する腐食検知システム及び水質制御システムに
関する。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to improving the soundness of structural materials exposed to a corrosive environment, and in particular, to detecting the occurrence of corrosion such as pitting corrosion and stress corrosion cracking. Relating to detection systems and water quality control systems.
従来の腐食検知システムにおいては、特開昭57−22
535号公報に記載されるように、腐食性流体中に置か
れ、かつ放射化された腐食性素子の抵抗値変化と、下流
における放射性物質の増加とを比較することにより、孔
食を検出し測定する腐食監視システムとなっていた。ま
た特開昭60−228912号公報に記載されるように
、配管や容器等へ入射する超音波及びその反射波の周波
数分布から、腐食を監視して微小を腐食の検出を可能に
する腐食監視方法となっている。また特開昭52−15
0090号公報に記載されるように、ゾーン選択機能に
つきAE位置標定監視装置に、プリアンプとAEセンサ
を介してピンポイント接触型ウェーブガイドを接続する
ことにより、被検体の亀裂発生と進展状況を精度高く検
出できるようにするき裂挙動検出装置となっている。ま
た特開昭61〜95212号公報に記載されるように、
稼動中の構造物における高応力箇所の断面積変化、変動
応力および温度を実測してオンラインで監視することに
より、構造物の疲労き裂発生の進展状況および余寿命等
を、適確に逐次把握できるようにする構造物の疲労き裂
発生、進展、余寿命監視システムとなっている。また特
開昭62−179662号公報に記載されるように、機
器に装着したセンサを、信号処理装置と表示記録装置と
に接続することにより、高温下機器の水素侵食による割
れの発生を自動的かつ連続的に監視するシステムとなっ
ている。In the conventional corrosion detection system, JP-A-57-22
As described in Publication No. 535, pitting corrosion is detected by comparing the change in resistance of a corrosive element placed in a corrosive fluid and activated and the increase in radioactive substances downstream. It was a corrosion monitoring system to measure. In addition, as described in Japanese Patent Application Laid-Open No. 60-228912, corrosion monitoring enables the detection of minute corrosion by monitoring corrosion from the frequency distribution of ultrasonic waves incident on piping, containers, etc. and their reflected waves. That's the method. Also, JP-A-52-15
As described in Publication No. 0090, by connecting a pinpoint contact type waveguide to an AE position monitoring device with a zone selection function via a preamplifier and an AE sensor, it is possible to accurately monitor the occurrence and progress of cracks in the specimen. This is a crack behavior detection device that enables high detection. Also, as described in Japanese Patent Application Laid-open No. 61-95212,
By actually measuring cross-sectional area changes, fluctuating stress, and temperature at high-stress points in operating structures and monitoring them online, we can accurately grasp the progress of fatigue cracks and remaining life of structures, etc. It is a system that monitors the occurrence, propagation, and remaining life of fatigue cracks in structures. Furthermore, as described in Japanese Patent Application Laid-Open No. 179662/1983, by connecting a sensor attached to equipment to a signal processing device and a display/recording device, cracks caused by hydrogen corrosion in equipment under high temperature can be automatically detected. It is also a continuous monitoring system.
原子炉炉水制御システムとしては、特開昭62−126
398号公報に記載されるように、原子炉炉心の過酸化
水素濃度を測定する装置と、その測定値から水素注入率
を制御する装置とを設けることにより、炉心の水質を最
適に制御する原子炉水質制御システムとなっている。現
在海外のBWRで実施されている腐食環境モニタシステ
ムには。As a nuclear reactor water control system, JP-A-62-126
As described in Publication No. 398, by providing a device that measures the hydrogen peroxide concentration in the reactor core and a device that controls the hydrogen injection rate from the measured value, it is possible to optimally control the water quality in the reactor core. This is the reactor water quality control system. Corrosion environment monitoring systems currently being implemented at BWRs overseas.
エプリ エヌ ピー 3521.メイ、1984(EP
RI NP−3521May、1984)。Epli NP 3521. May, 1984 (EP
RI NP-3521 May, 1984).
エプリ エヌ ピー 3517.メイ、1984(EP
PI NP−3517May、1984)。Epli NP 3517. May, 1984 (EP
PI NP-3517 May, 1984).
コロ−ジョン183ペーパーナンバー122(Corr
osion ’83 PAPERNUMBER12
2)及びコロ−ジョン183ペーパーナンバー 129
(Corrosion ’83 PAPERNU
MBER129)に記載されているように、一次系冷却
材中におけるステンレス鋼の腐食電位を照合電極を用い
て計測することにより腐食環境モニタを行ってる。一次
系冷却水中の酸素濃度を規制して応力腐食割れを防ぐ対
策が講じられている。これは、5US304鋼が一23
0mV以下であればSCC(応力腐食割れ)を起さない
というものである。これに関しては公開昭57−308
6号公報に記載されているように、一次冷却水中のステ
ンレス鋼の腐食電位、溶存酸素濃度及び水素濃度を測定
し、腐食電位が、−250〜600mV、溶存酸素濃度
10〜50pPb、溶存水素濃度150ppb以下にな
るように溶存水素量をコントロールすることを特徴とす
るシステムとなっている。これらは照合電極を環境モニ
タとして使用している。すなわちH2を注入し溶存酸素
濃度を下げ、応力腐食割れが生じなくなる5US304
の電位が一230mVということであり、照合電極を応
力腐食割れの直接的な検知に適用したものではなく、照
合電極を応力腐食割れ検知に適用した例はない。Corrosion 183 Paper Number 122 (Corr
osion '83 PAPER NUMBER12
2) and corrosion 183 paper number 129
(Corrosion '83 PAPERNU
As described in MBER129), the corrosion environment is monitored by measuring the corrosion potential of stainless steel in the primary coolant using a reference electrode. Measures are being taken to prevent stress corrosion cracking by regulating the oxygen concentration in the primary cooling water. This is 5US304 steel 123
If it is 0 mV or less, SCC (stress corrosion cracking) will not occur. Regarding this, it was published in 1977-308.
As described in Publication No. 6, the corrosion potential, dissolved oxygen concentration, and hydrogen concentration of stainless steel in the primary cooling water were measured, and the corrosion potential was -250 to 600 mV, the dissolved oxygen concentration was 10 to 50 pPb, and the dissolved hydrogen concentration was The system is characterized by controlling the amount of dissolved hydrogen to be 150 ppb or less. These use reference electrodes as environmental monitors. In other words, by injecting H2 to lower the dissolved oxygen concentration, stress corrosion cracking will no longer occur 5US304
The potential of the reference electrode is 1230 mV, and the reference electrode has not been applied to the direct detection of stress corrosion cracking, and there is no example in which the reference electrode has been applied to the detection of stress corrosion cracking.
従来の腐食検知システムにあっては、それらの局部腐食
がある程度生じた段階で検出するのみであって、これら
の発生のごく初期をとらえることができなかった。また
応力腐食割れを防止するための水素注入の制御に関して
は、たとえば電位測定の場合、応力腐食割れで生じるき
裂内部の水質環境とバルク中の水質環境とは異なるため
、バルク中に浸漬された応力腐食割れを生じていない試
験片の電位で水素量をコントロールしても適切な水質制
御は不可能にちがい。Conventional corrosion detection systems only detect local corrosion when it has occurred to a certain extent, and are unable to detect the very early stages of local corrosion. Regarding the control of hydrogen injection to prevent stress corrosion cracking, for example, in the case of potential measurement, the water quality environment inside the crack that occurs due to stress corrosion cracking is different from the water quality environment in the bulk. Even if the amount of hydrogen is controlled by the potential of a test piece that does not show stress corrosion cracking, it is impossible to control water quality appropriately.
またその電位が一230mV以下であれば応力腐食割れ
を生じないとしているが、測定されている電位は前述の
ように応力腐食割れを生じていない試験片であるため、
直接の応力腐食割れに関する情報とはなっていない。ま
たプラントは、それぞれの場所でその水質(溶存酸素濃
度、溶存水素濃度、過酸化水素濃度)や温度が異るため
、単一の場所で測定した値を基に水質を制御してもプラ
ントの健全性を充分に保つことができない。またSCC
が発生しなくなる電位が一230mV以下であるのは一
定の水質条件下でのみであり、水質や温度が変化した場
合は、−230mVの値が変化すると考えられる。事実
、導電率が変化した場合はその電位が変化することが報
告されている。Also, it is said that stress corrosion cracking will not occur if the potential is 1230mV or less, but the potential being measured is for a test piece that does not cause stress corrosion cracking as mentioned above.
There is no information on direct stress corrosion cracking. In addition, the water quality (dissolved oxygen concentration, dissolved hydrogen concentration, hydrogen peroxide concentration) and temperature differ in each location of a plant, so even if water quality is controlled based on values measured at a single location, the plant It is not possible to maintain sufficient soundness. Also SCC
It is only under certain water quality conditions that the potential at which no . In fact, it has been reported that when the conductivity changes, the potential changes.
従って応力腐食割れが起きたかどうかを判断するために
は、単一のSUSの試験片の他にその時の炉水の温度、
及び導電率などの水質も測定する必要がある。すなわち
、さまざまな水質条件下でSCCが生じなくなる電位を
求めてデータベース化しておき、それを基にSCCの発
生を判断する必要があった。Therefore, in order to determine whether stress corrosion cracking has occurred, in addition to a single SUS test piece, the temperature of the reactor water at that time,
Water quality such as conductivity and electrical conductivity also need to be measured. In other words, it was necessary to determine the potential at which SCC no longer occurs under various water quality conditions, compile it into a database, and determine whether SCC has occurred based on this.
本発明の目的は、温度や水質等が変化した場合において
も同一の方法及び装置で感度良く応力腐食割れや孔食等
の局部腐食の発生を検知し、かつ防止する腐食検知シス
テム及び水質制御システムを提供することにある。The purpose of the present invention is to provide a corrosion detection system and a water quality control system that can sensitively detect and prevent the occurrence of localized corrosion such as stress corrosion cracking and pitting corrosion using the same method and equipment even when the temperature, water quality, etc. change. Our goal is to provide the following.
前記の目的を達成するため、本発明に係る腐食検知シス
テムは、プラントの水系配管の腐食監視部に複数の照合
電極を挿入し、それぞれの照合電極の間の電位差又はそ
れぞれの照合電極とそれぞれの照合電極に対応する腐食
監視部との間の電位差を測定し、電位差より腐食の発生
とその個所とを検知する構成とする。In order to achieve the above object, the corrosion detection system according to the present invention inserts a plurality of reference electrodes into the corrosion monitoring part of the water system piping of a plant, and detects the potential difference between each reference electrode or the difference between each reference electrode and each reference electrode. The configuration is such that the potential difference between the reference electrode and the corresponding corrosion monitoring section is measured, and the occurrence and location of corrosion can be detected from the potential difference.
そして腐食の発生個所を、それぞれの電位の一方が卑側
に変動又はそれぞれの電位差が基準値を超えることによ
り検知する構成である。The location where corrosion occurs is detected when one of the respective potentials changes to the base side or when the respective potential difference exceeds a reference value.
また腐食の発生個所を、少なくとも2本の照合電極の電
位差を比較することにより検知する構成でもよい。Alternatively, the location where corrosion occurs may be detected by comparing the potential difference between at least two reference electrodes.
さらに照合電極は、異種金属の接合部に設置される構成
でもよい。Furthermore, the reference electrode may be installed at a joint between dissimilar metals.
そして腐食環境モニタシステムにおいては、請求項1〜
4のいずれか1項記載の腐食検知システムを、少なくと
も一箇所に設置してプラントの健全性又は危険性を評価
する構成とする。In the corrosive environment monitoring system, claims 1-
The corrosion detection system according to any one of Item 4 is installed at at least one location to evaluate the health or danger of the plant.
また請求項1〜4のいずれか1項記載の腐食検知システ
ムを備えた腐食環境モニタシステムにおいては、測定さ
れたそれぞれの電位又は電位差を。In the corrosion environment monitoring system equipped with the corrosion detection system according to any one of claims 1 to 4, each measured potential or potential difference.
CRT、記録計、レコーダ及びプロッタよりなる表示シ
ステムに表示し、表示に基づいて腐食の発生とその箇所
とを検知する構成でもよい。It may be configured to display on a display system consisting of a CRT, a recorder, a recorder, and a plotter, and detect the occurrence of corrosion and its location based on the display.
さらに請求項1〜4のいずれか1項記載の腐食検知シス
テムを備えた腐食環境モニタシステムにおいては、腐食
の発生とその個所を音、音声、光及びCRTの表示より
なる少なくとも一つの警報を発令する構成でもよい。Furthermore, in the corrosive environment monitoring system equipped with the corrosion detection system according to any one of claims 1 to 4, at least one alarm consisting of sound, voice, light, and CRT display is issued to indicate the occurrence of corrosion and the location thereof. A configuration may also be used.
そして請求項1〜4のいずれか1項記載の腐食検知シス
テムを備えた腐食環境モニタシステムにおいては、それ
ぞれの照合電極の間の電位差の増加速度、それぞれの照
合電極と腐食監視部との間の電位差の増加速度又はそれ
ぞれの増加速度の時間的変化により応力腐食割れが発生
する時期を予測する構成でもよい。In the corrosion environment monitoring system equipped with the corrosion detection system according to any one of claims 1 to 4, the rate of increase in the potential difference between each reference electrode, the increase rate of the potential difference between each reference electrode and the corrosion monitoring section, It may be configured to predict when stress corrosion cracking will occur based on the rate of increase in potential difference or the temporal change in each rate of increase.
また請求項1〜4のいずれか1項記載の腐食検知システ
ムを備えた腐食環境モニタシステムにおいては、測定さ
れるそれぞれの電位又は電位差の時間的変化を監視する
構成でもよい。Further, a corrosion environment monitoring system including the corrosion detection system according to any one of claims 1 to 4 may be configured to monitor temporal changes in each potential or potential difference to be measured.
さらに、水質制御システムにおいては、請求項5〜9の
いずれか1項記載の腐食環境モニタシステムを備え、酸
素、窒素、水素、NOx、Feイオン、Niイオン、H
NO,及びH2O,(7)少なくとも一つを注入するガ
ス及び薬品注入装置を具備した構成とする。Furthermore, the water quality control system includes the corrosive environment monitoring system according to any one of claims 5 to 9, and includes oxygen, nitrogen, hydrogen, NOx, Fe ions, Ni ions, H
The configuration includes a gas and chemical injection device for injecting at least one of NO and H2O (7).
そして請求項5〜9のいずれか1項記載の腐食環境モニ
タシステムを備えた水質制御システムにおいては、測定
された電位差をほぼ基準値に復させる酸素、窒素、水素
、NOx、Feイオン、Niイオン、HNO,及びH2
O2の少なくとも一つを、少なくとも一箇所より水系に
注入する構成でもよい。In the water quality control system equipped with the corrosive environment monitoring system according to any one of claims 5 to 9, oxygen, nitrogen, hydrogen, NOx, Fe ions, Ni ions, which return the measured potential difference to approximately the reference value. , HNO, and H2
A configuration may also be adopted in which at least one of O2 is injected into the water system from at least one location.
またプラントにおいては、請求項1〜12のいずれか1
項記載の腐食検知システム、腐食環境モニタシステム又
は水質制御システムを、少なくとも一つ備えた構成とす
る。Further, in a plant, any one of claims 1 to 12
The structure shall include at least one of the corrosion detection system, corrosion environment monitoring system, or water quality control system described in 1.
さらにプラントにおいては、請求項1〜12のいずれか
1項記載の腐食検知システム、腐食環境モニタシステム
又は水質制御システムの少なくとも一つを、金属材料の
溶接部、熱影響部、エルボ及び曲管部の少なくとも一箇
所に設けた構成でもよい。Furthermore, in a plant, at least one of the corrosion detection system, corrosion environment monitoring system, or water quality control system according to any one of claims 1 to 12 is applied to welded parts, heat affected zones, elbows, and bent pipes of metal materials. It may be provided in at least one location.
そして原子力プラントにおいては、請求項1〜12のい
ずれか1項記載の腐食検知システム、腐食環境モニタシ
ステム又は水質制御システムの少なくとも一つを、再循
環系バイパス、炉水スプレィ系配管、原子炉浄化系配管
及び再循環系ライザ管よりなるBWRプラント一次系配
管の曲管部。In a nuclear power plant, at least one of the corrosion detection system, corrosion environment monitoring system, or water quality control system according to any one of claims 1 to 12 is installed in a recirculation system bypass, a reactor water spray system piping, or a reactor purification system. The bent pipe section of the BWR plant primary system piping, which consists of system piping and recirculation system riser pipes.
エルボ、溶接部、溶接熱影響部の少なくとも一箇所に配
設した構成とする。It shall be arranged in at least one of the elbow, welding part, and welding heat affected zone.
また原子力プラントにおいては、請求項1〜12のいず
れか1項記載の腐食検知システム、腐食環境モニタシス
テム及び水質制御システムの少なくとも一つを、原子炉
圧力容器と一次系配管の溶接部及びホウ酸水注入配管、
炉心支持板、上部格子板、炉心スプレィ配管よりなる炉
水構造物の曲管部、溶接部及び溶接熱影響部の少なくと
も一箇所に設置した構成でもよい。In addition, in a nuclear power plant, at least one of the corrosion detection system, corrosion environment monitoring system, and water quality control system according to any one of claims 1 to 12 is installed at a welded part of a reactor pressure vessel and a primary system piping, and a boric acid water injection piping,
The structure may be such that it is installed at at least one of the bent pipe section, weld section, and weld heat affected zone of a reactor water structure consisting of a core support plate, an upper grid plate, and a core spray pipe.
本発明の腐食検知システムによれば、孔食を生じさせや
すい溶液中に所定の金属を入れると、孔食が生じない場
合はこの金属近傍の電位分布は均一であるため、照合電
極を金属のどの位置に配設しても測定される電位は同じ
となる。しかし、ある部分に孔食や応力腐食割れが生じ
ると、そこがアノード部になって全面腐食を起こしてい
る場所と異る電位分布を示すようになり、照合電極で測
定される電位はIR分だけ低い電位となる。従って、所
定の金属材料に複数の照合電極を設置しておき、それぞ
れの照合電極間の電位又はそれぞれの照合電極と金属材
料との間の電位に差が生じた場合、応力腐食割れや孔食
等の局部腐食が生じたことになる。その局部腐食が激し
い場合は、■(腐食電流)が大きくなるためIR損が大
きくなり、電位降下分が大きくなる。従ってその電位降
下分の大きさで局部腐食の程度が判る。R(溶液抵抗)
が小さい場合、すなわち溶液の電導度が高い溶液は、電
導度が低い溶液と比較し■が同じとしても電位差が小さ
くなる。According to the corrosion detection system of the present invention, when a specified metal is placed in a solution that is likely to cause pitting corrosion, the potential distribution near the metal is uniform if pitting corrosion does not occur. The potential measured will be the same no matter where it is placed. However, when pitting corrosion or stress corrosion cracking occurs in a certain area, that area becomes an anode and exhibits a potential distribution different from that of an area where general corrosion has occurred, and the potential measured by the reference electrode differs from the IR component. The potential will be lower. Therefore, if multiple reference electrodes are installed on a given metal material and a difference occurs in the potential between each reference electrode or between each reference electrode and the metal material, stress corrosion cracking or pitting corrosion may occur. This means that local corrosion has occurred. If the local corrosion is severe, (corrosion current) increases, IR loss increases, and the potential drop increases. Therefore, the degree of local corrosion can be determined by the magnitude of the potential drop. R (solution resistance)
When is small, that is, a solution with high conductivity has a smaller potential difference than a solution with low conductivity, even if (2) is the same.
次に金属材料AとBの異種金属接合をもった材料(A−
B)を電導度の高い溶液に浸漬させると、混成電位系が
成り立つため、照合電極をA側に近づけて測定した材料
との電位差と、B側へ近づけて測定した材料との電位差
と同じである。しかしAとBの接点部に照合電極を近づ
けて測定した材料との電位差は、接点部での大きなIの
ためにRが小さくても大きなIRが得られるため、A又
はB側に近づけて測定した値と異なる。したがって、電
導度の高い溶液中においては、接点部とそこから離れた
部分とに照合電極を設置することで局部腐食が検知され
る。電導度の低い溶液に材料を浸漬させた場合は、溶液
抵抗が高<IR損が生じるため、照合電極をA側に近づ
けて測定した材料の電位と、照合電極をB側に近づけて
測定した材料の電位との間に差があった場合は、異種金
属間腐食が生じていることがわかる。またその差が大き
い程、その腐食は激しいものとなる。Next, a material with dissimilar metal bonding of metal materials A and B (A-
When B) is immersed in a highly conductive solution, a hybrid potential system is established, so the potential difference between the material measured with the reference electrode close to side A and the potential difference between the material measured with the reference electrode close to side B is the same. be. However, the potential difference between the reference electrode and the material measured by bringing the reference electrode close to the contact area of A and B is measured by bringing it close to the A or B side because a large IR can be obtained even if R is small due to the large I at the contact area. The value differs from the value given. Therefore, in a solution with high conductivity, local corrosion can be detected by installing reference electrodes at the contact point and at a portion away from the contact point. When a material is immersed in a solution with low conductivity, the solution resistance is high and IR loss occurs, so the potential of the material measured with the reference electrode close to side A and the potential of the material measured with the reference electrode close to side B. If there is a difference between the potential of the material and the potential of the material, it can be seen that corrosion between dissimilar metals has occurred. Moreover, the greater the difference, the more severe the corrosion.
応力腐食割れ、孔食及び異種金属間腐食の検出に、IR
損に寄因する照合電極の内部電位の降下を利用し、この
内部電位の降下の検出に2通りの方法を使用する。すな
わち複数の照合電極間の電位差を測定する場合と、複数
の照合電極を基準に測定した材料との電位のそれぞれの
差を測定する場合である。ここで測定されるものは原理
的には同じものである。IR for detection of stress corrosion cracking, pitting corrosion, and dissimilar metal corrosion
The drop in internal potential of the reference electrode due to loss is utilized, and two methods are used to detect this drop in internal potential. That is, there are two cases: measuring the potential difference between a plurality of reference electrodes, and measuring the difference in potential between a material and a material measured using a plurality of reference electrodes. What is measured here is basically the same thing.
例えば孔食が生じている場所に設置されている照合電極
A、健全な場所に設置されている照合電極B及び材料の
それぞれの電位をEA、Ea及びEc(内部電位は、孔
食が起きている場所とない場所とでは同一)とする。複
数の照合電極間の電位差はEA−Esであり、それぞれ
の照合電極を基準にして測定した電位差は、孔食が生じ
ている場所ではEc−EA、健全な場所ではEC−EB
となる。For example, the respective potentials of reference electrode A installed in a place where pitting corrosion occurs, reference electrode B installed in a healthy place, and the material are EA, Ea, and Ec (the internal potential is The location where it is present and the location where it is absent are the same). The potential difference between multiple reference electrodes is EA-Es, and the potential difference measured with each reference electrode as a reference is Ec-EA in areas where pitting corrosion has occurred, and EC-EB in healthy areas.
becomes.
それぞれの電位差を測定するのであるから測定される電
位差は(Ec Ea) (Ec−EA):EA−
Eaとなり両方法で測定した値は同じものとなる。Since each potential difference is measured, the measured potential difference is (Ec Ea) (Ec-EA): EA-
Ea, and the values measured by both methods are the same.
本発明のそれぞれの実施例を図面を参照しながら説明す
る。Each embodiment of the present invention will be described with reference to the drawings.
〔実施例1〕
本実施例は第2図に示すBWRプラントのPLR系配系
内管内9数の照合電極1を設置しそれらの照合電極間の
電位差及び各場所に設置した照合電極とその設置場所近
傍の構造材からリード線間の電位差を測定することによ
り、配管系の応力腐食割れを検知することを試みた腐食
検知システムの例である。照合電極挿入部の詳細を第1
図に示しである。[Example 1] In this example, nine reference electrodes 1 are installed in the pipes of the PLR system of a BWR plant shown in Fig. 2, and the potential difference between the reference electrodes, the reference electrodes installed at each location, and their installation are determined. This is an example of a corrosion detection system that attempts to detect stress corrosion cracking in piping systems by measuring the potential difference between lead wires from structural materials in the vicinity of the location. The details of the reference electrode insertion part are
It is shown in the figure.
第1図に示すように、複数の照合電極を配管のフランジ
部より挿入し、たとえば通常配管部1〜1、応力がかか
る配管部1〜2及び配管の溶接部1〜3にセットする。As shown in FIG. 1, a plurality of reference electrodes are inserted through the flanges of the piping and set, for example, in normal piping parts 1-1, stressed piping parts 1-2, and welded parts 1-3 of the piping.
またそれぞれセットした照合電極のごく近傍の配管部よ
りリード線(13−1,13−2,13−3)をとる。Also, lead wires (13-1, 13-2, 13-3) are taken from the piping portions very close to the set reference electrodes.
これらのリード線及び照合電極と接続されたリード線(
13−4,13−5,13−6)は、接点切換装置5に
接続されている。ここではスイッチの0N−OFFによ
り、例えば照合電極1〜1と1〜2間の電位差、照合電
極1〜1と1〜3の間の電位差、照合電極1〜2と1〜
3間の電位差、照合電極1〜1と13−1間の電位差、
照合電極1〜2と13−2間の電位差、及び照合電極1
〜3と13−3間の電位差等が測定できるように配線が
なされる。These lead wires and the lead wire connected to the reference electrode (
13-4, 13-5, 13-6) are connected to the contact switching device 5. Here, by turning the switch ON-OFF, for example, the potential difference between reference electrodes 1-1 and 1-2, the potential difference between reference electrodes 1-1 and 1-3, the potential difference between reference electrodes 1-2 and 1-
3, the potential difference between reference electrodes 1 to 1 and 13-1,
Potential difference between reference electrodes 1-2 and 13-2, and reference electrode 1
Wiring is done so that the potential difference between .about.3 and 13-3 can be measured.
この測定の命令は、コンピュータ演算システム7から発
せられ、配線を経由し電位差計6を用いて測定すること
ができる。ここで測定された電位差は、コンピュータ演
算システム7を介して図示しない中央制御室に設置され
た分析結果表示システムに送られ、CRT、プリンタ、
プロッタ及びレコーダに表示される。第3図は、CRT
に表示された照合電極1〜1と1〜2間の電位差及び1
〜1と1〜3間の電位差の時間的変化を示した例である
。3月以降で照合電極の1〜1と1〜3間の電位差が急
激に上昇している。照合電極1〜1と1〜2間の電位差
には変化がなかった。通常構造材が健全であれば、いず
れの照合電極間の電位差も同一の照合電極を用いた場合
、理論的にはOとなる。しかしながら応力腐食割れを生
じた場合。This measurement command is issued from the computer calculation system 7 and can be measured using the potentiometer 6 via wiring. The potential difference measured here is sent via the computer calculation system 7 to an analysis result display system installed in a central control room (not shown), and is sent to a CRT, printer,
Displayed on plotter and recorder. Figure 3 shows the CRT
The potential difference between reference electrodes 1-1 and 1-2 and 1
This is an example showing a temporal change in the potential difference between ~1 and 1~3. Since March, the potential difference between reference electrodes 1-1 and 1-3 has increased rapidly. There was no change in the potential difference between reference electrodes 1-1 and 1-2. Normally, if the structural material is sound, the potential difference between all reference electrodes is theoretically O when the same reference electrode is used. However, if stress corrosion cracking occurs.
その場所がアノード部(岸側)となり、そのまわりの健
全部がカソード部となるため、照合電極付近に電流分布
が生じてIR降下し、応力腐食割れを生じた部分の付近
に設置された照合電極と他の健全な構造材料部分の付近
に設置された照合電極との間に、同一の照合電極である
のにもかかわらず基準値を超えたIRの電位差を生じる
。照合電極1〜1と1〜2間の電位差は変化せず、照合
電極1〜1と1〜3間の電位差が変化したことにより、
照合電極1〜3が設置しである溶接部付近に応力腐食割
れが生じたことがわかる。この電位差が応力腐食割れを
示す臨界値以上になった場合、CRTにSCC発生が表
示される。さらに、その電位差が危険値以上になった場
合は、音又は音声により警報が発せられるとともに、前
記の方法で検出された応力腐食割れ箇所が同一もしくは
他のCRTに表示される。第4図は、照合電極間の電位
差ではなく、照合電極と構造材との電位差(1〜1と1
3−1.1〜2と13−2.1〜3と13−3間の電位
差)をCRTに表示したものである。第3図の場合と同
様で、照合電極1〜3と構造材13−3間の電位差が急
激に減少しており、溶接部で応力腐食割れが起きている
ことを示している。ここで用いる照合電極は内部型でも
外部型でも良いが、長期間安定であることが望ましい。This location becomes the anode part (shore side), and the healthy part around it becomes the cathode part, so a current distribution occurs near the reference electrode and IR drops, and the reference electrode installed near the part where stress corrosion cracking occurred. An IR potential difference that exceeds a reference value occurs between the electrode and a reference electrode installed in the vicinity of another healthy structural material part, even though the reference electrode is the same. Because the potential difference between reference electrodes 1-1 and 1-2 did not change, and the potential difference between reference electrodes 1-1 and 1-3 changed,
It can be seen that stress corrosion cracking occurred near the welds where reference electrodes 1 to 3 were installed. When this potential difference exceeds a critical value indicating stress corrosion cracking, the occurrence of SCC is displayed on the CRT. Further, if the potential difference exceeds a dangerous value, a sound or audio alarm is issued and the stress corrosion cracking location detected by the above method is displayed on the same or other CRT. Figure 4 shows not the potential difference between the reference electrodes, but the potential difference between the reference electrode and the structural material (1 to 1 and 1
3-1.1 to 2, 13-2.1 to 3, and 13-3) are displayed on the CRT. As in the case of FIG. 3, the potential difference between the reference electrodes 1 to 3 and the structural material 13-3 decreases rapidly, indicating that stress corrosion cracking has occurred in the weld. The reference electrode used here may be an internal type or an external type, but it is desirable that it be stable for a long period of time.
これは照合電極の健全性が保たれなくなり電位が変化し
た場合、それが応力腐食割れに起因する場合との区別が
困難となるためである。同一の場所においても、プラン
トの停止時又は起動時で。This is because when the integrity of the reference electrode is no longer maintained and the potential changes, it is difficult to distinguish this from a case where this is caused by stress corrosion cracking. Even in the same location, when the plant is shut down or started up.
温度や水質が定常運転時とは異るが、同一の装置で応力
腐食割れの発生の有無を検知できる。判断基準は第3図
及び第4図に示した場合と同様である。Although the temperature and water quality are different from those during steady operation, the presence or absence of stress corrosion cracking can be detected using the same equipment. The criteria for judgment are the same as those shown in FIGS. 3 and 4.
〔実施例2〕
本実施例は、第5図に示すように、炉内構造物の応力腐
食割れを検知することを試みた例である。[Example 2] This example is an example in which an attempt was made to detect stress corrosion cracking in a reactor internal structure, as shown in FIG.
はぼ構成は実施例1と同様であるが、照合電極は、炉内
計装管を通して炉心部に第6図に示すように配置されて
いる。構造材は全て電気的に導通があり、しかも接地さ
れていて内部電位は同じであるため、構造材からのリー
ド線は少なくとも一本とする。第7図は、ECPセンサ
1〜4〜9と炉内構造物17に接続されたリード線13
−5の電位とをCRTに表示したものである。電位の変
化より、照合電極1〜4.1〜7及び1〜9が設置され
ている付近で応力腐食割れもしくは孔食が生じているこ
とが検知される。実施例1の場合も同様であるが、本シ
ステムは、炉内構造物の異常現象は検知できるが、その
種別を判断することは困難である。The dowel structure is the same as in Example 1, but the reference electrode is arranged in the reactor core through the in-furnace instrumentation tube as shown in FIG. Since all the structural members are electrically conductive, grounded, and have the same internal potential, there should be at least one lead wire from the structural members. FIG. 7 shows lead wires 13 connected to ECP sensors 1 to 4 to 9 and reactor internals 17.
-5 potential is displayed on the CRT. From the change in potential, it is detected that stress corrosion cracking or pitting corrosion has occurred in the vicinity where reference electrodes 1 to 4, 1 to 7 and 1 to 9 are installed. The same applies to the first embodiment, but although this system can detect abnormal phenomena in the reactor internals, it is difficult to determine the type of abnormal phenomena.
〔実施例1〕及び〔実施例2〕で示すように。As shown in [Example 1] and [Example 2].
応力腐食割れや孔食等の局部腐食を検知するためには、
注目する場所に複数の照合電極を入れて。In order to detect localized corrosion such as stress corrosion cracking and pitting corrosion,
Insert multiple reference electrodes at the location of interest.
それら照合電極間の電位差やそれぞれの照合電極と炉内
構造物との電位差を比較することによって検知すること
ができる。この際は金属の種類が異っていても導通があ
れば問題はない。ただしこのシステムを適用できる範囲
は水質や温度が同じであるという条件が入る。従って例
えば原子力プラント全体の健全性をモニタする腐食環境
モニタシステムの場合、第8図に示すように実施例1及
び実施例2に示すような複数のセンサと炉内構造物から
のリード線、接点切換装置及び電位差計からなる電位測
定システム19を複数の注目する場所に設置する必要が
ある。電位差の比較は、それぞれの電位測定システム内
で行う必要があるが、水質がほぼ同じである場合、例え
ばPLR系及びCUW系に設置されたものに関しては、
それぞれの電位測定システム間で比較を行っても良い。It can be detected by comparing the potential difference between these reference electrodes and the potential difference between each reference electrode and the reactor internal structure. In this case, there is no problem even if the metal types are different as long as there is continuity. However, this system can only be applied under the condition that the water quality and temperature remain the same. Therefore, for example, in the case of a corrosive environment monitoring system that monitors the health of the entire nuclear power plant, as shown in FIG. Potential measurement systems 19 consisting of switching devices and potentiometers must be installed at several locations of interest. Comparison of potential differences must be performed within each potential measurement system, but if the water quality is almost the same, for example, for those installed in a PLR system and a CUW system,
Comparisons may be made between each potential measurement system.
本システムは復水器へも応用が可能となる。This system can also be applied to condensers.
〔実施例3〕
本実施例は異種金属間腐食の検出する方法として腐食検
知システムを適用した腐食環境モニタシステムの例であ
る。[Embodiment 3] This embodiment is an example of a corrosion environment monitoring system to which a corrosion detection system is applied as a method for detecting corrosion between dissimilar metals.
第9図に示されるように、照合電極1〜10〜12は、
それぞれ5US304配管20近傍、溶接部近傍及びZ
r配管21近傍に設置されている。As shown in FIG. 9, reference electrodes 1 to 10 to 12 are
5US304 pipe 20 vicinity, welding part vicinity and Z
It is installed near the r pipe 21.
また溶液の電導度を測定する電導度肝23が配管内に設
置されている。溶液の導電度が低い場合は、作用の項で
述べたように、照合電極1〜10と配管に接続されたリ
ード線13−6及び1〜12と13−6間の電位差は同
じにならず、電位が低い方がアノード部となっているこ
とがわかる。従ってその電位差をモニタすることによっ
て異種金属間腐食が生じているかどうか判断できる。溶
液の電導度が高い場合は、5US304配管20とリー
ド線13−6及びZr配管21とリード線13−6間の
電位差は生じないが、異種金属間腐食が生じている場合
は、溶接部近傍で局部的に電流が流れるためそのIR降
下によって照合電極1〜11とリード線13−6間の電
位差は、1〜12と13−6間又は1〜10と13−6
間の電位差とは異る。従ってそれぞれの3つの電位差を
常にモニタすることによって局部腐食の有無を検知でき
、またそれらの電位差の大きさから局部腐食の程度を知
ることができる。Further, a conductivity gauge 23 for measuring the conductivity of the solution is installed inside the pipe. If the conductivity of the solution is low, the potential differences between reference electrodes 1 to 10 and lead wires 13-6 and 1 to 12 and 13-6 connected to the piping will not be the same, as described in the operation section. , it can be seen that the one with the lower potential is the anode part. Therefore, by monitoring the potential difference, it can be determined whether corrosion between dissimilar metals is occurring. If the conductivity of the solution is high, no potential difference will occur between the 5US304 piping 20 and the lead wire 13-6 and between the Zr piping 21 and the lead wire 13-6, but if corrosion between dissimilar metals occurs, Since a current flows locally, the potential difference between the reference electrodes 1 to 11 and the lead wire 13-6 is between 1 to 12 and 13-6 or between 1 to 10 and 13-6 due to the IR drop.
It is different from the potential difference between. Therefore, by constantly monitoring each of the three potential differences, the presence or absence of local corrosion can be detected, and the degree of local corrosion can be determined from the magnitude of these potential differences.
第10図は、5US304配管とZr配管とが接合され
た配管内に280℃の溶存酸素濃度200ppbを含む
高温水中において、局部腐食の有無及びその程度を検知
することに本システムを適用した例である。照合電極1
〜10とリード線13−6間の電位差は、1〜12と1
3−6間の電位差より高いことより、1〜12が設置さ
れている側すなわちZr配管側がアノード部となり、局
部腐食が進行していることがわかる。図中に示したOと
Δとの電位差の大小によって、その局部腐食の程度を知
ることができる。予め同一条件で異種金属間腐食試験を
行い、危険値を設定しておき、OとΔ間の電位差がその
危険値を超える場合、警告が音声又は音及びCRT画面
上で発せられる。Figure 10 shows an example in which this system is applied to detect the presence or absence of local corrosion and its degree in high-temperature water containing 200 ppb of dissolved oxygen at 280°C in a pipe in which 5US304 pipe and Zr pipe are joined. be. Reference electrode 1
The potential difference between ~10 and lead wire 13-6 is 1~12 and 1
Since it is higher than the potential difference between 3 and 6, it can be seen that the side where 1 to 12 are installed, that is, the Zr piping side becomes an anode part, and local corrosion is progressing. The degree of local corrosion can be determined by the magnitude of the potential difference between O and Δ shown in the figure. A corrosion test between dissimilar metals is conducted under the same conditions in advance, and a dangerous value is set. If the potential difference between O and Δ exceeds the dangerous value, a warning is issued by voice or sound and on the CRT screen.
同システムを5US316L配管とインコネル配管とが
接合された配管内に280℃の溶存酸素濃度200pp
bを含む高温水が流れている系について、適用したとこ
ろ、それぞれ測定した電位差に差はなく、試験後断面を
観察した結果、異種金属間腐食も生じてなく、システム
が有効であることが確認された。The same system was installed in a pipe where 5US316L pipe and Inconel pipe were joined, and the dissolved oxygen concentration was 200pp at 280℃.
When applied to a system in which high-temperature water containing B was flowing, there was no difference in the measured potential difference, and as a result of observing the cross section after the test, no corrosion occurred between dissimilar metals, confirming that the system is effective. It was done.
前記の5US304配管とZr配管との接合の場合は、
同様に断面を調査した結果、Zr配管が特に激しく腐食
していた。これでも本システムが有効であることが確認
できた。In the case of joining the above-mentioned 5US304 piping and Zr piping,
A similar cross-sectional examination revealed that the Zr piping was particularly severely corroded. Even with this, we were able to confirm that this system is effective.
〔実施例4〕
本実施例は、第11図に示されるように、第8図に示さ
れる電位測定システムと、ガス及び薬品注入装置とを組
合せた水質制御システムである。[Embodiment 4] As shown in FIG. 11, this embodiment is a water quality control system that combines the potential measurement system shown in FIG. 8 and a gas and chemical injection device.
注入されるガス及び薬品は、酸素、水素、過酸化水素、
Fe”十及びNi2+などである。本システムは以下に
示す操作によってプラントの状態が制御される。Gases and chemicals injected include oxygen, hydrogen, hydrogen peroxide,
Fe'' and Ni2+, etc. In this system, the state of the plant is controlled by the operations described below.
例えば、電位測定システム19で応力腐食割れを検知し
た場合、ただちにそれと対になっているガス及び薬品注
入装置24が働き、前記に示したガス及び薬品の一つま
たは複数種が注入される。For example, when stress corrosion cracking is detected by the potential measurement system 19, the gas and chemical injection device 24 paired therewith is immediately activated to inject one or more of the gases and chemicals listed above.
第12図は、PLR系に水素ガスを注入した結果を表示
している。4月より電位差が生じたため、ただちに水素
が注入されている。電位差がある最大値をとった後徐々
に減少するため、それに伴って水素注入量を減少し、そ
の場の水素濃度も水素注入量の変化に伴って変化する。FIG. 12 displays the results of injecting hydrogen gas into the PLR system. Hydrogen has been injected immediately since April due to a potential difference. Since the potential difference gradually decreases after reaching a certain maximum value, the amount of hydrogen injection is reduced accordingly, and the hydrogen concentration at that point also changes as the amount of hydrogen injection changes.
この際PLR系においては、水素注入時に配管系の溶存
酸素濃度が減少し、給水系のそれも低下してしまうため
、その低下分だけの酸素量を、給水系配管に接続しであ
るガス及び薬品注入装置から02もしくはH2O2の形
で給水系に注入される。ここで限定される酸素濃度及び
水素濃度は高温水質用センサを用いて測定した値でる。At this time, in the PLR system, the dissolved oxygen concentration in the piping system decreases when hydrogen is injected, and that in the water supply system also decreases, so the oxygen amount corresponding to the decrease is added to the gas and gas connected to the water supply system piping. It is injected into the water supply system in the form of 02 or H2O2 from a chemical injection device. The oxygen concentration and hydrogen concentration limited here are values measured using a high temperature water quality sensor.
これらの制御は、コンピュータ演算システムによって自
動的になされる。These controls are automatically performed by a computer processing system.
〔実施例5〕
本実施例は、第11図に示したシステムを実施例4とは
別の方法でプラント水質をコントロールするものである
。各場所で測定した電位の差が最少になるように、各場
所場所で02注入、H2注入、H2O2注入等を行うこ
とができる。実施例4で述べた方法をある一箇所でのみ
適用すると、その操作が他の場所では有効にならない場
合が生じる。[Embodiment 5] In this embodiment, plant water quality is controlled using the system shown in FIG. 11 using a method different from that in Embodiment 4. 02 injection, H2 injection, H2O2 injection, etc. can be performed at each location so that the difference in potential measured at each location is minimized. If the method described in Embodiment 4 is applied only at one location, the operation may not be effective at other locations.
従って、プラントの各場所に設置した電位の差が0に復
するように、各場所で水質をコントロールすることによ
ってプラントの健全性を保つことができる。Therefore, the health of the plant can be maintained by controlling the water quality at each location so that the difference in potential installed at each location of the plant returns to zero.
〔実施例6〕
第13図は、本発明を応力腐食割れ発生時期の予測に適
用した例を示す。条件及びシステム構成は実施例1の場
合と同じである。照合電極1〜1と1〜3間の電位差は
、1月より上昇しはじめている。3月までの電位の変動
分を非線形最小二乗法により変動を式の形で表し、その
式を用いてSCC発生が起こる電位を演算することによ
り、4月頃よりSCC発生又はき裂進展が始まることを
予測することができる。[Example 6] FIG. 13 shows an example in which the present invention is applied to predicting the timing of stress corrosion cracking. The conditions and system configuration are the same as in the first embodiment. The potential difference between reference electrodes 1-1 and 1-3 has started to rise since January. By expressing the variation in potential up to March in the form of an equation using the nonlinear least squares method, and using that equation to calculate the potential at which SCC occurrence occurs, it can be determined that SCC occurrence or crack growth will begin around April. can be predicted.
〔実施例7〕
第14図及び第15図は、第1.2,5,6゜8.9.
11図等に示した装置に使用した内部照合電極の構造を
示す。センサ本体は、銀/塩化銀電極27.28にZr
O229をコートしたものからなり、Pt−Rhケース
30に収められている。ケーブルとして、P t−Rh
/AQ20./Pt−RhからなるMIケーブル25を
用いている。MIケーブル25とセンサ本体との間はガ
ラス26が封入されている。[Example 7] Fig. 14 and Fig. 15 show 1.2, 5, 6°, 8.9.
11 shows the structure of the internal reference electrode used in the device shown in FIG. The sensor body has Zr on the silver/silver chloride electrodes 27.28.
It is made of O229 coated material and is housed in a Pt-Rh case 30. As a cable, P t-Rh
/AQ20. /Pt-Rh MI cable 25 is used. A glass 26 is sealed between the MI cable 25 and the sensor body.
第16図は、これらのECPセンサ(照合電極)を配管
にマウントした状態を示したものである。FIG. 16 shows these ECP sensors (reference electrodes) mounted on piping.
なお配管とは、再循環系バイパス、炉水スプレィ系配管
、原子炉浄化系配管及び再循環系ライザ管などよりなる
BWRプラント一次系配管の曲管部、エルボ、溶接部、
溶接熱影響部、又は、原子炉圧力容器の一次系配管の溶
接部及びホウ酸水注入配管、炉心支持板、上部格子板、
炉心スプレィ配管よりなる炉水構造物の曲管部、溶接部
及び溶接熱影響部を含むものとする。第16図の右側に
示した手段は、配管のフランジ部にMIケーブル25を
通しそこを溶接する方法である。左側に示した手段は配
管のフランジ部に雄コネクター31〜1をねじ込みロッ
ク式(スウェジロック方式)でケーブルをマウントする
方法である。これらの方法はγ線照射化においても使用
が可能である。非照射化もしくはγ線が弱い環境下にお
いては、テフロンをパツキンとしてシールすることも可
能である。Note that piping refers to bent pipes, elbows, welded parts,
Welded heat affected zone or welded part of primary system piping of reactor pressure vessel and boric acid water injection piping, core support plate, upper grid plate,
This includes the curved pipe section, welded section, and weld heat-affected zone of the reactor water structure consisting of the core spray piping. The method shown on the right side of FIG. 16 is a method in which the MI cable 25 is passed through the flange of the pipe and welded there. The means shown on the left is a method in which the male connectors 31-1 are screwed into the flange portion of the piping and the cable is mounted using a locking method (Swagelock method). These methods can also be used for γ-ray irradiation. In a non-irradiated environment or in an environment where γ-rays are weak, it is also possible to seal with Teflon as a gasket.
第17図は、ECPセンサを原子力プラントの炉内に装
着する場合の手段を示したものであり、ECPセンサ1
は、中性子束モニタ案内管33を利用して原子炉内へ挿
入することができる。そしてECPセンサ1はダウンカ
マ、アバブコア及びインコアなどの原子炉圧力容器35
内の各場所への設置が可能である。なお図中に制御棒駆
動機構ハウジング34が図示されている。中性子束モニ
タ案内管33からの取り出し部は、第14図に示した手
段を用いればよい。FIG. 17 shows a means for installing an ECP sensor in the reactor of a nuclear power plant.
can be inserted into the reactor using the neutron flux monitor guide tube 33. The ECP sensor 1 is connected to a reactor pressure vessel 35 such as a downcomer, above core, and in core.
It can be installed at any location within the city. Note that the control rod drive mechanism housing 34 is illustrated in the figure. For the extraction part from the neutron flux monitor guide tube 33, the means shown in FIG. 14 may be used.
本発明の腐食検知システムよれば、腐食環境にさらされ
た金属材料の応力腐食割れや孔食等の局部腐食の発生を
簡便なシステムで、水質や温度が変化した場合も同一の
装置及び評価法で検出することができるため、各種プラ
ントの各種水溶液と接する環境下で構造材料の健全性を
診断することができる。また02やH2などのガス注入
装置とH2O、鉄イオン及びNiなどのイオン注入装置
とを組合せることにより、水質の最適制御が可能となり
、プラントの健全性向上に役立てることができる。According to the corrosion detection system of the present invention, the occurrence of localized corrosion such as stress corrosion cracking and pitting corrosion in metal materials exposed to a corrosive environment is a simple system, and the same equipment and evaluation method can be used even when water quality or temperature changes. Since it can be detected in various plants, it is possible to diagnose the health of structural materials in environments where they come into contact with various aqueous solutions. Furthermore, by combining a gas injection device such as 02 or H2 with an ion injection device such as H2O, iron ions, and Ni, it is possible to optimally control water quality, which can be used to improve the health of the plant.
第1図は本発明の実施例1を示す構成図、第2図は実施
例1をBWRプラントPLR配管に適用した図、第3図
及び第4図は実施例1を適用して応力腐食割れを検知し
た表示を示すグラフ、第5図は実施例2を示す構成図、
第6図は第5図の照合電極配置を示す拡大図、第7図は
実施例2を適用して応力腐食割れを検知した表示を示す
グラフ、第8図は実施例3を示す構成図、第9図は第8
図の照合電極を示す拡大図、第10図は実施例3を適用
して異種金属間腐食の発生を検知した表示を示すグラフ
、第11図は実施例4を示す構成図、第12図は実施例
4を適用して応力腐食割れを検知した表示を示すグラフ
、第13図は実施例6を説明する図、第14図は実施例
7の照合電極の構造を示す図、第15図は第14図のA
−A線の断面図、第16図は第15図の取付状態を示す
図、第17図は照合電極を原子炉内に装着した図である
。
1〜1.1〜2.1〜3・・照合電極。
5・・・接点切換装置、
13−1〜13−6・・・リード線、
14・・・溶接部。
第1
1〜1〜1〜3:列ft1鋳
5:9豪I〃〜F/
13−1〜13−6:グーノW
14:4/I/、/
ム:7ZZ把へ一七4i/−メkl−、7’Aftcv
ey70、 す /−717−2・
/7
sf
口:/ −J k−/?−344ey4LクセrΔ:
/”−,2’、?、/:ヲーノ
/−7,?にフ−7
第6図
1〜4〜!−9:βr3J〜餡rcz tチタノ1フ:
必ヤダーり!グツ
第
図
16:#e4Eりφ
β
第10図
、ダ
Q:/−76’jlグー414り?ワIf(Jrl’Δ
:/−7り2とにメーど
第
図
「Tニー「y]
第11図
第13図
刀
○ゲδi秒/ゾど’−” ”#ηl
第16図
第14図
第15図Fig. 1 is a configuration diagram showing Embodiment 1 of the present invention, Fig. 2 is a diagram in which Embodiment 1 is applied to BWR plant PLR piping, and Figs. 3 and 4 are diagrams in which Embodiment 1 is applied to prevent stress corrosion. Graph showing the display when detected, FIG. 5 is a configuration diagram showing Example 2,
FIG. 6 is an enlarged view showing the reference electrode arrangement in FIG. 5, FIG. 7 is a graph showing the display of stress corrosion cracking detected by applying Example 2, and FIG. 8 is a configuration diagram showing Example 3. Figure 9 is the 8th
FIG. 10 is a graph showing the display when the occurrence of corrosion between dissimilar metals is detected by applying Example 3, FIG. 11 is a configuration diagram showing Example 4, and FIG. 12 is an enlarged view showing the reference electrode shown in the figure. A graph showing the display of stress corrosion cracking detected by applying Example 4, FIG. 13 is a diagram explaining Example 6, FIG. 14 is a diagram showing the structure of the reference electrode of Example 7, and FIG. A in Figure 14
16 is a sectional view taken along line -A, FIG. 16 is a diagram showing the installation state of FIG. 15, and FIG. 17 is a diagram showing the reference electrode installed in the nuclear reactor. 1-1.1-2.1-3...Verification electrode. 5... Contact switching device, 13-1 to 13-6... Lead wire, 14... Welding part. 1st 1-1-1-3: row ft1 cast 5:9 Australia I〃~F/ 13-1-13-6: Goono W 14:4/I/,/mu: 7ZZ grip 174i/- Mekl-, 7'Aftcv
ey70, Su /-717-2・ /7 sf Mouth: / -J k-/? -344ey4L quirk rΔ:
/”-,2',?,/:wono/-7,?nifu-7 Fig. 6 1~4~!-9:βr3J~bean rcz t titano1f:
Must do! Gutu Figure 16: #e4Eriφ β Figure 10, DaQ:/-76'jl goo 414ri? WaIf(Jrl'Δ
:/-7ri2 and maid figure ``T knee ``y'' figure 11 figure 13 figure ○ge δi second/zodo'-''``#ηl figure 16 figure 14 figure 15
Claims (1)
を挿入し、それぞれの照合電極の間の電位差又はそれぞ
れの照合電極とそれぞれの照合電極に対応する前記腐食
監視部との間の電位差を測定し、前記電位差より腐食の
発生とその個所とを検知することを特徴とする腐食検知
システム。 2、前記腐食の発生個所を、それぞれの電位の一方が卑
側に変動又はそれぞれの電位差が基準値を超えることに
より検知することを特徴とする請求項1記載の腐食検知
システム。 3、前記腐食の発生個所を、少なくとも2本の照合電極
の電位差を比較することにより検知することを特徴とす
る請求項1又は2記載の腐食検知システム。 4、前記照合電極は、異種金属の接合部に設置されるこ
とを特徴とする請求項1又は2記載の腐食検知システム
。 5、請求項1〜4のいずれか1項記載の腐食検知システ
ムを、少なくとも一箇所に設置してプラントの健全性又
は危険性を評価することを特徴とする腐食環境モニタシ
ステム。 6、請求項1〜4のいずれか1項記載の腐食検知システ
ムを備え、前記測定されたそれぞれの電位又は電位差を
、CRT、記録計、レコーダ及びプロッタよりなる表示
システムに表示し、該表示に基づいて腐食の発生とその
箇所とを検知することを特徴とする腐食環境モニタシス
テム。 7、請求項1〜4のいずれか1項記載の腐食検知システ
ムを備え、前記腐食の発生とその個所とを音、音声、光
及びCRTの表示よりなる少なくとも一つの警報を発令
することを特徴とする腐食環境モニタシステム。 8、請求項1〜4のいずれか1項記載の腐食検知システ
ムを備え、それぞれの照合電極の間の電位差の増加速度
、それぞれの照合電極と腐食監視部との間の電位差の増
加速度又はそれぞれの増加速度の時間的変化により応力
腐食割れが発生する時期を予測することを特徴とする腐
食環境モニタシステム。 9、請求項1〜4のいずれか1項記載の腐食検知システ
ムを備え、測定されるそれぞれの電位又は電位差の時間
的変化を監視することを特徴とする腐食環境モニタシス
テム。 10、請求項5〜9のいずれか1項記載の腐食環境モニ
タシステムを備え、酸素、窒素、水素、NOx、Feイ
オン、Niイオン、HNO_2及びH_2O_2の少な
くとも一つを注入するガス及び薬品注入装置を具備した
ことを特徴とする水質制御システム。 11、請求項5〜9のいずれか1項記載の腐食環境モニ
タシステムを備え、測定された電位差をほぼ基準値に復
させる酸素、窒素、水素、NOx、Feイオン、Niイ
オン、HNO_2及びH_2O_2の少なくとも一つを
、少なくとも一箇所より前記水系に注入することを特徴
とする水質制御システム。 12、請求項1〜12のいずれか1項記載の腐食検知シ
ステム、腐食環境モニタシステム又は水質制御システム
を、少なくとも一つ備えたことを特徴とするプラント。 13、請求項1〜12のいずれか1項記載の腐食検知シ
ステム、腐食環境モニタシステム又は水質制御システム
の少なくとも一つを、金属材料の溶接部、熱影響部、エ
ルボ及び曲管部の少なくとも一箇所に設けたことを特徴
とするプラント。 14、請求項1〜12のいずれか1項記載の腐食検知シ
ステム、腐食環境モニタシステム又は水質制御システム
の少なくとも一つを、再循環系バイパス、炉水スプレイ
系配管、原子炉浄化系配管及び再循環系ライザ管よりな
るBWRプラント一次系配管の曲管部、エルボ、溶接部
、溶接熱影響部の少なくとも一箇所に配設したことを特
徴とする原子力プラント。 15、請求項1〜12のいずれか1項記載の腐食検知シ
ステム、腐食環境モニタシステム及び水質制御システム
の少なくとも一つを、原子炉圧力容器と一次系配管の溶
接部及びホウ酸水注入配管、炉心支持板、上部格子板、
炉心スプレイ配管よりなる炉水構造物の曲管部、溶接部
及び溶接熱影響部の少なくとも一箇所に設置したことを
特徴とする原子力プラント。[Scope of Claims] 1. A plurality of reference electrodes are inserted into a corrosion monitoring section of water system piping of a plant, and the potential difference between each reference electrode or the corrosion monitoring section corresponding to each reference electrode and each reference electrode is determined. A corrosion detection system characterized by measuring a potential difference between the two and detecting occurrence of corrosion and its location based on the potential difference. 2. The corrosion detection system according to claim 1, wherein the location where the corrosion occurs is detected when one of the respective potentials fluctuates toward the base side or when the respective potential difference exceeds a reference value. 3. The corrosion detection system according to claim 1 or 2, wherein the location where the corrosion occurs is detected by comparing potential differences between at least two reference electrodes. 4. The corrosion detection system according to claim 1 or 2, wherein the reference electrode is installed at a joint between dissimilar metals. 5. A corrosive environment monitoring system, characterized in that the corrosion detection system according to any one of claims 1 to 4 is installed at at least one location to evaluate the health or danger of a plant. 6. The corrosion detection system according to any one of claims 1 to 4 is provided, and each of the measured potentials or potential differences is displayed on a display system consisting of a CRT, a recorder, a recorder, and a plotter; A corrosive environment monitoring system characterized by detecting the occurrence of corrosion and its location based on the following information. 7. The corrosion detection system according to any one of claims 1 to 4 is provided, and at least one alarm consisting of sound, voice, light, and CRT display is issued to indicate the occurrence of corrosion and its location. Corrosion environment monitoring system. 8. The corrosion detection system according to any one of claims 1 to 4, comprising a rate of increase in the potential difference between each reference electrode, a rate of increase in the potential difference between each reference electrode and the corrosion monitoring unit, or each. A corrosion environment monitoring system that predicts when stress corrosion cracking will occur based on temporal changes in the rate of increase in corrosion. 9. A corrosion environment monitoring system comprising the corrosion detection system according to any one of claims 1 to 4, and monitoring temporal changes in each potential or potential difference to be measured. 10. A gas and chemical injection device that is equipped with the corrosive environment monitoring system according to any one of claims 5 to 9 and that injects at least one of oxygen, nitrogen, hydrogen, NOx, Fe ions, Ni ions, HNO_2, and H_2O_2. A water quality control system characterized by comprising: 11. A system comprising the corrosive environment monitoring system according to any one of claims 5 to 9, in which oxygen, nitrogen, hydrogen, NOx, Fe ions, Ni ions, HNO_2 and H_2O_2 are used to return the measured potential difference to approximately the reference value. A water quality control system, characterized in that at least one is injected into the water system from at least one location. 12. A plant comprising at least one of the corrosion detection system, corrosion environment monitoring system, or water quality control system according to any one of claims 1 to 12. 13. At least one of the corrosion detection system, corrosion environment monitoring system, or water quality control system according to any one of claims 1 to 12 is applied to at least one of a welded part, a heat affected zone, an elbow, and a bent pipe part of a metal material. A plant characterized by being installed at certain locations. 14. At least one of the corrosion detection system, corrosion environment monitoring system, or water quality control system according to any one of claims 1 to 12 is installed in a recirculation system bypass, a reactor water spray system piping, a reactor purification system piping, and a recirculation system. A nuclear power plant, characterized in that the BWR plant primary system piping, which is composed of a circulation system riser pipe, is disposed at at least one of a bent pipe section, an elbow, a welding section, and a welding heat affected zone. 15. At least one of the corrosion detection system, corrosive environment monitoring system, and water quality control system according to any one of claims 1 to 12, a welded part of a reactor pressure vessel and a primary system pipe, and a boric acid water injection pipe, Core support plate, upper lattice plate,
A nuclear power plant, characterized in that the reactor water structure is installed in at least one of a curved pipe section, a welding section, and a welding heat affected zone of a reactor water structure consisting of a reactor core spray piping.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2198519A JPH07117514B2 (en) | 1990-07-26 | 1990-07-26 | Corrosion detection system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2198519A JPH07117514B2 (en) | 1990-07-26 | 1990-07-26 | Corrosion detection system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0483153A true JPH0483153A (en) | 1992-03-17 |
JPH07117514B2 JPH07117514B2 (en) | 1995-12-18 |
Family
ID=16392490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2198519A Expired - Lifetime JPH07117514B2 (en) | 1990-07-26 | 1990-07-26 | Corrosion detection system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07117514B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU670738B3 (en) * | 1996-02-14 | 1996-07-25 | Ameron, Inc. | Detection of potential for corrosion of steel reinforced composite pipe |
JP2010096533A (en) * | 2008-10-14 | 2010-04-30 | Japan Atom Power Co Ltd:The | Corrosion potential measuring instrument |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55141663A (en) * | 1979-04-23 | 1980-11-05 | Toshiba Corp | Electrode structural body for measuring corrosion |
JPS6044858A (en) * | 1983-08-22 | 1985-03-11 | Nippon Kokan Kk <Nkk> | Damage position detector of coating film of buried piping |
JPS62132105A (en) * | 1985-12-05 | 1987-06-15 | Nippon Atom Ind Group Co Ltd | Apparatus for detecting corrosion film quantity |
JPS62289755A (en) * | 1986-06-10 | 1987-12-16 | Toshiba Corp | Deciding method for metallic surface treatment |
JPH02165045A (en) * | 1988-12-20 | 1990-06-26 | Toshiba Corp | Corrosion position detector |
-
1990
- 1990-07-26 JP JP2198519A patent/JPH07117514B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55141663A (en) * | 1979-04-23 | 1980-11-05 | Toshiba Corp | Electrode structural body for measuring corrosion |
JPS6044858A (en) * | 1983-08-22 | 1985-03-11 | Nippon Kokan Kk <Nkk> | Damage position detector of coating film of buried piping |
JPS62132105A (en) * | 1985-12-05 | 1987-06-15 | Nippon Atom Ind Group Co Ltd | Apparatus for detecting corrosion film quantity |
JPS62289755A (en) * | 1986-06-10 | 1987-12-16 | Toshiba Corp | Deciding method for metallic surface treatment |
JPH02165045A (en) * | 1988-12-20 | 1990-06-26 | Toshiba Corp | Corrosion position detector |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU670738B3 (en) * | 1996-02-14 | 1996-07-25 | Ameron, Inc. | Detection of potential for corrosion of steel reinforced composite pipe |
JP2010096533A (en) * | 2008-10-14 | 2010-04-30 | Japan Atom Power Co Ltd:The | Corrosion potential measuring instrument |
Also Published As
Publication number | Publication date |
---|---|
JPH07117514B2 (en) | 1995-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0607057B1 (en) | Electrochemical monitoring of vessel penetrations | |
JP5281618B2 (en) | Corrosion potential measurement method and apparatus | |
JPH02118446A (en) | Solution quantitative analysis device, quantitative analysis method, and reactor water quality control system | |
JP2015114251A (en) | Dissolved hydrogen concentration measuring method, dissolved hydrogen concentration measuring apparatus, and nuclear power plant operation method | |
JP2009036558A (en) | Method of monitoring stress corrosion crack, and management method of plant | |
JP4777835B2 (en) | Crevice water quality measurement method and crevice water quality measurement device | |
JP4876011B2 (en) | Plant operation method | |
JPH0483153A (en) | Corrosion detecting system and water quality control system | |
JP5226975B2 (en) | Stress corrosion cracking monitoring method and monitoring device therefor | |
Yang et al. | Monitoring of Localized Corrosion | |
JPH06323984A (en) | Corrosion monitoring method, monitoring device, and nuclear plant using the same | |
US5316633A (en) | Method and apparatus for measuring sensitization of structural members | |
JP6100643B2 (en) | Noble metal coverage monitoring method, noble metal coverage monitoring device and nuclear power plant operating method | |
JP2680697B2 (en) | Environmental crack monitoring method and apparatus and corrosion environment control method and apparatus | |
Ogawa et al. | SCC growth prediction for surface crack in welded joint using advanced FEA | |
JP3270200B2 (en) | Reactor pressure vessel furnace bottom water quality measurement system | |
JP5986363B2 (en) | Corrosion potential sensor and installation structure of corrosion potential sensor | |
JP2856524B2 (en) | Health monitoring device | |
KR20030033903A (en) | Ag/AgCl Internal Reference Electrode for Monitoring Corrosion Environment of High Temperature Facilities | |
Dean | Corrosion monitoring for industrial processes | |
Dean | Recent Developments in Standards for Electrochemical Corrosion Testing | |
Gribok et al. | Flow-Assisted Corrosion in Nuclear Power Plants | |
Kiss et al. | On-line monitoring to assure structural integrity of nuclear reactor components | |
Edgemon et al. | Problems, Pitfalls and Probes: Welcome to the Jungle of Electrochemical Noise Technology | |
Andresen et al. | Use of fundamental modeling of environmental cracking for improved design and lifetime evaluation |