JPH0481877B2 - - Google Patents
Info
- Publication number
- JPH0481877B2 JPH0481877B2 JP59129336A JP12933684A JPH0481877B2 JP H0481877 B2 JPH0481877 B2 JP H0481877B2 JP 59129336 A JP59129336 A JP 59129336A JP 12933684 A JP12933684 A JP 12933684A JP H0481877 B2 JPH0481877 B2 JP H0481877B2
- Authority
- JP
- Japan
- Prior art keywords
- forming
- conductor
- metal film
- metal
- pattern
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Production Of Multi-Layered Print Wiring Board (AREA)
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明はLSI等の素子を搭載する多層配線基板
に係り、特に基板内での電気信号伝播の高速化に
好適な多層配線基板の新規な構造とその製造方法
に関する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a multilayer wiring board on which elements such as LSI are mounted, and in particular, a novel structure of a multilayer wiring board suitable for increasing the speed of electrical signal propagation within the board. and its manufacturing method.
電子計算機用の多層配線板においては電気信号
伝送の高速化、高機能化等の要求に伴ない、絶縁
基板の低誘導率、高密度配線の適用が必須となつ
ている。
BACKGROUND ART In multilayer wiring boards for electronic computers, it is essential to use insulating substrates with low dielectric constants and high-density wiring in response to demands for faster electrical signal transmission and higher functionality.
これに対して、従来の多層配線板ではエポキシ
樹脂、ポリイミド樹脂等、主として熱硬化性樹脂
と基体とした銅張り積層板を用いて、所定の導体
配線板を形成し、多層化するもの、あるいはアル
ミナグリンシートに厚膜で高融点金属の配線層を
形成し、多層化して焼結するもの等がある。 On the other hand, conventional multilayer wiring boards use mainly thermosetting resins such as epoxy resins and polyimide resins, and copper-clad laminates as a base to form predetermined conductor wiring boards to form multiple layers. There is a method in which a thick wiring layer of a high-melting point metal is formed on an alumina green sheet, and then multi-layered and sintered.
エポキシ樹脂等の有機高分子膜、およびアルミ
ナ絶縁基材は誘電率がそれぞれ3〜5、8〜10と
大きく、絶縁体とする配線板では信号伝送の高速
化に限界がある。 Organic polymer films such as epoxy resins and alumina insulating base materials have large dielectric constants of 3 to 5 and 8 to 10, respectively, and there is a limit to how high-speed signal transmission can be achieved with wiring boards made of insulators.
一方、信号伝送の高速化を達成する方法として
導体配線基板の内層層間を空気等の気体絶縁とす
る特公昭57−39559、特公昭58−11117あるいは導
体を空中配線とする特開昭48−41259に記載され
ている。 On the other hand, as a method to achieve high-speed signal transmission, there are Japanese Patent Publications No. 57-39559 and No. 58-11117, which use air or other gas insulation between the inner layers of conductor wiring boards, and No. 48-41259, which uses aerial wiring as conductors. It is described in.
しかし特公昭57−39559および特公昭58−11117
においては内層配線である信号層配線間(X、Y
方向)に有機絶縁材が介在するため、実質的に誘
電率を小さくすることができない。また、層間の
接続方法として通常の多層配線板の工法である化
学銅、電気銅めつき法を用いるため微小スルホー
ル等の形成が困難であり高密度配線板への適用性
が小さい。 However, the special public service No. 57-39559 and the special public service No. 58-11117
In this case, between the signal layer wiring (X, Y
Since the organic insulating material is present in the dielectric direction), it is not possible to substantially reduce the dielectric constant. In addition, since chemical copper plating and electrolytic copper plating, which are common methods for constructing multilayer wiring boards, are used as the interlayer connection method, it is difficult to form minute through holes, etc., and the applicability to high-density wiring boards is low.
また特公昭48−41259においては蒸着法により
薄膜導体およびスルーホールを形成し、その後支
持体である絶縁樹脂層を除去する方法であり、こ
の場合においては、導体およびスルホール接続部
分が非常に薄いため、機械的物理的強度の確保が
できず、信頼性の観点から実用的でない。 In addition, in Japanese Patent Publication No. 48-41259, a thin film conductor and through holes are formed by vapor deposition, and then the insulating resin layer that is the support is removed. , mechanical and physical strength cannot be ensured, making it impractical from a reliability standpoint.
本発明の目的は上記した従来技術の欠点をなく
し、所定の導体パターンを形成した二次元導体を
空間をあけ、一括又は逐次積層を可能とする合理
的な接続法を提供することにある。
An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to provide a rational connection method that allows two-dimensional conductors formed with a predetermined conductor pattern to be laminated all at once or sequentially with a space between them.
さらに、配線板内での電気信号伝送の高速化を
可能とする多層配線板の構造とその製造方法を提
供することにある。 Another object of the present invention is to provide a structure of a multilayer wiring board and a method for manufacturing the same, which enable high-speed electrical signal transmission within the wiring board.
上記目的のため種々検討した結果、以下の特徴
を有する発明で達成した。すなわち、本発明は低
抵抗の金属板の片面又は両面にTi金属膜を形成
する工程、Ti金属膜の所定部分をエツチングし、
鋼を露出させ、ランド部を形成する工程、前記ラ
ンド部及びその近傍以外のTi金属膜上に低融点
金属形成用レジストパターンを形成する工程、ラ
ンド部及びその近傍にはんだバンプを形成する工
程、前記低融点金属形成用レジストパターンを除
去する工程、所定部分のTi金属膜及び露出部銅
板をエツチングして二次元導体配線板を形成する
工程、前記二次元導体配線板の複数枚を加熱し、
はんだバンプを溶融し、積み重ねて接続一体化す
る工程からなることを特徴とする多層配線板の製
造方法である。
As a result of various studies for the above purpose, the invention was achieved with the following features. That is, the present invention includes a step of forming a Ti metal film on one or both sides of a low-resistance metal plate, etching a predetermined portion of the Ti metal film, and
a step of exposing the steel and forming a land portion, a step of forming a resist pattern for forming a low melting point metal on the Ti metal film other than the land portion and its vicinity, a step of forming solder bumps on the land portion and its vicinity; a step of removing the resist pattern for forming a low melting point metal, a step of etching a predetermined portion of the Ti metal film and an exposed copper plate to form a two-dimensional conductor wiring board, heating a plurality of the two-dimensional conductor wiring boards,
This method of manufacturing a multilayer wiring board is characterized by comprising the steps of melting solder bumps, stacking them, and connecting them into one piece.
ランドパターン上へのバンプ状低融点金属は主
に錫、鉛を主成分とするハンダから構成され、そ
の形成方法としては通常のホトエツチング、ある
いは印刷法による選択的レジストマスキング法を
用い、ハンダ合金めつき、錫/鉛二層めつきある
いは蒸着法等により形成される。 The bump-shaped low melting point metal on the land pattern is mainly composed of solder containing tin and lead as main components, and is formed by conventional photo-etching or selective resist masking by printing, and solder alloy is used. It is formed by plating, tin/lead two-layer plating, vapor deposition method, etc.
この低融点金属は所定の導体パターン配線の上
下(各層間)の電気的接続を主目的に行なうもの
であるが、また各層間の相対的位置を固定すると
同時に立体組み立て(多重化)に対しての機械
的、物理的強度を確保する支持体の役割を有す
る。 The main purpose of this low-melting point metal is to electrically connect the upper and lower layers (between each layer) of a predetermined conductor pattern wiring, but it also fixes the relative position between each layer and at the same time is used for three-dimensional assembly (multiplexing). It has the role of a support that ensures mechanical and physical strength.
さらにはバンプ状に形成されることにより、上
記の各層間を中空に維持することができ、空気等
の気体絶縁した多層配線板が可能となる。すなわ
ち、空気等の気体絶縁により誘電率を小さくし、
電気信号伝送の高速化が達成される。 Furthermore, by forming it in a bump shape, it is possible to maintain a hollow space between the above-mentioned layers, and a multilayer wiring board that is insulated with gas such as air becomes possible. In other words, the dielectric constant is reduced by gas insulation such as air,
High speed electrical signal transmission is achieved.
本発明の導体パターン、すなわち信号パター
ン、ランドパターンを構成する導体配線は材料と
して低抵抗なCu、Ag、Au、Al、Mo、W、Pt、
Ni等が使用できるが、コスト、加工性の観点か
らCuが適当である。 The conductive wiring constituting the conductive pattern of the present invention, that is, the signal pattern and the land pattern, is made of low-resistance materials such as Cu, Ag, Au, Al, Mo, W, Pt,
Although Ni etc. can be used, Cu is suitable from the viewpoint of cost and workability.
また、その導体の配線パターン形成には、上記
材料の板状導体を用いて、通常のホトエツチング
法および導体金属材料のエツチング法の併用によ
り容易に可能である。この場合のホトレジストと
してはポジ型、ネガ型の液状感光性レジストある
いはフイルム状感光性レジスト(ドライフイル
ム)が使用できる。 In addition, the wiring pattern of the conductor can be easily formed by using a plate-shaped conductor made of the above-mentioned material and using a combination of an ordinary photoetching method and an etching method for a conductive metal material. As the photoresist in this case, a positive type or negative type liquid photosensitive resist or a film type photosensitive resist (dry film) can be used.
板状導体の厚さは特に限定しないが、約10μm
程度であればよく、機械的、物理的に強度を維持
できない場合にはCu等の導体上に剛性の高い金
属、例えばNi、Ti、Crなどをめつき法あるいは
蒸着、スパツター法により形成すること、または
圧着張り合せなどで全体として剛性を与えること
が可能である。 The thickness of the plate conductor is not particularly limited, but is approximately 10 μm.
If the strength cannot be maintained mechanically or physically, a highly rigid metal such as Ni, Ti, Cr, etc. may be formed on the conductor such as Cu by plating, vapor deposition, or sputtering. It is possible to give rigidity to the entire structure by bonding or bonding.
以下に本発明の一実施例を図を用いて詳細に説
明する。
An embodiment of the present invention will be explained in detail below using the drawings.
実施例 1
第1図aは板厚20μmの銅板1の両面に通常の
真空蒸着法を用い、厚さ約0.1μmのTi金属膜2を
形成した板状導体である。Example 1 FIG. 1a shows a plate-shaped conductor in which a Ti metal film 2 with a thickness of about 0.1 μm is formed on both sides of a copper plate 1 with a thickness of 20 μm using a normal vacuum evaporation method.
この導体両面に東京応化製ネガ型感光性レジス
トOMR−83をスピンナー塗布、乾燥し、格子状
の所定位置に接続用ランドパターンを有するガラ
スホトマスク(図示せず)を両面に密着し、
500WaXe−Hg灯で紫外線照射、露光後OMR−
83用現像液により現像、さらに専用リンス液にて
洗浄して接続用ランドを有するエツチングレジス
トパターン3を形成した(第1図b)。 A negative photosensitive resist OMR-83 manufactured by Tokyo Ohka Co., Ltd. was applied with a spinner to both sides of this conductor, dried, and a glass photomask (not shown) having a connection land pattern at a predetermined position in a grid was adhered to both sides.
UV irradiation with 500WaXe-Hg lamp, OMR after exposure
The resist pattern 3 was developed using a 83 grade developer and washed with a special rinsing solution to form an etching resist pattern 3 having connection lands (FIG. 1b).
その後50%硫酸水溶液(液温50℃)にて露出し
たTi金属部をエツチング(第1図c)、50℃の
OMR−83専用剥離液(東京応化製)に浸漬して
レジスト膜を剥離除去し、接続用ランド部(銅露
出部)を有する板状導体(第1図d)を形成し
た。 After that, the exposed Ti metal part was etched with a 50% sulfuric acid aqueous solution (solution temperature 50℃) (Fig. 1c), and
The resist film was removed by immersing it in a special stripping solution for OMR-83 (manufactured by Tokyo Ohka) to form a plate-shaped conductor (FIG. 1d) having a connection land (exposed copper).
次いで上記板状導体の両面にネガ型感光性レジ
ストOMR−83(東京応化製)をスピンナー塗布、
乾燥し、所定の位置に接続用低融点金属を形成す
るためのガラスマスク(図示せず)を両面に密
着、Xe−Hg灯により紫外線露光、現像、リンス
のホトプロセスで低融点金属形成用レジストパタ
ーン4を形成した(第1図e)。 Next, a negative photosensitive resist OMR-83 (manufactured by Tokyo Ohka) was applied with a spinner to both sides of the plate-shaped conductor.
After drying, attach a glass mask (not shown) to both sides to form a low-melting metal for connection in a predetermined position, and use a photo process of exposing to ultraviolet light using a Xe-Hg lamp, developing, and rinsing to form a resist for forming a low-melting metal. Pattern 4 was formed (Fig. 1e).
第1図eで得られた板状導体基板を通常の電気
めつき前処理プロセスであるアルカリ脱脂(ニユ
ートラクリーン68、シツプレイ社)および5%
HCl酸洗処理を行ない、所定の部分(接続用パツ
ド部)に錫/鉛合金比が60/40を有するはんだめ
つきを行ない、第1図fに示すごとく、接続用パ
ツド部上に約20μmの接続用はんだバンプ5を形
成した。 The plate-shaped conductive substrate obtained in Fig. 1e was subjected to alkaline degreasing (Nutra Clean 68, Shippray Co., Ltd.), which is a normal electroplating pretreatment process, and 5%
After HCl pickling treatment, solder with a tin/lead alloy ratio of 60/40 is applied to the specified part (connection pad part), and as shown in Figure 1 f, approximately A 20 μm connecting solder bump 5 was formed.
使用したはんだめつき液組成および条件は以下
の通りである。 The soldering liquid composition and conditions used are as follows.
(液組成)
ホウフツ化錫(45%)…110〜330ml/、好まし
くは220ml/
ホウフツ化鉛(45%)…50〜150ml/、好まし
くは175ml/
ホウフツ酸…50〜150ml/、好ましくは175ml/
ゼラチン…1〜10g/、好ましくは6g/
ホウ酸…5〜20g/、好ましくは12g/
(めつき条件)
液 温…20〜30℃、好ましくは25℃
電流密度…1〜3A/dm2、好ましくは2A/dm2
接続用パツド部にはんだバンプを形成した後、
低融点金属形成用レジストパターン4をOMR−
83専用剥離液(東京応化製)を用い剥離、除去し
て、第1図gに示す接続用はんだバンプ5を有す
る板状導体を形成した。(Liquid composition) Tin borofluoride (45%)...110 to 330 ml/, preferably 220 ml/ Lead borofufluoride (45%)...50 to 150 ml/, preferably 175 ml/Borosic acid...50 to 150 ml/, preferably 175 ml/
Gelatin...1-10g/, preferably 6g/Boric acid...5-20g/, preferably 12g/ (Plating conditions) Liquid temperature...20-30℃, preferably 25℃ Current density...1-3A/ dm2 , Preferably, after forming solder bumps on the 2A/dm 2 connection pads,
OMR- of resist pattern 4 for forming low melting point metal
83 exclusive stripping solution (manufactured by Tokyo Ohka) was used to peel and remove the conductor, thereby forming a plate-shaped conductor having solder bumps 5 for connection as shown in FIG. 1g.
次いで第1図hに示すごとく、上記板状導体
(はんだバンプ形成導体板)の両面にネガ型感光
性レジストOMR−83(東京応化)により導体パ
ターン形成レジスト6を塗布、乾燥して、所定の
信号配線パターンを有するガラスマスク(図示せ
ず)を両面に密着、Xe−Hg灯により紫外線露光
した後、OMR−83専用現像液、リンス液により
処理し、信号導体配線パターンを得るためのエツ
チングレジストパターンを6形成した(第1図
i)。 Next, as shown in FIG. 1h, a conductor pattern forming resist 6 is coated on both sides of the plate-shaped conductor (solder bump forming conductor plate) using a negative photosensitive resist OMR-83 (Tokyo Ohka), dried, and a predetermined pattern is formed. A glass mask (not shown) with a signal wiring pattern is adhered to both sides, exposed to ultraviolet light using a Xe-Hg lamp, and then treated with OMR-83 exclusive developer and rinsing liquid to form an etching resist to obtain a signal conductor wiring pattern. Six patterns were formed (Fig. 1i).
本実施例にて用いた導体パターンガラスマスク
は網目状配線パターンで、かつ配線部の交差部分
が接続用パツドパターンを有するものである。 The conductor pattern glass mask used in this example has a mesh wiring pattern, and the intersections of the wiring portions have connection pad patterns.
エツチングレジストパターンを形成した板状導
体基板の表裏両面のTi金属膜2を50%硫酸液
(50℃)にてエツチング除去し(第2図a)、次い
で過硫酸アンモニウム:100〜300g/(好まし
くは200g/)、塩化アンモニウム:20〜50g/
(好ましくは32g/)からなるエツチング液
により露出部銅板1をエツチング除去(第2図
b)する。 The Ti metal film 2 on both the front and back surfaces of the plate-shaped conductor substrate on which the etching resist pattern has been formed is removed by etching with a 50% sulfuric acid solution (50°C) (Fig. 2a), and then ammonium persulfate: 100 to 300 g/(preferably 200g/), ammonium chloride: 20-50g/
The exposed portion of the copper plate 1 is removed by etching using an etching solution (preferably 32g/) (FIG. 2b).
その後、OMR−83専用剥離液により導体パタ
ーン形成レジスト膜6を除去、第2図cに示す導
体配線パターンおよび配線パターンの交差点に低
融点金属の接続用はんだバンプ5を有する二次元
導体配線を形成した。 Thereafter, the conductor pattern forming resist film 6 is removed using a special stripping solution for OMR-83, and a two-dimensional conductor wiring having conductor wiring patterns and solder bumps 5 for connecting low melting point metals at the intersections of the wiring patterns as shown in FIG. did.
次いで上記の配線導体を約300℃の炉内に15分
間投入、接続用はんだバンプ5を溶融(ウエツト
バツク)し、第2図dに示したごとく、球状のは
んだバンプを形成した。 Next, the above-mentioned wiring conductor was placed in a furnace at about 300° C. for 15 minutes, and the connecting solder bumps 5 were melted (wetbacked) to form spherical solder bumps as shown in FIG. 2d.
上記の球状はんだバンプは第2図dに示すTi
金属膜2に対するはんだヌレ性が悪いこと、すな
わちTi金属膜がはんだ流れを防止するダムの役
目をするため、溶融はんだの表面張力により球状
のはんだを形成するものである。 The above spherical solder bump is a Ti
Since the solder wettability with respect to the metal film 2 is poor, that is, the Ti metal film acts as a dam to prevent solder flow, the surface tension of the molten solder forms a spherical solder.
次いで上記の二次元導体配線体を逐次所定の接
続位置に重ね合せ、300℃の炉内に15分間投入し、
第2図eに示すごとく所定の位置をはんだ接続す
る。 Next, the above-mentioned two-dimensional conductor wiring bodies were stacked one after another at predetermined connection positions, and placed in a 300°C furnace for 15 minutes.
Solder connections are made at predetermined positions as shown in FIG. 2e.
その後、最大出力10KWを有するCO2ガスレー
ザを用い、連続出力500Wにて不要導体部分7を
切断、所望の導体回路を形成する。その後、上記
と同様に二次元導体配線体を逐次重ね合せ溶融、
接続、あるいは不要導体部分の切断をくり返し、
第2図fに示すごとく各層間および導体間が空気
絶縁層8からなる中空構造を有する多製配線基板
を製造した。 Thereafter, using a CO 2 gas laser with a maximum output of 10 KW, unnecessary conductor portions 7 are cut at a continuous output of 500 W to form a desired conductor circuit. After that, the two-dimensional conductor wiring bodies are sequentially stacked and melted in the same manner as above.
Repeatedly connecting or cutting unnecessary conductor parts,
As shown in FIG. 2f, a multi-layer wiring board having a hollow structure consisting of air insulating layers 8 between each layer and between conductors was manufactured.
実施例 2
実施例1および3の層間接続用パツド部への低
融点金属形成において、所定の接続パツド上に、
まず鉛めつき皮膜を8μm形成、水洗後さらに上
記鉛めつき上に錫めつき皮膜12μmを形成、加熱
溶融時に錫/鉛合金比が60/40となる二重層めつ
きにより低融点金属を形成した。上記の鉛、錫め
つき液組成および条件は以下の通り。Example 2 In forming a low melting point metal on the interlayer connection pad portion of Examples 1 and 3, on a predetermined connection pad,
First, a lead plating film of 8 μm is formed, and after washing with water, a tin plating film of 12 μm is formed on the lead plating, and a low melting point metal is formed by double layer plating with a tin/lead alloy ratio of 60/40 when heated and melted. did. The above lead and tin plating solution composition and conditions are as follows.
(鉛めつき)
塩基性炭酸鉛…10〜40g/
スルフアミン酸…50〜150g/
アンモニア水(28%)…20〜80ml/
ゼラチン…0.5〜3g/
液温:20〜30℃ 電流密度:1〜3A/dm2
(錫めつき)
硫酸錫…10〜40g/
スルフアミン酸…20〜60g/
酒石酸…0.5〜5g/
液温:20〜30℃ 電流密度:0.5〜2A/dm2
上記の方法により得られた板状導体を実施例1
および3と同様な方法により導体配線体を形成
し、次いで300℃の炉内に15分間投入、鉛、錫を
加熱溶融して錫/鉛合金比が60/40となる接続用
球状はんだバンプを形成した。(Plated) Basic lead carbonate...10-40g/Sulfamic acid...50-150g/Ammonia water (28%)...20-80ml/Gelatin...0.5-3g/Liquid temperature: 20-30℃ Current density: 1- 3A/dm 2 (Tin plating) Tin sulfate...10~40g/Sulfamic acid...20~60g/Tartaric acid...0.5~5g/Liquid temperature: 20~30℃ Current density: 0.5~2A/ dm2 Obtained by the above method Example 1
A conductor wiring body is formed by the same method as in 3, and then placed in a 300℃ furnace for 15 minutes to heat and melt lead and tin to form connection spherical solder bumps with a tin/lead alloy ratio of 60/40. Formed.
以上説明したように、本発明では、低抵抗の金
属板の片面又は両面にはんだバンプに対しヌレ性
が悪いTi金属膜を形成したため、ランド部及び
その近傍にはんだバンプを形成する工程でTi金
属膜がダムの役目をしてはんだ流れが防止され、
位置付け精度が大幅に向上できる。更に、低抵抗
の金属板の剛性をTi金属膜が高めるため、機械
的、物理的強度が確保でき、多層配線板として信
頼性の優れたものが得られる。
As explained above, in the present invention, since a Ti metal film with poor wettability for solder bumps is formed on one or both sides of a low-resistance metal plate, Ti metal film is The membrane acts as a dam and prevents solder from flowing.
Positioning accuracy can be greatly improved. Furthermore, since the Ti metal film increases the rigidity of the low-resistance metal plate, mechanical and physical strength can be ensured, and a highly reliable multilayer wiring board can be obtained.
第1図、第2図は本発明の多層配線板の製造工
程断面図である。
1……銅板、2……チタン金属膜、3……エツ
チングレジスト、4……低融点金属形成用レジス
ト、5……接続用はんだバンプ、6……導体パタ
ーン形成レジスト、7……不要導体切断部、8…
…空気絶縁層。
1 and 2 are cross-sectional views of the manufacturing process of the multilayer wiring board of the present invention. 1... Copper plate, 2... Titanium metal film, 3... Etching resist, 4... Resist for forming low melting point metal, 5... Solder bump for connection, 6... Resist for forming conductor pattern, 7... Cutting unnecessary conductor Part 8...
...Air insulation layer.
Claims (1)
を形成する工程、Ti金属膜の所定部分をエツチ
ングし、鋼を露出させ、ランド部を形成する工
程、前記ランド部及びその近傍以外のTi金属膜
上に低融点金属形成用レジストパターンを形成す
る工程、ランド部及びその近傍にはんだバンプを
形成する工程、前記低融点金属形成用レジストパ
ターンを除去する工程、所定部分のTi金属膜及
び露出部銅板をエツチングして二次元導体配線板
を形成する工程、前記二次元導体配線板の複数枚
を加熱し、はんだバンプを溶融し、積み重ねて接
続一体化する工程からなることを特徴とする多層
配線板の製造方法。1 Step of forming a Ti metal film on one or both sides of a low-resistance metal plate; Step of etching a predetermined portion of the Ti metal film to expose the steel to form a land portion; A step of forming a resist pattern for forming a low melting point metal on the metal film, a step of forming a solder bump at the land portion and its vicinity, a step of removing the resist pattern for forming the low melting point metal, and a predetermined portion of the Ti metal film and exposure. A multilayer method comprising the steps of etching a copper plate to form a two-dimensional conductor wiring board, and heating a plurality of the two-dimensional conductor wiring boards to melt the solder bumps and stacking them to integrate the connections. Method of manufacturing wiring boards.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12933684A JPS618996A (en) | 1984-06-25 | 1984-06-25 | Multilayer wiring board manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12933684A JPS618996A (en) | 1984-06-25 | 1984-06-25 | Multilayer wiring board manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS618996A JPS618996A (en) | 1986-01-16 |
JPH0481877B2 true JPH0481877B2 (en) | 1992-12-25 |
Family
ID=15007085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12933684A Granted JPS618996A (en) | 1984-06-25 | 1984-06-25 | Multilayer wiring board manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS618996A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0736471B2 (en) * | 1989-03-29 | 1995-04-19 | 日本無線株式会社 | Multi-layer board bonding method |
JPH071830B2 (en) * | 1989-09-13 | 1995-01-11 | 日本無線株式会社 | Connection method of multilayer printed wiring board |
US5171351A (en) * | 1989-04-10 | 1992-12-15 | Kyowa Hakko Kogyo Co. | Preservative for plants comprising epoxy compounds |
NZ233184A (en) * | 1989-04-10 | 1991-10-25 | Kyowa Hakko Kogyo Kk | Preservative compositions for plants, fruits and vegetables comprising an olefin, pyridyl urea, epoxy compound, dipicolinic acid or an sh-reagent |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5347927B2 (en) * | 1973-06-08 | 1978-12-25 | ||
JPS544375A (en) * | 1977-06-13 | 1979-01-13 | Suwa Seikosha Kk | Circuit substrate |
JPS5446376A (en) * | 1977-09-20 | 1979-04-12 | Fujitsu Ltd | Method of manufacturing multilayer printed board |
JPS56150897A (en) * | 1980-04-23 | 1981-11-21 | Fujitsu Ltd | Method of manufacturing multilayer printed board |
JPS57109392A (en) * | 1980-12-26 | 1982-07-07 | Suwa Seikosha Kk | Circuit mounting substrate |
JPS58143559A (en) * | 1982-02-19 | 1983-08-26 | Matsushita Electric Ind Co Ltd | Multilayer-structure semiconductor integrated circuit device and its manufacture |
-
1984
- 1984-06-25 JP JP12933684A patent/JPS618996A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS618996A (en) | 1986-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6904674B2 (en) | Process for manufacturing a printed wiring board | |
JP7647801B2 (en) | Glass device intermediates | |
KR100826068B1 (en) | Method for manufacturing double-sided printed glass board | |
US4401521A (en) | Method for manufacturing a fine-patterned thick film conductor structure | |
JP2003273498A (en) | Method of manufacturing printed-wiring board | |
JPH02260491A (en) | Printed circuit board and it manufacture | |
US8409461B2 (en) | Method of manufacturing printed wiring board with component mounting pin | |
JPH0481877B2 (en) | ||
WO1999026458A1 (en) | Multilayer printed wiring board and method for manufacturing the same | |
JPH05327224A (en) | Manufacture of multilayer wiring board and multi-layer wiring board manufactured by the manufacture | |
JPH04245132A (en) | Base for chip fuse and chip fuse using it | |
JP2001196746A (en) | Printed wiring substrate and method for manufacturing printed wiring substrate | |
JP3948105B2 (en) | Method for manufacturing multilayer printed circuit board | |
JP2003273170A (en) | Manufacturing method for both-side wiring tape carrier and tape carrier using the same | |
JPH05277774A (en) | Method for partially removing insulator layer of insulating substrate with conductor layer | |
JPS61269396A (en) | Multilayer wiring board and manufacture thereof | |
JPH10335826A (en) | Multilayered wiring circuit board and manufacture thereof | |
JP2023167333A (en) | Manufacturing method of wiring board | |
JPS63260198A (en) | Manufacture of multilayer circuit board | |
JPH03225894A (en) | Manufacture of printed wiring board | |
JPH1117059A (en) | Ball grid array board and continued body thereof | |
JP2001094224A (en) | Printed interconnection board and method of manufacturing printed interconnection board | |
JP2023172732A (en) | wiring board | |
JPH11261225A (en) | Method for manufacturing multilayer wiring board | |
JPH05325669A (en) | Manufacture of anisotropic conductive film |