[go: up one dir, main page]

JPH0475455B2 - - Google Patents

Info

Publication number
JPH0475455B2
JPH0475455B2 JP57055125A JP5512582A JPH0475455B2 JP H0475455 B2 JPH0475455 B2 JP H0475455B2 JP 57055125 A JP57055125 A JP 57055125A JP 5512582 A JP5512582 A JP 5512582A JP H0475455 B2 JPH0475455 B2 JP H0475455B2
Authority
JP
Japan
Prior art keywords
filter
heavy water
moisture
gas
leak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57055125A
Other languages
Japanese (ja)
Other versions
JPS58172548A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57055125A priority Critical patent/JPS58172548A/en
Publication of JPS58172548A publication Critical patent/JPS58172548A/en
Publication of JPH0475455B2 publication Critical patent/JPH0475455B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は原子力施設のガス処理系、例えば換気
系等に設置される放射性ヨウ素の捕集のためのヨ
ウ素除去フイルタのリークを検出する方法に係
り、詳しくは銀添着ヨウ素除去フイルタのリーク
率を重水蒸気を試料ガス(トレーサーガス)とし
て使用し、重水濃度から求めることにより放射性
ヨウ素除去フイルタのリークを検出する方法に関
する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for detecting a leak in an iodine removal filter for collecting radioactive iodine installed in a gas treatment system, such as a ventilation system, of a nuclear facility. Specifically, the present invention relates to a method of detecting leakage from a radioactive iodine removal filter by determining the leakage rate of a silver-impregnated iodine removal filter from the heavy water concentration using heavy water vapor as a sample gas (tracer gas).

〔発明の技術的背景およびその問題点〕[Technical background of the invention and its problems]

原子力施設における事故発生の際に放射能の放
出を防止したり、減少させる目的で、事故時に放
出される放射能の中で人体に最も有害な放射性ヨ
ウ素を除去するために非常用ガス処理系が設けら
れており、従来よりこの処理系において放射性ヨ
ウ素の吸着除去効率の高い活性炭フイルタが使用
されている。
In order to prevent or reduce the release of radioactivity in the event of an accident at a nuclear facility, an emergency gas treatment system is installed to remove radioactive iodine, which is the most harmful to the human body among the radioactivity released during an accident. Activated carbon filters, which have a high adsorption and removal efficiency for radioactive iodine, have conventionally been used in this treatment system.

近年この活性炭フイルタに代えて高性能、長寿
命のヨウ素吸着材として銀添着フイルタが着目さ
れてきている。
In recent years, silver-impregnated filters have been attracting attention as an iodine adsorbent with high performance and long life in place of activated carbon filters.

一般に、この種のフイルタでは、据付状態での
総合効率を求めるとともに、フイルタとケーシン
グ間に発生するおそれのある微小の〓間からのリ
ークの有無を確認するためにリーク率が測定され
る。
Generally, in this type of filter, the leak rate is measured to determine the overall efficiency in the installed state and to confirm the presence or absence of leakage from minute gaps that may occur between the filter and the casing.

フイルタとケーシング間に微小の〓間が発生し
ている場合には、フイルタの入口側から入つた気
体の一部は、フイルタを通過せずにこの微小〓間
を通過してフイルタ下流側に抜ける。この微小〓
間を通過する過程ではいかなる気体の捕集も行わ
れないから、この微小〓間を通過してフイルタ下
流側に抜ける量は、物質の種類によらず、〓間の
大きさにのみ依存する。
If there is a minute gap between the filter and the casing, some of the gas that enters from the inlet side of the filter will pass through this minute gap and escape to the downstream side of the filter without passing through the filter. . This minute
Since no gas is collected during the process of passing through the gap, the amount that passes through this minute gap to the downstream side of the filter does not depend on the type of substance, but only on the size of the gap.

この銀添着フイルタのリークを検出する方法と
しては、フロンR−112をフイルタに導入しフイ
ルタの入口側および出口側濃度を電子捕獲検出器
付ガスクロマトグラフで検出するフレオン法と、
非放射性のヨウ化メチルを導入し上記と同様の方
法で検出するヨウ化メチル法が知られているが、
いずれの方法においても以下に述べる欠点を有し
ていた。
A method for detecting leakage from this silver-impregnated filter is the Freon method, in which Freon R-112 is introduced into the filter and the concentration on the inlet and outlet sides of the filter is detected using a gas chromatograph equipped with an electron capture detector.
The methyl iodide method is known, which introduces non-radioactive methyl iodide and detects it using the same method as above.
Both methods had the following drawbacks.

即ち、フレオンを用いたリーク検出法の場合、
銀添着吸着材のフレオンに対する吸着力が小さい
ためにフイルタの出口濃度が高くなり、フイルタ
のリークを検出することが不可能になる。
In other words, in the case of the leak detection method using freon,
Since the adsorption power of the silver-impregnated adsorbent for Freon is small, the concentration at the outlet of the filter becomes high, making it impossible to detect leakage from the filter.

また、フレオンを使用する場合、既に吸着して
いる湿分によつてフレオンの破過時間が極端に短
くなるため測定前に充分な脱湿処理をする必要が
ある。
Furthermore, when Freon is used, the breakthrough time of Freon is extremely shortened due to the already adsorbed moisture, so it is necessary to carry out sufficient dehumidification treatment before measurement.

例えば、比較的破過時間の長いフレオン−112
(フロンR−112)を用いた場合、湿分含有量20%
では瞬時に破過してしまい、5%でも5分程度で
あり、5分程度ではリークによるものかあるいは
破過によるものかを区別することが困難であるた
め正確な測定値が得難い。
For example, Freon-112 has a relatively long breakthrough time.
When using (Freon R-112), moisture content is 20%
In this case, the breakthrough occurs instantaneously, and even at 5%, it takes about 5 minutes, and after about 5 minutes, it is difficult to distinguish between leakage and breakthrough, making it difficult to obtain an accurate measurement value.

一方、ヨウ化メチルの場合には、銀添着吸着材
(ヨウ素除去材)は放射性ヨウ素化合物(I2
HOI、CH3I)の除去を目的として使用されるが、
同時に流れ込む非放射性の上記化合物も非可逆的
に捕集する。
On the other hand, in the case of methyl iodide, the silver-impregnated adsorbent (iodine removal material) is a radioactive iodine compound (I 2 ,
It is used for the purpose of removing HOI, CH 3 I),
The non-radioactive compounds mentioned above flowing in at the same time are also irreversibly collected.

従つて試料ガスを導入する場合、微小といえど
も捕集容量の減少を生ずる難点を有する。
Therefore, when introducing a sample gas, there is a problem in that the collection capacity is reduced even if it is minute.

〔発明の目的〕[Purpose of the invention]

本発明は上記の難点を解決するためになされた
もので、破過時間が長く、かつ捕集容量を減少さ
せずに放射性ヨウ素除去フイルタのリーク率を測
定する方法を提供しようとするものである。
The present invention has been made to solve the above-mentioned difficulties, and aims to provide a method for measuring the leakage rate of a radioactive iodine removal filter without reducing the breakthrough time and reducing the collection capacity. .

〔発明の概要〕[Summary of the invention]

すなわち本発明は、原子力施設のガス処理系に
設けられるヨウ素除去フイルタのリークを検出す
る方法において、前記フイルタに試料ガス(トレ
ーサーガス)として重水蒸気を導入しフイルタ入
り口側および出口側の重水濃度を測定してリーク
率を求めることを特徴とする放射性ヨウ素除去フ
イルタのリーク検出方法である。
That is, the present invention provides a method for detecting a leak in an iodine removal filter installed in a gas treatment system of a nuclear facility, in which heavy water vapor is introduced into the filter as a sample gas (tracer gas) and the concentration of heavy water at the entrance and exit sides of the filter is measured. This is a leak detection method for a radioactive iodine removal filter, which is characterized by measuring and determining a leak rate.

本発明の原理は以下の通りである。 The principle of the invention is as follows.

すなわち、ヨウ素除去フイルタは、据付状態で
はその場の湿分を含んだ空気条件で湿分を物理吸
着し平衡状態になつているが、この時の水蒸気捕
集量は、飽和状態での捕集能力より下回つた値と
なつている。
In other words, when the iodine removal filter is installed, it physically adsorbs moisture in the humid air conditions at that location and reaches an equilibrium state. The value is below the ability.

そして、このような状態の時にフイルタの入り
口側から重水を含んだ湿分を追加した場合、フイ
ルタが健全であればフイルタの活性な吸着点にこ
の湿分が殆ど吸着されてしまい下流側で採取した
空気からは重水はほとんど検出されない。
If moisture containing heavy water is added from the inlet side of the filter under such conditions, if the filter is healthy, most of this moisture will be adsorbed to the filter's active adsorption points and will not be collected downstream. Almost no heavy water is detected in the air.

ちなみにAgXフイルタの場合、放射性ヨウ素
を85mg/g程度化学吸着により不可逆的に捕集す
る能力があるが、空気平衡条件下で湿分を120
mg/g程度物理吸着により可逆的に捕集する能力
がある。
By the way, in the case of AgX filter, it has the ability to irreversibly capture radioactive iodine by chemical adsorption of about 85 mg/g, but it has the ability to capture moisture at 120 mg/g under air equilibrium conditions.
It has the ability to reversibly collect by physical adsorption on the order of mg/g.

一方、フイルタとケーシング間に〓間があると
重水を含んだ湿分は殆ど吸着されずに下流側に抜
けるので下流側の採取空気の中から重水が検出さ
れればリークがあるものと判定することができ
る。
On the other hand, if there is a gap between the filter and the casing, moisture containing heavy water will pass downstream without being adsorbed, so if heavy water is detected in the sampled air downstream, it is determined that there is a leak. be able to.

なお、リーク検出時にフイルタに物理吸着され
た重水は、軽水とともに気相の湿分と平衡する条
件下で存在し気相の湿分が少なくなれば離脱する
のでヨウ素除去フイルタの捕集容量に影響を与え
ることはない。
Note that the heavy water that is physically adsorbed on the filter during leak detection exists together with light water under conditions where it is in equilibrium with the moisture in the gas phase, and will be released when the moisture in the gas phase decreases, which will affect the collection capacity of the iodine removal filter. will not be given.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を図面に基づき説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の方法に使用される装置の概略
を示すブロツク図である。
FIG. 1 is a block diagram schematically showing the apparatus used in the method of the present invention.

ガス処理系1はチヤンバ2からなり、ほぼ中央
に銀添着ヨウ素除去材を充填したフイルタ3が設
けられている。
The gas treatment system 1 consists of a chamber 2, and a filter 3 filled with a silver-impregnated iodine removal material is provided approximately in the center.

試料ガス(トレーサーガス)である重水蒸気は
重水蒸気発生器4から試料ガス導入口5を通じて
チヤンバ2内へ噴出される。
Heavy steam, which is a sample gas (tracer gas), is ejected from the heavy steam generator 4 into the chamber 2 through the sample gas inlet 5.

フイルタ3を挾んで上流と下流にガス採取孔
6,7を有するガスクロマトグラフ8,9がそれ
ぞれ湿分トラツプ10,11を介して設置されて
いる。
Gas chromatographs 8 and 9 having gas sampling holes 6 and 7 are installed upstream and downstream of the filter 3 via moisture traps 10 and 11, respectively.

さらにフイルタ3の上流側には湿度計12が設
置されている。
Furthermore, a hygrometer 12 is installed upstream of the filter 3.

上記のようなガス処理系1において、通気気流
中の相対湿度を湿度計12で測定し相対湿度が気
流中の湿度より5〜10%高く、かつ全体が100%
を越えない程度に重水蒸気発生器4から重水蒸気
を試料ガス導入口5を通じてフイルタ3の上流側
に30分程度流し込む。
In the gas treatment system 1 as described above, the relative humidity in the ventilation airflow is measured with the hygrometer 12, and the relative humidity is 5 to 10% higher than the humidity in the airflow, and the overall humidity is 100%.
Heavy steam is poured from the heavy steam generator 4 into the upstream side of the filter 3 through the sample gas inlet 5 for about 30 minutes to an extent that does not exceed .

この間湿分トラツプ10,11を作動させて湿
分混じりの空気を採取し、採取した重水混じりの
水分を解氷後1μg程度をそれぞれ分取し、これ
をガスクロマトグラフ8,9により分析して水分
中の重水の組成比を求め下式によりリーク率を算
出する。
During this time, the moisture traps 10 and 11 were operated to collect moisture-containing air, and after thawing the sampled heavy water-containing moisture, approximately 1 μg of each sample was collected, and this was analyzed using gas chromatographs 8 and 9 to determine the moisture content. Find the composition ratio of heavy water inside and calculate the leak rate using the formula below.

リーク率(%)=(100−A)/A・B/(100−B)×
100 ここでA、Bはそれぞれ上流側および下流側に
おける重水の組成比(%)を示す。
Leak rate (%) = (100-A)/A・B/(100-B)×
100 Here, A and B indicate the composition ratio (%) of heavy water on the upstream side and downstream side, respectively.

上記湿分トラツプ10,11は氷、アセトン−
ドライアイス等の冷媒によりトラツプを冷却し、
空気中の湿分を凝縮除去させる機能を有するもの
である。
The moisture traps 10 and 11 are ice, acetone, etc.
Cool the trap with a refrigerant such as dry ice,
It has the function of condensing and removing moisture in the air.

また、上記ガスクロマトグラフのカラムには、
スチレン−ジビニルベンゼン共重合体に白金を担
持させたものとゼオライト等の湿分トラツプを用
い、ここに重水混じりの湿分とH2ガスを通じ水
−水素間の重水素交換反応を生じさせるものであ
る。
In addition, the gas chromatograph column mentioned above has
This method uses a styrene-divinylbenzene copolymer supported with platinum and a moisture trap such as zeolite, and uses moisture mixed with heavy water and H2 gas to cause a deuterium exchange reaction between water and hydrogen. be.

リークテストの判定基準は次のようにして確認
される。
The criteria for leak testing are confirmed as follows.

現状のヨウ素除去フイルタの判定基準は、
SGTS系のフレオンを例にとると、リーク率0.1
%以下でリーク部なしと判定される。
The current criteria for iodine removal filters are:
Taking SGTS Freon as an example, the leakage rate is 0.1.
% or less, it is determined that there is no leakage part.

ガスクロマトグラフによる水分中の重水は約2
×10-6まで検出可能であるが、実用上の検出感度
は10-4としている。
Heavy water in water measured by gas chromatograph is approximately 2
Although it is possible to detect up to ×10 -6 , the practical detection sensitivity is set at 10 -4 .

例えば3300m3/hrの容量を有するフイルタユニ
ツトに30℃で湿度50%の空気が流れている場合、
下流側の湿分をトラツプした後1μg程度採取し
たサンプル中の重水の組成比が10-4(0.01%)と
すると、判定基準を確認するには、上流側では重
水の組成比が10-1(10%)程度必要となる。
For example, if air at 30°C and 50% humidity is flowing through a filter unit with a capacity of 3300 m 3 /hr,
Assuming that the composition ratio of heavy water in the sample of about 1 μg collected after trapping the moisture on the downstream side is 10 -4 (0.01%), in order to confirm the criterion, the composition ratio of heavy water on the upstream side must be 10 -1 (10%) is required.

フイルタ上流側のH2O/D2O比は分圧に比例す
るから、重水分圧は1atm当り(30℃で湿度50%
の空気の蒸気圧)×0.1/(1−0.1)=15.91×
0.1/0.9=1.77mmHgに相当する。
Since the H 2 O/D 2 O ratio on the upstream side of the filter is proportional to the partial pressure, the heavy water pressure is
vapor pressure of air)×0.1/(1-0.1)=15.91×
Corresponds to 0.1/0.9=1.77mmHg.

以上から重水蒸気導入後の上流側の相対湿度は
約56%程度になり、重水導入量は30分当り3300×
1.77/760×0.5=3.8(m3)あるいは3900×1/24.04×
20 ×1/1000=3.2()程度で良い。
From the above, the relative humidity on the upstream side after introduction of heavy water vapor will be approximately 56%, and the amount of heavy water introduced will be 3300× per 30 minutes.
1.77/760×0.5=3.8(m 3 ) or 3900×1/24.04×
20 × 1/1000 = 3.2 () is sufficient.

第2図は通気空気条件で飽和に達しているとこ
ろへ新たに水蒸気を導入する場合の下流側の湿度
変化を示したもので、同図aは30℃で湿度50%の
雰囲気で飽和しているフイルタに、さらに軽水を
湿度が10%増加するように導入した場合の相対湿
度変化を、又同図bは重水のみを湿度が10%増加
するように導入した場合の重水濃度変化を表わし
たものである。
Figure 2 shows the humidity change on the downstream side when new water vapor is introduced into an area that has reached saturation under ventilation air conditions. Figure b shows the change in relative humidity when light water is further introduced into the filter to increase the humidity by 10%, and Figure b shows the change in heavy water concentration when only heavy water is introduced to increase the humidity by 10%. It is something.

同図aから、軽水導入開始後4〜5時間で相対
湿度は増加し始め約10時間経過して60%に達す
る。
From figure a, the relative humidity begins to increase 4 to 5 hours after the introduction of light water starts and reaches 60% after about 10 hours.

一方、同図bでは、重水導入開始前に通常の
B.G.(140〜150ppm)で飽和しておりD2Oを導入
するとリーク分(ここでは0.1%即ち100ppm)が
直ちに下流側で検出され、以後軽水の場合と同様
の挙動を示し、最終的に10時間後105ppmに達し
飽和する。
On the other hand, in Figure b, the normal
It is saturated with BG (140-150 ppm), and when D 2 O is introduced, a leakage amount (0.1% or 100 ppm in this case) is immediately detected downstream, and after that it behaves similarly to the case of light water, and finally 10 After hours, it reaches 10 5 ppm and becomes saturated.

従つて30分程度の導入時間の場合には下流側で
検出される重水は全てリークによるものと判断さ
れる。
Therefore, if the introduction time is about 30 minutes, it is determined that all heavy water detected on the downstream side is due to leakage.

以上の実施例からも明らかなように、重水蒸気
はフイルタに高効率で捕集されるから、重水蒸気
のリーク率は据付状態の〓間の有無によつて大き
く変化する。そして、この挙動は、放射性ヨウ素
がこのフイルタおよび〓間を通過する場合の挙動
と同じであるから、重水蒸気のフイルタ通過時の
挙動から間接的に放射性ヨウ素のリークの有無も
検出することができる。
As is clear from the above embodiments, heavy water vapor is collected by the filter with high efficiency, so the leakage rate of heavy water vapor varies greatly depending on the presence or absence of gaps in the installation state. Since this behavior is the same as the behavior when radioactive iodine passes between this filter and the filter, it is possible to indirectly detect the presence or absence of radioactive iodine leakage from the behavior of heavy water vapor when it passes through the filter. .

尚本発明は銀添着ヨウ素除去フイルタのリーク
検出方法に関するものであるが、ヨウ素添着炭や
TEDA添着炭等のヨウ素除去材にも応用するこ
とができる。
The present invention relates to a leak detection method for a silver-impregnated iodine removal filter, but it is
It can also be applied to iodine removal materials such as TEDA-impregnated carbon.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば従来のフレ
オン法と比較して脱湿、調湿の操作が不必要とな
り、又破過時間も5分から10〜15時間程度と長く
なり、破過かリークかの判別が容易となる。
As described above, according to the present invention, compared to the conventional Freon method, dehumidification and humidity control operations are not necessary, and the breakthrough time is also longer, from 5 minutes to about 10 to 15 hours. It becomes easy to determine whether there is a leak.

さらに従来のヨウ化メチル法と比較してヨウ素
除去フイルタの捕集容量が低下しない等の利点を
有する。
Furthermore, compared to the conventional methyl iodide method, this method has advantages such as no reduction in the collection capacity of the iodine removal filter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法に使用される装置の一実
施例の概略を示すブロツク図、第2図a,bはそ
れぞれ通気条件で飽和に達しているところへ水蒸
気を導入する場合の下流側の相対湿度変化および
重水濃度変化を示す図である。 1……ガス処理系、2……チヤンバ、3……フ
イルタ、4……重水蒸気発生器、8,9……ガス
クロマトグラフ、10,11……湿分トラツプ、
12……温度計。
Fig. 1 is a block diagram schematically showing an embodiment of the apparatus used in the method of the present invention, and Fig. 2 a and b respectively show the downstream side when water vapor is introduced into a region that has reached saturation under aeration conditions. FIG. 2 is a diagram showing changes in relative humidity and changes in heavy water concentration. 1... Gas treatment system, 2... Chamber, 3... Filter, 4... Heavy steam generator, 8, 9... Gas chromatograph, 10, 11... Moisture trap,
12...Thermometer.

Claims (1)

【特許請求の範囲】[Claims] 1 原子力施設のガス処理系に設けられるヨウ素
除去フイルタのリークを検出する方法において、
前記フイルタに重水蒸気を導入しフイルタ入り口
側および出口側の重水濃度を測定してリーク率を
求めることを特徴とする放射性ヨウ素除去フイル
タのリーク検出方法。
1. In a method for detecting a leak in an iodine removal filter installed in a gas treatment system of a nuclear facility,
A leak detection method for a radioactive iodine removal filter, characterized in that heavy water vapor is introduced into the filter and the concentration of heavy water on the inlet and outlet sides of the filter is measured to determine the leakage rate.
JP57055125A 1982-04-02 1982-04-02 Leak detection of radio active iodine removing filter Granted JPS58172548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57055125A JPS58172548A (en) 1982-04-02 1982-04-02 Leak detection of radio active iodine removing filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57055125A JPS58172548A (en) 1982-04-02 1982-04-02 Leak detection of radio active iodine removing filter

Publications (2)

Publication Number Publication Date
JPS58172548A JPS58172548A (en) 1983-10-11
JPH0475455B2 true JPH0475455B2 (en) 1992-11-30

Family

ID=12990034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57055125A Granted JPS58172548A (en) 1982-04-02 1982-04-02 Leak detection of radio active iodine removing filter

Country Status (1)

Country Link
JP (1) JPS58172548A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60218064A (en) * 1984-04-13 1985-10-31 Nippon Atom Ind Group Co Ltd Testing device for rare gas adsorptive power of activated carbon
JP5595110B2 (en) 2010-05-10 2014-09-24 三菱重工業株式会社 Iodine filter leak test method, leak test apparatus, and fluorine-containing reagent
JP5882597B2 (en) * 2011-04-15 2016-03-09 国立大学法人信州大学 Filter and filter manufacturing method
CN103364145A (en) * 2013-06-30 2013-10-23 天长市远洋船舶设备有限公司 Method for detecting sealing performance
CN109174052A (en) * 2018-09-11 2019-01-11 贵州全世通精密机械科技有限公司 A kind of particulate adsorbent and preparation method thereof for air humidifier filter core
IT201900020470A1 (en) * 2019-11-06 2021-05-06 Danieli Off Mecc Procedure for detecting water leaks from melting furnaces in metal or alloy production plants and related plant
CN113856586B (en) * 2021-08-20 2022-12-13 中国原子能科学研究院 Device for gas-liquid conversion and gas-liquid two-phase online sampling of iodine

Also Published As

Publication number Publication date
JPS58172548A (en) 1983-10-11

Similar Documents

Publication Publication Date Title
Ogden et al. Comparative evaluation of diffusive and active sampling systems for determining airborne nicotine and 3-ethenylpyridine
JPH0475455B2 (en)
Metzger et al. In-situ mercury speciation in flue gas by liquid and solid sorption systems
US4835395A (en) Continuous aqueous tritium monitor
Gregory et al. Sample retentivity properties of passive organic vapor samplers and charcoal tubes under various conditions of sample loading, relative humidity, zero exposure level periods and a competitive solvent
Frankel et al. Automatic gas chromatographic monitor for the determination of parts-per-billion levels of bis (chloromethyl) ether
JP3071057B2 (en) Method and apparatus for detecting leak of adsorbent-filled filter
JPS59126281A (en) Leakage detection of radioactive iodine removing filter
Licki et al. Monitoring and control systems for an EB flue gas treatment pilot plant—Part I. Analytical system and methods
Keller et al. A selectiveadsorbentSft. Mpling system for differentiating airborne iodine species
Obruchikov et al. Method for obtaining radioactive methyliodide vapors under dynamic conditions
JPS5844375A (en) Collecting and measuring system for radioactive gas
Fukuda et al. Performance of an Improved Air Sampler for Collecting Airborne Radioiodine
US3849539A (en) Method of oxygen detection and removal
Aharoni et al. Efficiency of adsorbents for the removal of cyanogen chloride
Ono et al. Desorption rate of adsorbed tritiated water from molecular sieve 5A by exchange with environmental water vapor
Naritomi et al. Method for improving the collecting performance of iodine samplers under high relative humidity
Tanaka et al. Monitoring of tritium concentration by simplified active sampler in a fusion test facility
JP2007183137A (en) Tritium monitor
Oomens et al. A method for the collection and determination of phenol and bisphenol A in air
JP2586927B2 (en) Tritium-contaminated concrete treatment method and apparatus
JP2007183136A (en) Tritium monitor
JPS61237080A (en) Measurement of radioactive substance in gas
Yepimakhov et al. Determination of U, Pu, Am and Cm in water coolant of nuclear power plants using membranes impregnated with hydrated manganese dioxide
Choi et al. Preparation and structural studies of organotin (IV) complexes formed with organic carboxylic acids