JPH0474570A - Production of cylindrical coating body - Google Patents
Production of cylindrical coating bodyInfo
- Publication number
- JPH0474570A JPH0474570A JP18834890A JP18834890A JPH0474570A JP H0474570 A JPH0474570 A JP H0474570A JP 18834890 A JP18834890 A JP 18834890A JP 18834890 A JP18834890 A JP 18834890A JP H0474570 A JPH0474570 A JP H0474570A
- Authority
- JP
- Japan
- Prior art keywords
- coating
- nozzle
- flow rate
- substrate
- deviation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Application Of Or Painting With Fluid Materials (AREA)
- Spray Control Apparatus (AREA)
- Photoreceptors In Electrophotography (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、被塗布対象物である円筒状基体表面に塗布
膜を形成させる円筒状塗布体の製造方法に関し、さらに
詳しくは、例えば、電子写真用感光体ドラムなどにおい
て、円筒状基体である感光体ドラムの寸法精度及び加工
度が低く、外表面形状に凹凸がある、即ち、外表面の部
位に位置偏差の存在する基体表面に対して、塗布する塗
布液の量を基体表面の凹凸に応じて調節することにより
、円筒形状の精度が向上し、かつ平滑な塗布体表面を形
成させるための円筒状塗布体の製造方法に係るものであ
る。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for manufacturing a cylindrical coated body in which a coated film is formed on the surface of a cylindrical substrate that is an object to be coated. In photoconductor drums for photography, etc., the dimensional accuracy and processing degree of the photoconductor drum, which is a cylindrical base, is low, and the outer surface shape is uneven, that is, the base surface has positional deviations in parts of the outer surface. , relates to a method for manufacturing a cylindrical coated body in which the accuracy of the cylindrical shape is improved and a smooth coated body surface is formed by adjusting the amount of the coating liquid to be applied according to the unevenness of the base surface. be.
■
〔従来の技術〕
従来から、この種の被塗布対象物である円筒状基体の表
面に対して、円筒状塗布体を連続膜状に形成するための
方法としては、一般的に、a)浸漬塗布方法、b)リン
グ塗布方法、C)スプレー塗布方法、d)スパイラル塗
布方法などの各手段が知られている。[Prior Art] Conventionally, methods for forming a cylindrical coating body in a continuous film form on the surface of a cylindrical substrate, which is an object to be coated, have generally been as follows: a) Various means are known, such as a dip coating method, b) a ring coating method, C) a spray coating method, and d) a spiral coating method.
しかして、これらの従来から使用されている各塗布手段
には、通常の場合、次のような不利がある。すなわち、
a)浸漬塗布方法;
円筒状基体を塗布液槽内に浸漬させた後、これを引上げ
た状態で、塗膜の表面に塗布液のタレを生ずること、
液槽内の塗布液に濃度ムラを生じ易く、このために塗膜
の膜厚が一定になり難いこと、塗布液の所要量が多いこ
と、
b)リング塗布方法;
塗膜面に塗布筋を生し易いこと、
C)スプレー塗布方法;
塗布液の塗着効率が低く、塗布液に無駄を生ずること、
塗膜の表面状態が悪いこと、
d)スパイラル塗布方法;
塗膜面にスパイラル状の膜厚ムラを生じ易いこと、
などである。However, each of these conventionally used application means usually has the following disadvantages. That is, a) Dip coating method; After immersing the cylindrical substrate in a coating liquid tank, when the cylindrical substrate is pulled up, the coating liquid drips on the surface of the coating film, and the concentration of the coating liquid in the liquid tank increases. It tends to cause unevenness, which makes it difficult to maintain a constant coating film thickness, and a large amount of coating solution is required; b) Ring coating method; easy to cause coating streaks on the coating surface; C) Spraying Application method: The coating efficiency of the coating solution is low, resulting in waste of the coating solution, and the surface condition of the coating film is poor. d) Spiral coating method: Spiral-like film thickness unevenness is likely to occur on the coating surface. etc.
しかしながら、一方で、前記スパイラル塗布方法におい
ては、このように塗膜面にスパイラル状の膜厚ムラを生
じ易いという不利を有する反面、塗布液の所要量が少な
くて済み、塗布装置自体についても比較的簡単であるな
どの利点があって、非常に好ましい手段でもある。However, on the other hand, the spiral coating method has the disadvantage that it tends to cause spiral thickness unevenness on the coating surface, but on the other hand, the required amount of coating liquid is small, and the coating device itself is also compared. It has the advantage of being simple and easy to use, and is therefore a very preferable method.
そこで、我々は先に、スパイラル塗布方法を適用して、
複数の吐出細孔を特殊な形に配設させた塗布用マルチノ
ズル体を用い、給送される塗布液を特定の塗布幅で吐出
させる塗布方法を提案し、前記スパイラル塗布方法の難
点を克服して、基体表面に連続膜状の均一化された高精
度の塗布膜を形成させることに成功した。Therefore, we first applied the spiral coating method,
We proposed a coating method that uses a coating multi-nozzle body with multiple discharge pores arranged in a special shape to discharge the supplied coating liquid in a specific coating width, overcoming the difficulties of the spiral coating method. As a result, we succeeded in forming a continuous, uniform, and highly accurate coating film on the surface of the substrate.
一方、これら円筒状基体は、例えば電子写真用感光体ド
ラム基体の様に、産業利用上、非常に平滑な表面を要求
されると共に、厳しい形状精度を必要とされている。On the other hand, these cylindrical substrates are required to have very smooth surfaces and strict shape accuracy for industrial use, for example, as photosensitive drum substrates for electrophotography.
よって、従来この種の円筒状基体、例えば電子写真用感
光体ドラム基体を製造するには、通常アルミビユレット
からの押出し管を出発材料とし、これに1〜3回引抜き
加工を行った後、切断、粗洗浄し、その復印ろう加工、
面取り、粗切削、鏡面切削等の工程を取るのが一般的で
ある。この様に多くの工程を、場合によっては更に1つ
の工程を繰返し行って、表面精度の粗い材料から感光体
ドラムとして使用しうる精度を持ったドラム基体が製造
されている。Therefore, conventionally, in order to manufacture this type of cylindrical substrate, for example, a photoreceptor drum substrate for electrophotography, an extruded tube from an aluminum villet is used as a starting material, and after drawing it one to three times, Cutting, rough cleaning, and re-stamping,
It is common to use processes such as chamfering, rough cutting, and mirror cutting. In this way, a drum base having a precision that can be used as a photosensitive drum is manufactured from a material with a rough surface by repeating many steps, and in some cases, one step.
電子写真用感光体ドラムを始めとするこれら円筒状塗布
体は、近年増々利用度が増し、そのためできるだけ短時
間に簡易に安価に大量生産されることが求められている
。These cylindrical coated bodies, including photosensitive drums for electrophotography, have been increasingly used in recent years, and therefore there is a need for mass production in as short a time as possible, simply and at low cost.
しかし、従来の塗布体製造方法は、前記の様に塗布工程
に至るまでの基体加工工程が煩雑で長く、しかも加工す
る過程で基体の肉厚が削られ減少する等の様々な課題を
有している。However, the conventional coated body manufacturing method has various problems such as the substrate processing steps leading to the coating process are complicated and long, and the thickness of the substrate is reduced during the processing process. ing.
また、従来一般的に感光体ドラム製造に適用されてきた
浸漬塗布やスプレー塗布等の塗布方法では、全体が一度
に製膜され、膜厚の場所によるコントロールがなされな
いため、たとえ加工度の低い、すなわち精度の悪い基体
に塗布を試みても、形状精度の高い、平滑な塗布体表面
を作成することは困難であった。In addition, with coating methods such as dip coating and spray coating that have been conventionally applied to photoreceptor drum manufacturing, the entire film is formed at once, and the film thickness cannot be controlled depending on the location. That is, even if coating was attempted on a substrate with poor precision, it was difficult to create a smooth coating surface with high shape precision.
本発明者等は前記課題を解決すべく鋭意検討した結果、
狭い部分を順次塗布して塗膜を形成する1又は複数のノ
ズルを配設したスパイラル塗布方法を適用して、基体上
表回答部位の位置偏差に応じて塗布液の量を調節し、塗
布することによって、加工度の低い基体表面上にも形状
精度の高い、平滑な塗布面を形成させ得ることを発見し
、本発明に到達した。As a result of intensive study to solve the above problems, the inventors of the present invention found that
Applying a spiral coating method with one or more nozzles that sequentially coat narrow areas to form a coating film, the amount of coating liquid is adjusted and applied according to the positional deviation of the surface area on the substrate. By doing so, it was discovered that a smooth coated surface with high shape accuracy could be formed even on the surface of a substrate with a low degree of processing, and the present invention was achieved.
即ち、本発明は、水平保持された円筒状基体を回転させ
ると共に、給送される塗布液を特定の塗布幅で吐出する
1又は複数本のノズルを配設したノズルヘッドを回転軸
線と平行に移動させて、基体の表面に連続状に展開され
た塗布膜を形成する塗布体製造方法において、
塗布装置が、計算機、流量調節装置及び位置偏差測定装
置を備え、
該位置偏差測定装置の測定端子が、基本表面のノズル未
到達部位における設定位置からの偏差を測定し、測定値
を計算機に入力し、
該計算機が該偏差に応じた塗布液の吐出量を算出し、該
算出値に対応する流量情報を流量調節装置に指令し、
該流量調節装置が、流量情報に対応した液量を調節し、
該調節された液量の塗布液を、前記被測定部位にノズル
が到達した時にノズルから吐出させることを特徴とする
塗布体製造方法によって達成される。That is, the present invention rotates a horizontally held cylindrical base, and at the same time rotates a nozzle head equipped with one or more nozzles for discharging the supplied coating liquid in a specific coating width in parallel to the axis of rotation. A method for manufacturing a coated body in which a coating film is continuously spread on the surface of a substrate by moving the coated body, the coating device comprising a computer, a flow rate adjustment device, and a position deviation measuring device, and a measuring terminal of the position deviation measuring device. measures the deviation from the set position at the part of the basic surface that the nozzle has not reached, inputs the measured value into a computer, and the computer calculates the amount of coating liquid to be discharged according to the deviation, and the amount corresponds to the calculated value. commanding the flow rate information to a flow rate adjustment device, the flow rate adjustment device adjusting the liquid amount corresponding to the flow rate information;
This is achieved by a coating body manufacturing method characterized in that the adjusted amount of coating liquid is discharged from a nozzle when the nozzle reaches the measurement target site.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
本発明においては、被塗布対象物である円筒状基体を回
転させた状態で、吐出ノズルを回転軸線に平行する方向
へ移動させることによって、円筒状基体の被塗布対象表
面に対し、吐出ノズルに相対的なスパイラル状の軌跡を
とらせ、吐出ノズルから吐出される塗布液を同被塗布対
象表面へ展開塗布させるようにしたスパイラル塗布方法
を採用する。そして、この場合、円筒状基体が1回転す
る間に、吐出ノズルをほぼ塗布幅相当分だけ移動させる
ようにし、これによって塗布膜の重ね塗りおよび塗り残
しなどをほとんど生じないようにする。In the present invention, by moving the discharge nozzle in a direction parallel to the axis of rotation while rotating the cylindrical substrate, which is the object to be coated, the discharge nozzle is applied to the surface of the cylindrical substrate to be coated. A spiral coating method is adopted in which the coating liquid discharged from the discharge nozzle is spread out and coated on the surface to be coated by taking a relative spiral trajectory. In this case, during one rotation of the cylindrical substrate, the discharge nozzle is moved by an amount approximately equivalent to the coating width, thereby hardly causing overcoating or uncoating of the coating film.
またここで、複数のノズルを使用する場合は、個々のノ
ズルの開口断面積および各開口相互間の間隔のそれぞれ
を、使用する塗布液の表面張力と粘度、ドラム表面と吐
出される塗布液との接触角、および展開塗布される塗布
膜の膜厚などの各塗布条件に対応して的確に選択するこ
とが肝要である。In addition, when using multiple nozzles, the opening cross-sectional area of each nozzle and the distance between each opening should be determined based on the surface tension and viscosity of the coating liquid used, the drum surface, and the coating liquid to be discharged. It is important to make appropriate selections in accordance with each coating condition, such as the contact angle of the coating and the thickness of the coating film to be spread and coated.
つまり、各ノズルの開口断面積については、塗布液の粘
度と流量とによって選択設定するものであって、この開
口断面積が小さ過ぎると、各ノズルでの圧力損が太き(
なって所望の流量が得られず、反対に開口断面積が大き
過ぎると、各ノズルでの流量にバラツキを生ずることに
なって好ましくない。また、各ノズルの開口部とドラム
表面との間隔については、吐出される塗布液がドラム表
面に付着後、レベリングされ得る程度であればよく、吐
出時の流速が大きいときには、5mm以上の間隔でも十
分に膜厚の均等な連続膜を形成できるが、流速が小さい
ときには、0.1 mm程度まで接近させなければなら
ない場合もあるので、何れにしても、これらの各塗布条
件を、塗布液の表面張力、粘度、流量などに対応して、
最も効果的に塗布膜を形成できるように選択することが
、良好な塗布を行なう上での前提となる。In other words, the opening cross-sectional area of each nozzle is selected and set depending on the viscosity and flow rate of the coating liquid, and if this opening cross-sectional area is too small, the pressure loss at each nozzle will increase (
If the opening cross-sectional area is too large, the flow rate at each nozzle will vary, which is not preferable. In addition, the distance between the opening of each nozzle and the drum surface should be such that the coating liquid to be discharged can be leveled after adhering to the drum surface, and if the flow velocity during discharge is high, the distance may be 5 mm or more. A continuous film with sufficiently uniform thickness can be formed, but when the flow rate is low, it may be necessary to approach them to within 0.1 mm. Depending on surface tension, viscosity, flow rate, etc.
A prerequisite for good coating is to select a material that can form the coating film most effectively.
一方、このときの各塗布条件が適切でなくて、ドラム表
面と吐出される塗布液との接触角が大きいとき、または
塗布液自体の粘度が比較的大きいときには、この塗布液
が拡がらずに筋状を呈すると共に、これに見合った筋状
の未塗布部を生ずることになる。そしてこの場合に、例
えば、各ノズルの開口相互間の間隔をより以上に狭くし
ようとしても、構造上ならびに寸法的な面での制約が加
えられる他、複数本のノズルから流出した塗布液が基体
上に到達するまでに合体して、塗りむらが生じる可能性
がある。又、塗布液の粘度を下げるのにも限界があり、
あまり粘度を下げ過ぎると、ウェット膜厚が異常に薄く
なって波型れをきたすことになる。On the other hand, if the coating conditions at this time are not appropriate and the contact angle between the drum surface and the discharged coating liquid is large, or if the viscosity of the coating liquid itself is relatively high, the coating liquid may not spread. This results in a streak-like appearance and a commensurate streak-like uncoated area. In this case, for example, even if you try to narrow the distance between the openings of each nozzle, there will be restrictions in terms of structure and size, and the coating liquid flowing out from multiple nozzles will not reach the substrate. By the time they reach the top, they may coalesce and cause uneven coating. Also, there is a limit to lowering the viscosity of the coating liquid.
If the viscosity is lowered too much, the wet film thickness will become abnormally thin, resulting in undulation.
そこで、このような場合に対処するための手段として、
各ノズル開口を一方向に配設させたままで、これをノズ
ルヘッドの移動方向に所定の角度θだけ傾斜させ、実質
的に各吐出開口相互間の間隔を縮小したのと同様な配置
にすることができる。Therefore, as a means to deal with such cases,
While each nozzle opening is arranged in one direction, it is tilted by a predetermined angle θ in the direction of movement of the nozzle head, so that the arrangement is substantially the same as that in which the interval between each discharge opening is reduced. I can do it.
この場合には、先に付着された膜部分に、後から付着す
る膜部分が順次に融合されてゆき、結果的には、所期通
りの連続膜状をした均等膜厚の塗布膜を形成し得るので
ある。そして、この場合の傾斜角度θについては、ここ
でも、塗布液の表面張力と粘度、ドラム表面と吐出され
る塗布液との接触角などの諸条件を考慮して調整するが
、多くの場合、15〜75°程度とするのが、均等膜厚
の塗布膜を得る上で好ましい。In this case, the film parts that are applied later are sequentially fused with the film parts that were applied earlier, and as a result, a coating film of uniform thickness and a continuous film shape is formed as desired. It is possible. The inclination angle θ in this case is adjusted by considering various conditions such as the surface tension and viscosity of the coating liquid, and the contact angle between the drum surface and the discharged coating liquid, but in many cases, It is preferable to set the angle to about 15 to 75 degrees in order to obtain a coating film with a uniform thickness.
ノズルの開口断面形状としては、円形が一般的であるが
、上記断面積の条件を満たす範囲内であれば、方形、帯
状の断面をもったノズルを選択し使用することも可能で
ある。The cross-sectional shape of the opening of the nozzle is generally circular, but it is also possible to select and use a nozzle with a rectangular or band-shaped cross-section as long as it satisfies the above-mentioned cross-sectional area condition.
本発明の塗布体製造方法における感光体ドラムの回転及
び塗布用ノズルヘッドの移動の駆動手段としては、所定
の相対的なスパイラル状の軌跡で正確に移動可能にさせ
るべく、相互に関係付ける必要があるために、例えば、
ステッピングモータ、サーボモーターなどのような制御
可能な駆動源を用いるのが望ましく、移動手段には、通
常、円滑な移動を行なわせるのに好適なポールネジ機構
が採用される。そして、これらの感光体ドラムの回転速
度と、塗布用ノズルヘッドの移動速度は、共に一定に設
定して塗布操作する。The driving means for rotating the photoreceptor drum and moving the coating nozzle head in the method for producing a coated body of the present invention need to be related to each other in order to enable accurate movement in a predetermined relative spiral trajectory. For example,
It is desirable to use a controllable drive source such as a stepping motor or a servo motor, and the moving means usually employs a pole screw mechanism suitable for smooth movement. The rotational speed of these photosensitive drums and the moving speed of the coating nozzle head are both set constant during the coating operation.
本発明における流量調節装置としては、塗布液の流量を
正確に制御し得るものであることが好ましく、ステッピ
ングモーターなどのような制御可能な駆動源を用いてピ
ストンロッドを駆動させるプランジャー型ポンプが代表
として挙げられる。The flow rate regulating device in the present invention is preferably one that can accurately control the flow rate of the coating liquid, and a plunger type pump that drives a piston rod using a controllable drive source such as a stepping motor is preferable. Listed as a representative.
本発明における計算機としては、基本的に、入力される
測定値を流量値に変換し、直ちに、もしくはあらかじめ
定められた時間差に応じて流量指令を出す機能を備えて
いれば良い。ただし、情報処理速度は速いほど良く、又
、基体表面の形状精度を視覚的に確認する為に、測定値
をもとに展開等高線表示が可能な機能を持った計算機を
用いることも、好ましい。Basically, the calculator in the present invention only needs to have the function of converting an input measurement value into a flow rate value and issuing a flow rate command immediately or in accordance with a predetermined time difference. However, the faster the information processing speed, the better, and in order to visually confirm the shape accuracy of the substrate surface, it is also preferable to use a calculator with a function that can display developed contour lines based on measured values.
本発明における位置偏差測定装置としては、その測定端
子の位置における基体部位表面の標準もしくは設定位置
からの偏差を自動的かつ連続的に測定できるものであれ
ば公知の各種のものを採用して良く、例えば一定木準位
に保持された測定端子と基体との間の空気層の厚さを測
る静電容量式や、レーザーを照射し、基体から反射させ
、反射光の受光位置から基体と測定端子との距離を測る
レーザー変位計など番“挙げることができる。この様な
位置偏差測定装置もしくは少くともその測定端子を回転
基体上にスキャンニングさせることにより、基体全周、
全長にわたり、真長度、真円度、回転振れなどを測定で
きる。回転中心と基体中心との不一致による測定誤差を
消去するためには、180°反対側にセットされた2個
対になった測定端子を使い、同一場所を両方の測定端子
で測って、その値を平均した値を用いればよい。As the position deviation measuring device in the present invention, any known device may be used as long as it can automatically and continuously measure the deviation of the surface of the base portion from the standard or set position at the position of the measurement terminal. For example, a capacitive method that measures the thickness of the air layer between the measurement terminal and the substrate held at a constant tree level, or a method that irradiates a laser, reflects it from the substrate, and measures the distance between the substrate and the substrate from the receiving position of the reflected light. Examples include a laser displacement meter that measures the distance to a terminal.By scanning such a position deviation measuring device or at least its measurement terminal over a rotating base, it is possible to measure the entire circumference of the base.
Can measure true length, roundness, rotational runout, etc. over the entire length. In order to eliminate measurement errors due to mismatch between the center of rotation and the center of the substrate, use a pair of measurement terminals set 180 degrees apart, measure the same location with both measurement terminals, and calculate the value. It is sufficient to use the average value.
測定端子とノズルとは測定端子による被測定部位に、ノ
ズルが到達することが出来る構造であるならば、同ヘッ
ド上に固定されていて、測定端子がノズルに先行する位
置にあっても良いし、独立して存在しても良い。より正
確な位置偏差測定の為には数本の測定端子を用いても良
い。The measurement terminal and nozzle may be fixed on the same head, and the measurement terminal may be in a position preceding the nozzle, as long as the structure allows the nozzle to reach the part to be measured by the measurement terminal. , may exist independently. For more accurate position deviation measurement, several measurement terminals may be used.
本発明で用いられる円筒状基体としては電子写真用感光
体ドラム基体だけでなく、実質的に円筒状の形状を持ち
、完全円筒形からの位置偏差が精度修正可能な程度の基
体であるなら特に、その用途は限定されない。The cylindrical substrate used in the present invention is not only a photosensitive drum substrate for electrophotography, but also a substrate that has a substantially cylindrical shape and whose positional deviation from a perfect cylindrical shape can be corrected with precision. , its use is not limited.
電子写真感光体用ドラム基体の出発材料として一般に使
用されているアルミ製引抜き管や押出し管の位置偏差は
それ程過激ではなく、例えば真直度では長さ50I[l
l11当り50μ以下、真円度でも周長50nwn当り
50μ以下であり、この程度の位置偏差は、本発明の塗
布液流量を調節することにより、修正できる範囲である
。The positional deviation of aluminum drawn tubes and extruded tubes, which are generally used as starting materials for drum substrates for electrophotographic photoreceptors, is not so extreme; for example, in terms of straightness, the length is 50 I
The circularity is less than 50 μ per 111, and the circularity is less than 50 μ per 50 nwn of circumference, and this degree of positional deviation is within the range that can be corrected by adjusting the flow rate of the coating liquid of the present invention.
更にアルミニウム以外のガラス管、樹脂パイプなども、
従来そのままでは電子写真用感光体ドラム基体として使
用でき得る位置偏差でなかったが、本発明に基づく塗布
方法を行えば、外径公差、円筒度等も、使用可能な位置
偏差範囲内に修正することができる。又基体は何らかの
表面処理の行われているもの、既に少くとも1回の下塗
りが行われているもの等、特にその前歴は問わず、本発
明は本発明の塗布方法により、形状修正しつつ塗布層を
塗設する場合に広く適用される。Furthermore, we also offer non-aluminum glass tubes, resin pipes, etc.
Conventionally, the positional deviation could not be used as a photoreceptor drum substrate for electrophotography as it is, but by applying the coating method based on the present invention, the outer diameter tolerance, cylindricity, etc. can be corrected to within the usable positional deviation range. be able to. In addition, the present invention can apply the coating while correcting the shape using the coating method of the present invention, regardless of the previous history, such as those that have undergone some kind of surface treatment or have already been coated with at least one undercoat. Widely applied when applying layers.
本発明に用いる塗布液としては、塗布体として要求され
るすべての物質を使用し得るが、その場合、前述の様に
、塗布液の表面張力と粘度に対応して各装置の配設をし
なければならない。As the coating liquid used in the present invention, any substance required for the coating body can be used, but in that case, as described above, each device should be arranged in accordance with the surface tension and viscosity of the coating liquid. There must be.
また、塗布した直後の湿状態では、はぼ凹凸のない平滑
な表面を作ることが出来ても、厚く塗られた凹部の膜厚
減少が薄く塗られた凸部より大きければ、乾燥膜となっ
た時、再びゆるい凹部を形成することがある。よって、
精度修正効果を高めるためには膜が乾燥固定される過程
での塗布液の体積減少率が40%以下、好ましくは30
%以下であることが望ましい。このような塗布液として
は紫外線硬化型、電子線硬化型、熱硬化型、又は溶媒量
の少ない塗料が挙げられる。In addition, even if it is possible to create a smooth surface with no unevenness in the wet state immediately after coating, if the film thickness decreases in the concave areas where the thick coating is applied is greater than the convex areas where the coating is thin, the film will dry out. When it is removed, a loose recess may be formed again. Therefore,
In order to enhance the accuracy correction effect, the volume reduction rate of the coating liquid during the process of drying and fixing the film should be 40% or less, preferably 30% or less.
% or less. Examples of such coating liquids include ultraviolet curing type, electron beam curing type, thermosetting type, and paints containing a small amount of solvent.
本発明の塗布操作の詳細を次に記す。本発明で使用され
る全体装置及び各部品の一例については第1図に示した
。同図においてノズル(2)の中心と位置偏差測定装置
(8)の測定端子(図示せず)もしくは基体の測定点と
は基体の軸上で同じ素線上に並んでいる例を示すが、そ
れぞれ独立していてもかまわない。Details of the coating operation of the present invention will be described below. An example of the overall device and each component used in the present invention is shown in FIG. In the figure, an example is shown in which the center of the nozzle (2) and the measurement terminal (not shown) of the position deviation measuring device (8) or the measurement point on the base are lined up on the same wire on the axis of the base, but each I don't mind being independent.
まず基体(1)に1対のフランジを嵌め込みこれを水平
に設置された回転シャフトに取り付ける。First, a pair of flanges are fitted onto the base (1) and attached to a rotating shaft installed horizontally.
ノズル(2)と位置偏差測定装置(8)とを1体に取り
付けたヘッドを左側の原点位置に移動させる。予めプロ
グラムされたスケジュールに従い、まずドラム回転モー
ター(5)が回転し、ついでノズル送りモーター(6)
が回転してヘッドを右へと移動させる。基体回転数及び
ノズル通過時の塗布中から決まるピッチや減速比に従い
モーター(6)は一定回転数で廻り、ヘッドを定速で右
方向へ移動させる。測定端子が基体左端に達すると、位
置偏差測定が開始される。なお、ここで流量調節装置(
4)を停止させ、計算機から位置偏差測定結果だけを出
力させ、これを展開図表示させることも出来る。The head, in which the nozzle (2) and the positional deviation measuring device (8) are attached as one body, is moved to the origin position on the left side. According to a pre-programmed schedule, the drum rotation motor (5) rotates first, then the nozzle feed motor (6).
rotates and moves the head to the right. The motor (6) rotates at a constant speed according to the pitch and reduction ratio determined from the base rotation speed and the coating process when passing through the nozzle, and moves the head to the right at a constant speed. When the measurement terminal reaches the left end of the base, position deviation measurement begins. Note that the flow rate adjustment device (
4) can be stopped, the computer can output only the position deviation measurement results, and this can be displayed as a developed diagram.
測定値はまず計算機(9)に蓄えられる。ここで、異常
測定による誤差をなくすために、前後測定点合わせて3
点の平均値を用いるとか、あるいは3本の測定端子を用
いて3点法によりその被測定部位の位置偏差測定値とす
る等が好ましい。The measured values are first stored in a calculator (9). Here, in order to eliminate errors due to abnormal measurements, three measurement points were added before and after.
It is preferable to use the average value of the points, or to use three measurement terminals and use a three-point method to obtain the positional deviation measurement value of the part to be measured.
計算機は、ノズル中心と測定端子との距離及びノズルヘ
ッドの移動速度より、被測定部位にノズルが到達するま
での時間をあらかじめ計算し、該時間と、該測定値に対
応する流量塗布液が流量調篩装置をへてノズルから吐出
されるまでの時間が一致する様に、流量調節装置とノズ
ルとの距離及び流量調節装置の特性に基づく時間遅れを
勘案して、流量調節装置に指令を送る。The calculator calculates in advance the time it takes for the nozzle to reach the area to be measured from the distance between the center of the nozzle and the measurement terminal and the moving speed of the nozzle head, and calculates the flow rate of the coating liquid corresponding to the time and the measured value. Send commands to the flow rate adjustment device, taking into account the distance between the flow rate adjustment device and the nozzle and the time delay based on the characteristics of the flow rate adjustment device, so that the time from passing through the sieving device to being discharged from the nozzle is the same. .
指令を受けた流量調節装置は、塗布液ホールダーからノ
ズルに給送される塗布液流量を正確に制御し、調節され
た塗布液が目的の被測定部位に1又は数本のノズルから
吐出される。Upon receiving the command, the flow rate adjustment device accurately controls the flow rate of the coating liquid fed from the coating liquid holder to the nozzle, and the adjusted coating liquid is discharged from one or several nozzles to the target area to be measured. .
このように、位置偏差測定をする一方で、ノズルからの
吐出流量を変えながら、ノズルヘッドは回転基体上を一
端から他端に向けて移動して行く。In this way, while measuring the positional deviation, the nozzle head moves on the rotating base from one end to the other end while changing the discharge flow rate from the nozzle.
勿論ここで、位置偏差測定と塗布をノズルヘッド移動の
一工程で行う代わりに、位置偏差測定を行った後、逆移
動をして塗布操作をする等の2工程以上で行っても良い
。Of course, instead of measuring the positional deviation and applying the coating in one step of moving the nozzle head, it is also possible to perform the measurement in two or more steps, such as measuring the positional deviation and then moving the nozzle head in the opposite direction to perform the coating operation.
ノズルが端部に達すると流量調節装置の運転を止める。When the nozzle reaches the end, the flow regulator stops operating.
勿論この場合、三方弁を設け、流路を切換えて運転を続
ける方法も採用出来る。Of course, in this case, a method can also be adopted in which a three-way valve is provided and the flow path is switched to continue operation.
塗布後基体回転を続けたまま、基体・回転系を例えばガ
イドレール上を移動させてキユアリング装置へ導く(第
1図には表示さず)。キユアリング後、基体を塗布機へ
戻し、精度修正効果を調べるために位置偏差測定装置に
よる測定だけを行ってもよい。After coating, while the substrate continues to rotate, the substrate/rotation system is moved, for example, on a guide rail, and guided to a curing device (not shown in FIG. 1). After curing, the substrate may be returned to the coating machine and only measured by a position deviation measuring device to examine the accuracy correction effect.
電子写真用感光体ドラムの場合、基体に最初に取付けた
1対のフランジが複写機中で使われるフランジと異なる
場合はフランジ嵌合い誤差が精度修正後に生ずるため、
複写機中で使われるフランジを嵌めてから精度修正を行
うのが望ましい。In the case of electrophotographic photoreceptor drums, if the pair of flanges initially attached to the base are different from the flanges used in the copying machine, flange fitting errors will occur after accuracy correction.
It is desirable to correct the accuracy after fitting the flange used in the copying machine.
以上円筒状基体について記したが、一定の平均形状を持
つものについては、各点についての表面位置を予め計算
機にインプットしておき、実測値との差に比例して塗液
を流出させる方法を取れば、形状には限定されない。The above description was about cylindrical substrates, but for those with a certain average shape, there is a method in which the surface position of each point is input into a computer in advance, and the coating liquid flows out in proportion to the difference from the actual measurement value. If you take it, you are not limited to the shape.
以下、本発明に係る円筒状塗布体の製造方法につき、第
1図を参照して詳細に説明するが、これに限定されるも
のではない。Hereinafter, the method for manufacturing a cylindrical coated body according to the present invention will be described in detail with reference to FIG. 1, but the method is not limited thereto.
実施例1
被塗布対象物である円筒状基体としては、外径79、9
mm、長さ340mmのアルミニウム製による押出し
管を1度引抜いた感光体ドラム用基体を用い、その円筒
度は120μ、R□X−5μであった。Example 1 The cylindrical substrate to be coated had an outer diameter of 79,9
A substrate for a photosensitive drum was used, in which an extruded aluminum tube having a length of 340 mm was pulled out once, and its cylindricity was 120 μ and R□X-5 μ.
塗布液の吐出手段としては、内径0.39mm、外径0
.8 vanのステンレス製ノズルを1.25 mm間
隔で4本、基体の軸に対しノズル進行方向へ37°ずら
して一列に配列し、ノズル先端と基体表面との距離を1
.0胴とした。As a means for discharging the coating liquid, the inner diameter is 0.39 mm and the outer diameter is 0.
.. Four 8 van stainless steel nozzles were arranged at 1.25 mm intervals in a line, offset by 37° in the direction of nozzle movement with respect to the axis of the substrate, and the distance between the nozzle tip and the substrate surface was 1.
.. It was set as 0 body.
塗布液としてはエポキシ樹脂BN−3050(大日本色
材(社)製)を溶媒(キシレン/エチレングリコール−
1/I)に溶かした、樹脂分70wt%、粘度250c
psの液を用いた。As a coating liquid, epoxy resin BN-3050 (manufactured by Dainippon Shikizai Co., Ltd.) was used as a solvent (xylene/ethylene glycol).
1/I), resin content 70wt%, viscosity 250c
ps solution was used.
その他の装置としては、下記の製品を用い、位置偏差測
定端子は基体平均外径との距離が5.00胴、ノズル中
央との距離が4On++nとなるよう設置した。As for the other devices, the following products were used, and the position deviation measuring terminal was installed so that the distance from the average outer diameter of the substrate was 5.00 mm, and the distance from the center of the nozzle was 4 On++n.
流量調節装置ニブランジャー式。ピストンロッドをステ
ッピングモーターで駆動。Flow rate adjustment device nib lunger type. The piston rod is driven by a stepping motor.
位置偏差測定装W:レーザーミクロン変位計。Position deviation measuring device W: Laser micron displacement meter.
(keyence社製LD−2500)計算機:PC−
9800
ドラム回転:ACサーボモーター
ノズルヘッド移動ニスチッピングモーター、ボールネジ
、リンヤーウェイ
ステッピングモーターでピストンロッドを駆動させるプ
ランジャー型ポンプ(4)を取付けた液ホールグーにエ
ポキシ樹脂を原料とする塗布液(3)を仕込み、ノズル
ヘッドの手前に設けである三方弁(図示せず)を液循環
側に切換え、プランジャーポンプ(4)を流量12cc
/minで始動した。(LD-2500 manufactured by Keyence) Computer: PC-
9800 Drum rotation: AC servo motor Nozzle head movement Varnish Coating liquid (3) made from epoxy resin in a liquid hole equipped with a plunger type pump (4) that drives the piston rod with a chipping motor, a ball screw, and a linear way stepping motor. , switch the three-way valve (not shown) installed in front of the nozzle head to the liquid circulation side, and set the plunger pump (4) to a flow rate of 12cc.
It started at /min.
粗洗浄で付着ゴミを除いたアルミドラム(1)の両端に
笠形フランジを押し付け、回転シャフトにセットし20
Orpmで回転させた。Press the cap-shaped flanges onto both ends of the aluminum drum (1), which has been roughly cleaned to remove adhering dust, and set it on the rotating shaft for 20 minutes.
It was rotated with Orpm.
測定端子及びノズル(2)を取付けたノズルヘッドを図
−1では左側の原点位置に移動させた後、800 mm
/minの一定の速さで他方の端へ向けて移動を開始さ
せ、測斧”’m子が基体左端から45岨移動したところ
で信号を出し、三方弁を液流出側に切り換えた。After moving the nozzle head with the measurement terminal and nozzle (2) attached to the origin position on the left side in Figure 1, move it 800 mm.
The probe was started to move toward the other end at a constant speed of /min, and when the measuring axe had moved 45 m from the left end of the base, a signal was issued and the three-way valve was switched to the liquid outflow side.
移動中、測定端子は1000■2でデーターを取り込み
、前後3点の平均値を計算して、その点の測定端子と基
体間の距離とした。3000m5ecの時間遅れで計算
機(9)からステッピングモーターのドライバーに平均
距離と実測距離との差に基づくパルス数を出し、流量を
距離差±10μに対し±2.87 cc / minの
割合で12 cc/minから変動させた。測定端子が
基体他端から3511IITl移動したところで三方弁
を再び循環側に切換え、塗布操作を終了させた。During the movement, the measurement terminal took in data at 1000 x 2, and the average value of three points before and after was calculated, and the distance between the measurement terminal and the substrate at that point was calculated. With a time delay of 3000 m5ec, the calculator (9) outputs the number of pulses to the stepping motor driver based on the difference between the average distance and the actual measured distance, and the flow rate is set to 12 cc at a rate of ±2.87 cc/min for the distance difference of ±10 μ. /min. When the measurement terminal had moved 3511 IITl from the other end of the substrate, the three-way valve was switched to the circulation side again, and the coating operation was completed.
塗布後、基体をそのまま20Orpmで回転させつつ、
全体をガイドレール上を手押しで遠赤外線乾燥機まで移
行させた。遠赤外線ヒーターはヒーター温度が400°
Cとなるように制御され、基体近傍の風速が0.3m/
secとなるように、高精能粒子除去フィルターを通し
ての押し込みとバランスさせて排風させている。10m
1nの乾燥で残留溶媒は約50ppmとなった。After coating, while rotating the substrate at 20 rpm,
The entire product was moved by hand on a guide rail to a far-infrared dryer. The far infrared heater has a heater temperature of 400°.
C, and the wind speed near the base is 0.3 m/
The air is discharged by balancing the pressure through a high-precision particle removal filter so that the air flow rate is sec. 10m
After drying for 1 n, the residual solvent amount was about 50 ppm.
乾燥後、基体表面の凹凸状態を調べる為に、基体を塗布
機側に戻し、位置偏差測定装置による測定だけを行った
。After drying, the substrate was returned to the coater side and only measured using a position deviation measuring device in order to examine the uneven state of the surface of the substrate.
位置偏差測定による塗布前、塗布後の基体表面の凹凸状
態の展開等高線表示を第2図、第3図に示した。等高線
間はそれぞれ15μm、10μmとなっている。これら
の図から、本発明に基づく塗布により、塗布゛体表面の
形状精度が改善されたことが判った。FIGS. 2 and 3 show developed contour lines of the uneven state of the substrate surface before and after coating, as measured by positional deviation measurements. The distance between contour lines is 15 μm and 10 μm, respectively. From these figures, it was found that the shape accuracy of the coated body surface was improved by the coating according to the present invention.
又、使用したエポキシ樹脂は油面接着効果があり、用い
たドラムは粗洗浄したのみで油分は充分には除去されて
いないが、はじきなどの塗布欠陥は全(発生せず、接着
力は大であった。In addition, the epoxy resin used has an oil surface adhesion effect, and although the drum used was only roughly cleaned and the oil was not fully removed, there were no coating defects such as repelling, and the adhesive strength was great. Met.
実施例2
フランジとして実施例1で用いた塗布用笠形フランジの
代わりに複写機用フランジをアルミドラムの両端に押し
付け、回転シャフトを複写機用フランジに合った径の小
さいものに代えた他は、実施例1と同様にして塗布を行
った。Example 2 Copying machine flanges were pressed onto both ends of the aluminum drum in place of the applicator cap-shaped flanges used in Example 1 as flanges, and the rotating shaft was replaced with one with a smaller diameter that matched the copying machine flanges. Coating was carried out in the same manner as in Example 1.
塗布用フランジを用いて塗布を行った後、複写機用フラ
ンジに換えて使用に供する場合のサンプルの全振れが4
0μであるのに対し、最初から複写機フランジを用いて
塗布した場合は25μであった。この結果から、より優
れた形状精度修正効果を得るためには、使用する複写機
用フランジを用いて塗布するのが好ましいことが判る。After coating using the coating flange, the total runout of the sample is 4 when used in place of the copying machine flange.
It was 0μ, whereas it was 25μ when applied from the beginning using a copying machine flange. From this result, it can be seen that in order to obtain a better shape accuracy correction effect, it is preferable to apply the coating using the flange for the copying machine used.
実施例3
塗布液として低体積減少率塗料である紫外線硬化型塗料
を用い、以下の流量条件を採用し、円筒状基体として平
均外径29.9 mm、長さ300mmのガラス管を用
いた他は実施例2と同様にして塗布を行った。Example 3 An ultraviolet curing paint, which is a low volume reduction paint, was used as the coating liquid, the following flow rate conditions were adopted, and a glass tube with an average outer diameter of 29.9 mm and a length of 300 mm was used as the cylindrical substrate. Coating was performed in the same manner as in Example 2.
紫外線硬化型塗料
メーカー:スリーボンド
商品名:TB3042
体積減少率:5%
硬化装置:水銀灯1kw
流量条件:10μmの偏差に対し0.8cc/minの
割合で、最大凸部での流量値1cc/minから、偏差
の増大に従い、塗布量を増加させた。UV curable paint Manufacturer: Three Bond Product name: TB3042 Volume reduction rate: 5% Curing device: 1kw mercury lamp Flow rate conditions: 0.8 cc/min for a deviation of 10 μm, starting from the flow rate value of 1 cc/min at the maximum convex part , the amount of application was increased as the deviation increased.
塗布終了後、回転を続けたまま硬化装置へと移行させ、
紫外線ランプを照射して1分間放置し硬化を終了させた
。After coating is completed, transfer to the curing device while continuing to rotate.
It was irradiated with an ultraviolet lamp and left to stand for 1 minute to complete curing.
この操作により、塗布前の円筒度が120μであったも
のが硬化後ではlOμと改良された。Through this operation, the cylindricity was improved from 120μ before coating to 1Oμ after curing.
実施例4
実施例3で得られた紫外線硬化型塗料塗布済のドラムに
対し、導電層(マンチモンドープしたSnO□分散液。Example 4 A conductive layer (mantimondoped SnO□ dispersion) was applied to the drum coated with the ultraviolet curable paint obtained in Example 3.
三菱金属製)を乾燥膜厚として3μmt、及びブロッキ
ング層(ナイロン6・6のブタノール溶液)を乾燥膜厚
として0.5μt、それに下記組成の電荷発生層液及び
電荷移動層液を位置偏差測定及び流量調節機能を除いた
第1図の装置を用いて、乾燥操作を間に入れながら塗布
した。(manufactured by Mitsubishi Metals) with a dry film thickness of 3 μm, and a blocking layer (a butanol solution of nylon 6.6) with a dry film thickness of 0.5 μm, and a charge generation layer liquid and a charge transfer layer liquid with the following compositions. The coating was performed using the apparatus shown in FIG. 1 without the flow rate adjustment function, with a drying operation in between.
又、別途アルミニウム鏡面切削管に同じ電荷発生層液及
び電荷移動層液を塗布したサンプルを用意し、上記の本
発明方法によるサンプルと、感光体ドラムとしての電気
特性(帯電性、感度、残留電位など)を比較したが、同
等であった。Separately, samples were prepared in which the same charge generation layer liquid and charge transfer layer liquid were coated on mirror-cut aluminum tubes, and the electrical properties (charging property, sensitivity, residual potential ) were compared and found to be equivalent.
1 −H’i、1
下記ビスアゾ化合物 10部フェノキシ
樹脂 5部(ユニオンカーバイト
社製PKHH)
ポリビニルブチラール樹脂 5部(積木化学
工業社製BH−3)
4−メトキシ−4−メチルペンタノン−21000部
を混合し、サンドグラインドミルにて粉砕分散処理した
。1 -H'i, 1 The following bisazo compound 10 parts Phenoxy resin 5 parts (PKHH manufactured by Union Carbide Co., Ltd.) Polyvinyl butyral resin 5 parts (BH-3 manufactured by Block Chemical Industry Co., Ltd.) 4-Methoxy-4-methylpentanone-21000 These parts were mixed and subjected to pulverization and dispersion treatment using a sand grind mill.
2−44− aす 下記N−メチルカルバゾール−3 ジフェニルヒドラゾン ポリカーボネート樹脂 下記シアノ化合物 シクロヘキサノン これらを加え攪拌槽で溶解処理した。2-44-a The following N-methylcarbazole-3 diphenylhydrazone polycarbonate resin The following cyano compounds cyclohexanone These were added and dissolved in a stirring tank.
アルデヒド
90部
100部
4.5部
950部
〔発明の効果〕
以上詳述したように、本発明の塗布体製造方法によれば
、狭い部分を順次塗布して塗膜を形成する1又は複数の
ノズル、基体表面の位置偏差を測定する装置及び測定端
子、計算機及び流量調整装置を使用することによって、
加工度が低く、表面の形状が粗雑である基体に対しても
、基体表回答部位の凹凸状態に応じて塗布液の量、即ち
塗膜の厚さを変えることが出来るため、表面形状精度が
向上し平滑な塗布体を製造することが出来る。Aldehyde 90 parts 100 parts 4.5 parts 950 parts [Effects of the Invention] As detailed above, according to the method for producing a coated body of the present invention, one or more By using a nozzle, a device for measuring the positional deviation of the substrate surface, a measuring terminal, a calculator, and a flow rate adjustment device,
Even for substrates with a low processing degree and rough surface shape, the amount of coating liquid, that is, the thickness of the coating film, can be changed depending on the unevenness of the surface area of the substrate, so the surface shape accuracy can be improved. It is possible to produce an improved and smooth coated body.
特に、電子写真感光体用ドラムのように、厳しい精度を
要求されると共に、短いサイクル時間で安価に大量生産
をすることが求められている塗布体においては、本発明
塗布方法によって、基体加工工程を減らすことが可能と
なり、且つ精度も向上することから、産業利用上多大な
貢献をもたらす。In particular, for coated bodies such as drums for electrophotographic photoreceptors that require strict precision and are required to be mass-produced at low cost in a short cycle time, the coating method of the present invention can be used in the substrate processing process. This makes it possible to reduce the amount of noise and improve accuracy, making a great contribution to industrial applications.
第1図はこの実施例方法による円筒状基体の表面への塗
布を行う装置全体を模式的に表わした斜視図であり、第
2図及び第3図は基体表面の凹凸状態を展開等高線表示
したもので、第2図は塗布前、第3図は塗布後の様子を
示した図である。
(1)・・・円筒状基体、(2)・・・ノズル、(3)
・・・塗布液、(4)・・・流量調節装置、(5)・・
・ドラム回転モーター (6)・・・ノズル送りモータ
ー、(7)・・・ボールネジ機構、(8)・・・位置偏
差測定装置、(9)・・・計算−:□“゛Fig. 1 is a perspective view schematically showing the entire apparatus for coating the surface of a cylindrical substrate according to the method of this embodiment, and Figs. 2 and 3 show the unevenness of the substrate surface as developed contour lines. FIG. 2 shows the state before application, and FIG. 3 shows the state after application. (1)...Cylindrical base, (2)...Nozzle, (3)
... Coating liquid, (4) ... Flow rate adjustment device, (5) ...
・Drum rotation motor (6)...Nozzle feed motor, (7)...Ball screw mechanism, (8)...Position deviation measuring device, (9)...Calculation-:□“゛
Claims (2)
形成させて塗布体を製造する方法であって、水平保持さ
れた円筒状基体を回転させると共に、給送される塗布液
を特定の塗布幅で吐出する1又は複数本のノズルを配設
したノズルヘッドを回転軸線と平行に移動させて、基体
の表面に連続状に展開された塗布膜を形成する塗布体製
造方法において、 塗布装置が、計算機、流量調節装置及び位置偏差測定装
置を備え、 該偏差測定装置の測定端子が、基体表面のノズル未到達
部位における設定位置からの偏差を測定し、測定値を計
算機に入力し、 該計算機が、該偏差に応じた塗布液の吐出量を算出し、
該算出値に対応する流量情報を流量調節装置に指令し、 該流量調節装置が、流量情報に対応した液量を調節し、
該調節された液量の塗布液を、前記被測定部位にノズル
が到達した時にノズルから吐出させることを特徴とする
塗布体製造方法。(1) A method of manufacturing a coated body by forming a coating film on the surface of a cylindrical substrate, which is an object to be coated, in which the cylindrical substrate held horizontally is rotated, and the coating liquid to be fed is rotated. In a method for manufacturing a coated body, the nozzle head, which is equipped with one or more nozzles discharging at a specific coating width, is moved parallel to the axis of rotation to form a coated film continuously spread on the surface of the substrate, The coating device includes a computer, a flow rate adjustment device, and a position deviation measuring device, and a measurement terminal of the deviation measuring device measures the deviation from a set position at a portion of the substrate surface that has not been reached by the nozzle, and inputs the measured value into the computer. , the calculator calculates a discharge amount of the coating liquid according to the deviation,
commanding flow rate information corresponding to the calculated value to a flow rate adjustment device, the flow rate adjustment device adjusting the liquid amount corresponding to the flow rate information;
A method for manufacturing a coating body, characterized in that the adjusted amount of coating liquid is discharged from a nozzle when the nozzle reaches the measurement target site.
る請求項(1)に記載の塗布体製造方法。(2) The method for producing a coated body according to claim 1, wherein the object to be coated is an electrophotographic photosensitive drum substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18834890A JP2949799B2 (en) | 1990-07-17 | 1990-07-17 | Manufacturing method of cylindrical coated body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18834890A JP2949799B2 (en) | 1990-07-17 | 1990-07-17 | Manufacturing method of cylindrical coated body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0474570A true JPH0474570A (en) | 1992-03-09 |
JP2949799B2 JP2949799B2 (en) | 1999-09-20 |
Family
ID=16222052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18834890A Expired - Lifetime JP2949799B2 (en) | 1990-07-17 | 1990-07-17 | Manufacturing method of cylindrical coated body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2949799B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0889867A (en) * | 1994-09-21 | 1996-04-09 | Bando Chem Ind Ltd | Application of liquid to roll surface and device thereof |
JPH11242346A (en) * | 1998-02-26 | 1999-09-07 | Mita Ind Co Ltd | Electrostatic latent image carrier and image forming device using the same |
US7374853B2 (en) | 2004-12-02 | 2008-05-20 | Konica Minolta Business Technologies, Inc. | Organic photoreceptor and an image forming method using the same |
DE10038888B4 (en) * | 1999-08-09 | 2008-09-25 | Koito Mfg. Co., Ltd. | Method for producing a bulb for a light source |
JP2009262094A (en) * | 2008-04-28 | 2009-11-12 | Ihi Corp | Method of coating cylindrical body |
WO2019138955A1 (en) * | 2018-01-15 | 2019-07-18 | 東伸工業株式会社 | Cloth printing method and cloth printing device |
-
1990
- 1990-07-17 JP JP18834890A patent/JP2949799B2/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0889867A (en) * | 1994-09-21 | 1996-04-09 | Bando Chem Ind Ltd | Application of liquid to roll surface and device thereof |
JPH11242346A (en) * | 1998-02-26 | 1999-09-07 | Mita Ind Co Ltd | Electrostatic latent image carrier and image forming device using the same |
DE10038888B4 (en) * | 1999-08-09 | 2008-09-25 | Koito Mfg. Co., Ltd. | Method for producing a bulb for a light source |
US7374853B2 (en) | 2004-12-02 | 2008-05-20 | Konica Minolta Business Technologies, Inc. | Organic photoreceptor and an image forming method using the same |
JP2009262094A (en) * | 2008-04-28 | 2009-11-12 | Ihi Corp | Method of coating cylindrical body |
WO2019138955A1 (en) * | 2018-01-15 | 2019-07-18 | 東伸工業株式会社 | Cloth printing method and cloth printing device |
JP2019123960A (en) * | 2018-01-15 | 2019-07-25 | 東伸工業株式会社 | Fabric printing method and fabric printing device |
CN111601922A (en) * | 2018-01-15 | 2020-08-28 | 东伸工业株式会社 | Cloth printing method and cloth printing device |
CN111601922B (en) * | 2018-01-15 | 2023-04-07 | 东伸工业株式会社 | Cloth printing method and cloth printing apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2949799B2 (en) | 1999-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103301993A (en) | Coating apparatus and manufacturing method of coated body | |
CN103464348B (en) | A kind of coating process of the film containing particle and apparatus for coating | |
JPH0474570A (en) | Production of cylindrical coating body | |
DE69920837D1 (en) | Process for the production of cylindrical objects with a multilayered different coating without an interface | |
JP3523779B2 (en) | Spraying device for piston rings for engines | |
JPH03193161A (en) | Method for manufacturing cylindrical coated body | |
CN108554669A (en) | A kind of nozzle, coating machine and coating method | |
JPH0655129A (en) | Production of coated object | |
JP2007330873A (en) | Coating apparatus and coating method | |
JPH0295470A (en) | Coating device for rubber roller | |
US5759615A (en) | Method for measuring powder coating thickness prior to curing | |
JP2009268998A (en) | Coating device | |
JP3456050B2 (en) | Coating method | |
JPH07178367A (en) | Coating liquid applying method | |
JPH08173893A (en) | Formation of coated film | |
JP2883388B2 (en) | Roller coating material coating device | |
JPH07227569A (en) | Formation of coating film | |
JP2002254004A (en) | Coating method and apparatus therefor | |
JPH03224653A (en) | Device and method for obtaining electro- statically spray coating layer having uniform thickness by changing nozzle moving speed | |
JPH0919657A (en) | Formation of coating film | |
JP3191021B2 (en) | Magnetic paint, magnetic layer for encoder and method for forming the same | |
JP3811924B2 (en) | Control device for automatic coating machine and control method thereof | |
JP2003241405A (en) | Process for coating photoconductor | |
JP2781988B2 (en) | Coating equipment for manufacturing electrophotographic photoreceptors | |
JP2008086923A (en) | Optical film forming method and forming apparatus, and optical article having the optical film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080709 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080709 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090709 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090709 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100709 Year of fee payment: 11 |