JPH0474501A - Deaerating agent - Google Patents
Deaerating agentInfo
- Publication number
- JPH0474501A JPH0474501A JP18722590A JP18722590A JPH0474501A JP H0474501 A JPH0474501 A JP H0474501A JP 18722590 A JP18722590 A JP 18722590A JP 18722590 A JP18722590 A JP 18722590A JP H0474501 A JPH0474501 A JP H0474501A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- polymer
- gas
- bubbles
- gel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Degasification And Air Bubble Elimination (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は液体内に溶存する気体を吸着して除去する脱気
剤に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a deaerator that adsorbs and removes gas dissolved in a liquid.
(従来の技術及びその課題)
従来、液体内に溶存する気体を脱気する手段としては、
液体全体を減圧する方法、或は加熱/冷却することによ
って気体の液体への溶解度を変化させて脱気する方法等
が主な方法であった。(Prior art and its problems) Conventionally, as a means for degassing gas dissolved in a liquid,
The main methods have been to reduce the pressure of the entire liquid, or to change the solubility of gas in the liquid by heating/cooling to degas it.
しかしながら、減圧する方法では真空ポンプの様な特別
の装置を必要とするという欠点があった。又、液体を加
熱/冷却する方法は加熱/冷却手段を必要とするうえに
、場合によっては液体を沸点近(まで加熱する必要があ
り、熱分解する物質を溶解/分散させている液体の様な
場合には好ましくはなかった。However, the method of reducing pressure has the disadvantage of requiring special equipment such as a vacuum pump. In addition, methods for heating/cooling liquids require heating/cooling means, and in some cases, it is necessary to heat the liquid to near its boiling point. It was not desirable in such cases.
更に、溶存気体は、減圧状態から常圧に戻したり、加熱
/冷却状態から室温に戻した時に、再び溶解度まで液体
中に取り込まれる為、気体の除去は、その液体を使用す
る直前に行うのが好ましく、真空ポンプや加熱/冷却手
段を必要とする従来の方法では簡便ではないという欠点
があった。Furthermore, dissolved gases are taken into the liquid again until they reach solubility when the pressure is returned from reduced pressure to normal pressure, or when the temperature is returned from heating/cooling to room temperature, so gases should be removed immediately before using the liquid. is preferable, but conventional methods requiring vacuum pumps and heating/cooling means have the drawback of not being simple.
又、沸騰石の様な従来から知られている多孔質物質を液
体内に入れ、加熱手段と併用して使用することが通常行
われている。しかしこれは、多孔性物質な突沸を防ぐ為
の補助的な役割に利用するものであり、この場合には多
孔性物質は脱気剤としてではな(、気泡の成長を促す場
として使用されているにすぎない。It is also common practice to place a conventionally known porous material such as boiling stone into the liquid and use it in conjunction with a heating means. However, this is used in an auxiliary role to prevent bumping of porous materials, and in this case, the porous material is not used as a deaerator (but as a place to promote bubble growth). It's just there.
又、多孔性物質な脱気剤として使用する場合、多孔質物
質を液体内に長時間放置しておくと、多孔性物質の表面
が液体で濡れて脱気剤としては作用しなくなるという問
題もある。Additionally, when using a porous material as a deaerator, if the porous material is left in a liquid for a long time, the surface of the porous material will become wet with the liquid and it will no longer function as a deaerator. be.
従って、液体の脱気に多孔性物質を用いるときには、加
熱脱気する直前に多孔性物質を投入しなければならず煩
雑であるのみならず、−度使用した多孔性物質を繰り返
し使用する為には再生処理を必要とするという問題があ
った。Therefore, when using a porous material for degassing a liquid, it is not only complicated to add the porous material immediately before heating and degassing, but also because the porous material that has been used several times has to be used repeatedly. had the problem of requiring regeneration processing.
この様な脱気した液体を必要とするものとしては、例え
ば、液体クロマトグラフィーやインクを加熱発泡させて
記録するインクジェットプリンタ等がある。Examples of devices that require such a degassed liquid include liquid chromatography and inkjet printers that record by heating and foaming ink.
例えば、液体クロマトグラフィー(以下液クロと略す)
では試料を流すキャリアとして液体を用いるが、この液
体内に気体が溶存しているとクロマト分離後の検出器が
誤動作したりS/N比が悪くなったりする。For example, liquid chromatography (hereinafter abbreviated as liquid chromatography)
In this method, a liquid is used as a carrier for flowing the sample, but if gas is dissolved in this liquid, the detector after chromatographic separation may malfunction or the S/N ratio may deteriorate.
即ち、液クロの検出器には可視・紫外等のに光学的手段
が用いられているが、気泡が存在すると用いられてきた
が、開封後の経時変化は避けられなかった。又、こうし
たプリンタは小型・軽量・低コストが求められることか
ら、前述の液クロの様な減圧手段を設けることは困難で
あり、脱気しながらのインク利用は出来なかった。That is, although optical means such as visible and ultraviolet are used in liquid chromatography detectors, they have been used when air bubbles are present, but deterioration over time after opening is unavoidable. In addition, since such printers are required to be small, lightweight, and low cost, it is difficult to provide a pressure reducing means such as the liquid black printer described above, and it is not possible to use ink while degassing.
従って、本発明の目的は上記従来技術の課題を解決する
有効な脱気剤を提供することである。Therefore, an object of the present invention is to provide an effective deaerator that solves the problems of the prior art described above.
(課題を解決する為の手段) 上記目的は以下の本発明によって達成される。(Means for solving problems) The above objects are achieved by the present invention as described below.
即ち、本発明は、高分子、架橋高分子或は高分子ゲルか
らなり、液体内の溶存気体を吸着して脱気することを特
徴とする脱気剤である。That is, the present invention is a deaerator that is made of a polymer, a crosslinked polymer, or a polymer gel, and is characterized in that it adsorbs and degasses dissolved gas in a liquid.
(作 用)
本発明によれば、高分子、架橋高分子或は高分子ゲルを
液体内に入れることにより、溶存気体はその表面に吸着
除去される。(Function) According to the present invention, by introducing a polymer, a crosslinked polymer, or a polymer gel into a liquid, dissolved gases are adsorbed and removed on the surface of the liquid.
更には、高分子ゲルが膨潤/収縮して溶存気体の吸着量
が変化することを利用して、それらの再利用或は脱気剤
への気体の吸着/脱着量の制御をすることが好ましい。Furthermore, it is preferable to reuse the polymer gel or to control the amount of gas adsorbed/desorbed to the degassing agent by utilizing the fact that the polymer gel swells/shrinks and the amount of dissolved gas adsorbed changes. .
試料と区別がつかなかったり、或はブランクの光学濃度
が上がったりする為、上記の様な弊害か生ずる。従って
、これを防ぐ為にテフロンデユープ等の気体透過性の高
いチューブに液体を加圧して流し込み、このデユープの
外側を減圧して脱気しながら使う場合があるが、装置が
大型化するという欠点があった。Since the blank cannot be distinguished from the sample or the optical density of the blank increases, the above-mentioned disadvantages occur. Therefore, in order to prevent this, the liquid may be pressurized and poured into a tube with high gas permeability such as a Teflon duplex, and the outside of this duplex may be depressurized and degassed, but this has the disadvantage of increasing the size of the device. there were.
或は、−静的にはキャリアとして使う液体を予め減圧に
よって十分に脱気しておいて直ちに使用するということ
が行われているが、時間が経過するにつれて気体が再溶
解し、経時変化が生ずるという欠点があった。Alternatively, statically, the liquid used as a carrier is sufficiently degassed by reducing pressure in advance and used immediately, but as time passes, the gas redissolves and changes over time occur. There was a drawback that it occurred.
又、インクを加熱発泡させて記録するインクジェット(
以下バブルジェットと略す)プリンタの場合には、イン
ク内に気泡が存在すると伝熱効率か悪くなって消費電力
が増えたり、不均一な発泡によってインク滴の大きさが
揃わなくなり印字品位が低下したりするという問題が生
ずる。In addition, inkjet (which records by heating and foaming ink)
In the case of printers (hereinafter abbreviated as bubble jet), the presence of air bubbles in the ink reduces heat transfer efficiency and increases power consumption, and uneven foaming causes ink droplets to become uneven in size, reducing print quality. The problem arises.
これを防ぐ為には、インクを出荷時に脱気後、気体透過
性の低い密閉容器に保管する等の手段が(好ましい実施
態様)
次に好ましい実施態様を挙げて本発明を更に詳細に説明
する。In order to prevent this, measures such as storing the ink in a closed container with low gas permeability after degassing the ink at the time of shipment are recommended (preferred embodiment). .
溶存気体は液体に接する気体が溶けたもので、溶存量は
気体の液体への溶解度によって決まり、接する気体との
間で平衡状態となる。これを減圧等の方法で平衡をずら
すことにより、気体が液体内に存在するよりも液体外に
存在する方が安定な状態とすることで脱気を行う。Dissolved gas is a gas in contact with a liquid that has dissolved, and the amount of dissolved gas is determined by the solubility of the gas in the liquid, and is in equilibrium with the gas in contact with it. By shifting the equilibrium using a method such as depressurization, deaeration is performed by creating a state in which the gas is more stable outside the liquid than when it is inside the liquid.
減圧による方法では液体と接する空間の気体分子の数を
減らすことで、液体内から液体外へと気体が移動するこ
とを利用し脱気する。In the method using reduced pressure, the number of gas molecules in the space in contact with the liquid is reduced, and the gas moves from inside the liquid to outside the liquid, which is used to degas the liquid.
又、加熱/冷却による方法では溶解度が温度によって決
まることを利用している。例えば、温度を上げたときに
気体の液体への溶解度が増すいわゆる正の溶解度を示す
気体を液体と組み合わせたときには、液体全体を冷却す
ることにより脱気が有効に為される。逆の、いわゆる負
の溶解度を示すときには液体全体を加熱することが有効
である。Furthermore, the heating/cooling method utilizes the fact that solubility is determined by temperature. For example, when a liquid is combined with a gas exhibiting so-called positive solubility, in which the solubility of the gas in the liquid increases when the temperature is raised, the liquid is effectively degassed by cooling the entire liquid. Conversely, when the liquid exhibits so-called negative solubility, it is effective to heat the entire liquid.
従って、以上述べた様に平衡をずらせば溶存気体は液体
外に出て(るはずであるが、この場合には気体分子の大
きさが問題になる場合がある。即ち、溶存気体が溶媒和
した1分子或は数分子の大きさで表面のエネルギーが大
きい為に、他の溶存気体と合一したり、或は液体との親
和力に打ち勝って液体外へ出てくることが困難となる場
合である。この様な場合にいわゆる沸騰石の様な多孔質
材料が有効であることはよく知られている。Therefore, as mentioned above, if the equilibrium is shifted, the dissolved gas should come out of the liquid, but in this case, the size of the gas molecules may become a problem.In other words, the dissolved gas is solvated. Due to the large surface energy of one molecule or several molecules, it is difficult to combine with other dissolved gases or overcome the affinity with the liquid and come out of the liquid. It is well known that porous materials such as so-called boiling stones are effective in such cases.
しかしながら、前述した様に、従来の多孔性物質は使用
条件が限定されていたり、一般には再利用が出来なかっ
たりといった問題点があった。However, as mentioned above, conventional porous materials have problems such as limited use conditions and generally cannot be reused.
本発明の好ましい脱気剤は、液体と気体との平衡状態を
ずらす為に高分子ゲルの膨潤/収縮(或は高分子の非凝
集/凝集)を利用し、且つ収縮ゲル(凝集高分子)の界
面を気泡発生の場として利用する脱気剤である。A preferred deaerator of the present invention utilizes swelling/contraction of a polymer gel (or non-agglomeration/aggregation of polymers) to shift the equilibrium state between liquid and gas, and also uses shrinkage gel (aggregated polymer). This is a deaerator that uses the interface between the two as a place for bubble generation.
即ち、高分子、架橋高分子或は高分子ゲルが収縮(凝集
)するときに、その界面近傍で温度や濃度の不均一が生
ずる為に液体と気体の平衡がずれしてその表面に気泡が
吸着することを研究の結果具い出した。In other words, when a polymer, cross-linked polymer, or polymer gel contracts (agglomerates), non-uniformity in temperature and concentration occurs near the interface, which shifts the equilibrium between the liquid and gas, causing bubbles to form on the surface. As a result of research, we discovered that it can be adsorbed.
従来、水中の空気を脱気するには100℃近(まで加熱
して発泡させる必要があったが、本発明によれば35℃
という比較的低温で水中に溶存していた空気が脱気され
た。Conventionally, to degas the air in water, it was necessary to heat the water to nearly 100°C (100°C) to create foam, but according to the present invention, the temperature is 35°C.
At this relatively low temperature, the air dissolved in the water was degassed.
又、液体を沸点近くまで加熱する必要がないので、液体
の変化・変性が殆どない為、例えば、蛋白質溶液の様な
熱変性する溶液の場合に特に好ましい。Furthermore, since there is no need to heat the liquid to near its boiling point, there is almost no change or denaturation of the liquid, which is particularly preferable for solutions that undergo thermal denaturation, such as protein solutions.
更に、本発明の脱気剤は、真空ポンプの様な減圧手段と
いった特別の手段を併用しなくても、液体を使用する直
前に簡便に脱気が可能な経済性に優れた脱気剤である。Furthermore, the degassing agent of the present invention is an economical degassing agent that can easily degas the liquid immediately before use without using special means such as a vacuum pump or other pressure reducing means. be.
(実施例)
次に実施例及び比較例を挙げて本発明を更に詳しく説明
する。(Example) Next, the present invention will be explained in more detail by giving examples and comparative examples.
実施例1
N−イソプロピルアクリルアミド0.5g、メチレンビ
スアクリルアミド13.3mg、N。Example 1 0.5 g of N-isopropylacrylamide, 13.3 mg of methylenebisacrylamide, N.
て気泡が発生出来る条件となり、且つ気泡が成長出来る
場がそこに提供される為、収縮界面(凝集界面)に溶存
気体が気泡として吸着され効率的に脱気することが出来
る。This creates conditions for bubbles to be generated, and provides a field where bubbles can grow, so dissolved gas is adsorbed as bubbles at the contraction interface (coagulation interface) and can be efficiently degassed.
又、本発明の脱気剤は、高分子ゲルの膨潤/収縮(高分
子の非凝集/凝集)を利用するので、脱気したい時に収
縮状態(凝集状態)とすれば、液体に対する濡れ性が低
いはっきりした界面を形成出来、脱気剤として十分な性
能を発揮出来る。In addition, the deaerator of the present invention utilizes the swelling/contraction of the polymer gel (non-aggregation/aggregation of the polymer), so if it is brought into the contracted state (agglomerated state) when degassing is desired, the wettability to liquid will be improved. It can form a low, clear interface and exhibit sufficient performance as a deaerator.
従って、沸騰石の様に液体中に入れておくと表面が濡れ
て機能しなくなるということはない。Therefore, unlike boiling stones, when placed in liquid, the surface will not become wet and the product will not function.
更に、高分子ゲルの収縮度は制御出来るので、表面の濡
れ性を変化させ吸着による脱気量を任意に制御出来る。Furthermore, since the degree of shrinkage of the polymer gel can be controlled, the amount of degassing due to adsorption can be controlled arbitrarily by changing the wettability of the surface.
この膨潤/収縮(非凝集/凝集)の制御には、温度・電
場・電流・塩濃度等が利用出来る。Temperature, electric field, current, salt concentration, etc. can be used to control this swelling/shrinkage (non-aggregation/aggregation).
例えば、本発明者らは、N−イソプロピルアクリルアミ
ドを主モノマーとしてメチレンビスアクリルアミドを架
橋剤としたハイドロゲルの場合には、水中でおよそ35
℃以上にすればゲルが収縮N、N’ 、N’ −テトラ
メチルエチレンジアミン6μ℃を蒸留水9mβに溶解し
、窒素ガスで1時間バブリングしてモノマー溶液とした
。又、過硫酸アンモニウム1mgを蒸留水1+nj2に
溶解して重合開始剤とした。For example, the present inventors found that in the case of a hydrogel with N-isopropylacrylamide as the main monomer and methylenebisacrylamide as a crosslinking agent, approximately 35
If the temperature is above .degree. C., the gel will shrink.N,N',N'-tetramethylethylenediamine (6 .mu..degree. C.) was dissolved in 9 m.beta. of distilled water and bubbled with nitrogen gas for 1 hour to prepare a monomer solution. Further, 1 mg of ammonium persulfate was dissolved in 1+nj2 of distilled water to prepare a polymerization initiator.
上記のモノマー溶液を立方体の型に入れ、およそ5℃に
冷却しながら重合開始剤を添加して窒素雰囲気下で1時
間静置して重合させ、型から取り出して高分子ゲルを得
た。室内に放置して空気で飽和した蒸留水1℃にこの高
分子ゲルを20℃で投入し、蒸留水全体を35℃に加温
したところ、高分子ゲルは収縮してその界面に気泡が発
生した。この気泡を回収して分析したところ、空気の組
成であることが確認された。The above monomer solution was placed in a cubic mold, a polymerization initiator was added while cooling to approximately 5°C, and the mixture was allowed to stand for 1 hour under a nitrogen atmosphere to polymerize, and then removed from the mold to obtain a polymer gel. When this polymer gel was placed indoors at 20°C into distilled water saturated with air at 1°C, and the entire distilled water was heated to 35°C, the polymer gel contracted and bubbles were generated at the interface. did. When the bubbles were collected and analyzed, it was confirmed that they were composed of air.
蒸留水だけを分離回収して、高分子ゲルで処理していな
い蒸留水と比較分析したところ、高分子ゲルで処理した
蒸留水の溶存空気の量は検出限界以下まで減少していた
。When only distilled water was separated and collected and compared with distilled water that had not been treated with polymer gel, the amount of dissolved air in distilled water treated with polymer gel had decreased to below the detection limit.
比較例1
実施例1において、高分子ゲルを入れない蒸留水を比較
試料とした。この未処理の蒸留水を35℃まで加温した
ところ気泡は観測されなかった。Comparative Example 1 In Example 1, distilled water without polymer gel was used as a comparative sample. When this untreated distilled water was heated to 35°C, no bubbles were observed.
又、35℃まで加温した蒸留水と加温しない蒸留水とを
比較分析したところ有為な差がないことが判明した。Furthermore, a comparative analysis of distilled water heated to 35°C and distilled water that was not heated revealed that there was no significant difference.
又、未処理の蒸留水を水の沸点である100℃近(まで
加温したところ、沸騰に伴い気泡が発生した。蒸留水を
分析の結果、実施例1の高分子ゲルで処理した蒸留水と
同程度に脱気されていることが確認された。In addition, when untreated distilled water was heated to around 100°C (the boiling point of water), bubbles were generated as it boiled.As a result of analyzing the distilled water, it was found that the distilled water treated with the polymer gel of Example 1 It was confirmed that the air was degassed to the same extent.
従って、実施例1によれば蒸留水を沸点近(まで加温し
たのと同等の効果を35℃という比較的低温で達成する
ことが出来た。Therefore, according to Example 1, the same effect as heating distilled water to near its boiling point could be achieved at a relatively low temperature of 35°C.
実施例2
高分子ゲルの再利用を試みた。実施例1で脱気剤として
使用した高分子ゲルを脱気していない20℃の蒸留水1
ρに投入したとろ、高分子ゲルは膨潤し、その表面には
気泡が確認出来なかった。Example 2 An attempt was made to reuse polymer gel. Distilled water at 20°C without degassing the polymer gel used as a deaerator in Example 1 1
When poured into ρ, the polymer gel swelled and no air bubbles were observed on its surface.
次にこれを実施例1と同様に35℃まで加温しルアミド
を主成分とする高分子溶液を得た。このものは実施例1
で重合した高分子ゲルと異なり、架橋剤を添加していな
いのでゲルの様な構造を保持することは出来ない。Next, this was heated to 35° C. in the same manner as in Example 1 to obtain a polymer solution containing Ruamide as the main component. This is Example 1
Unlike polymer gels that are polymerized, it is not possible to maintain a gel-like structure because no crosslinking agent is added.
これを空気で飽和している20℃の蒸留水に入れて、3
5℃まで加温したところ高分子が凝集してその表面に気
泡が発生した。Add this to distilled water at 20℃ saturated with air, and
When heated to 5°C, the polymer aggregated and bubbles were generated on its surface.
従って、本発明の目的である脱気は実施例1の様なゲル
状態のものでなくても達せられることが確認された。Therefore, it was confirmed that deaeration, which is the object of the present invention, can be achieved even if the material is not in a gel state as in Example 1.
(効 果) 以上の様に本発明によれば、以下の効果が奏される。(effect) As described above, according to the present invention, the following effects are achieved.
(1)減圧ポンプの様な大掛かりな装置が不要で、簡便
な脱気を可能とした。(1) Easy degassing is possible without the need for large-scale equipment such as a vacuum pump.
(2)比較的低温で脱気出来るので省エネルギーであり
、液体が脱気の際熱分解或は熱による物性変化を起こし
にくい。(2) It saves energy because it can be degassed at a relatively low temperature, and the liquid is less likely to undergo thermal decomposition or change in physical properties due to heat during deaeration.
第1図は本発明の脱気剤を使用した場合の初期たところ
、高分子ゲルは収縮してその表面に気泡が吸着した。こ
のことから、加温することにより高分子ゲルは繰り返し
脱気剤として使用出来ることがわかった。
尚、この繰り返し使用は何回でも可能で又特別の再生処
理も必要ないこともわかった。
実施例3
実施例1において蒸留水を窒素で飽和させておいて同様
の処理をしたところ、蒸留水から窒素が脱気された。
実施例4
N−イソプロピルアクリルアミド0.5g、N、N、N
’ 、N’ −テトラメチルエチレンジアミン6μβを
蒸留水9mρに溶解し、窒素ガスで1時間バブリングし
て千ツマー溶液とした。又、過硫酸アンモニウム1mg
を蒸留水1+nJ2に溶解して重合開始剤とした。
上記のモノマー溶液をおよそ5℃に冷却しながら重合開
始剤を添加して、窒素雰囲気下で1時間静置して重合さ
せ、ポリN−イソプロピルアクリ状態若しくは非脱気状
態を示す概念図であり、第2図は脱気状態を示す概念図
である。
1′:容器及びその中に入っている液体、2:液体に溶
存している気体(実際には見えない)、
3:膨潤状態の高分子ゲル(或は非凝集状態の高分子若
しくは架橋高分子)、
4:収縮状態の高分子ゲル(或は凝集状態の高分子若し
くは架橋高分子)、
5:収縮状態の高分子ゲルの表面に吸着された溶存気体
。FIG. 1 shows that at the initial stage when the deaerator of the present invention was used, the polymer gel contracted and air bubbles were adsorbed on its surface. This indicates that the polymer gel can be repeatedly used as a deaerator by heating. It has also been found that this repeated use is possible any number of times and that no special recycling treatment is required. Example 3 When distilled water was saturated with nitrogen and subjected to the same treatment as in Example 1, nitrogen was degassed from the distilled water. Example 4 0.5 g of N-isopropylacrylamide, N, N, N
',N'-Tetramethylethylenediamine (6μβ) was dissolved in distilled water (9mρ), and nitrogen gas was bubbled through the solution for 1 hour to obtain a solution. Also, ammonium persulfate 1mg
was dissolved in 1+nJ2 of distilled water to prepare a polymerization initiator. It is a conceptual diagram showing a poly N-isopropyl acrylic state or a non-degassed state when a polymerization initiator is added to the above monomer solution while cooling it to about 5°C, and it is allowed to stand for one hour under a nitrogen atmosphere to polymerize. , FIG. 2 is a conceptual diagram showing a degassing state. 1': Container and the liquid contained therein, 2: Gas dissolved in the liquid (not actually visible), 3: Swollen polymer gel (or non-agglomerated polymer or crosslinked polymer) 4: A polymer gel in a contracted state (or a polymer in an aggregated state or a crosslinked polymer); 5: Dissolved gas adsorbed on the surface of a polymer gel in a contracted state.
Claims (2)
体内の溶存気体を吸着して脱気することを特徴とする脱
気剤。(1) A deaerator consisting of a polymer, a crosslinked polymer, or a polymer gel, which adsorbs and deaerates dissolved gas in a liquid.
変化する請求項1に記載の脱気剤。(2) The deaerator according to claim 1, wherein the adsorption capacity changes as the polymer gel swells/shrinks.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18722590A JPH0474501A (en) | 1990-07-17 | 1990-07-17 | Deaerating agent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18722590A JPH0474501A (en) | 1990-07-17 | 1990-07-17 | Deaerating agent |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0474501A true JPH0474501A (en) | 1992-03-09 |
Family
ID=16202257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18722590A Pending JPH0474501A (en) | 1990-07-17 | 1990-07-17 | Deaerating agent |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0474501A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12139303B2 (en) | 2006-06-16 | 2024-11-12 | Global Life Sciences Solutions Usa Llc | Method of forming a collapsible bag using a mold and mandrel |
-
1990
- 1990-07-17 JP JP18722590A patent/JPH0474501A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12139303B2 (en) | 2006-06-16 | 2024-11-12 | Global Life Sciences Solutions Usa Llc | Method of forming a collapsible bag using a mold and mandrel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tennikova et al. | High-performance membrane chromatography of proteins, a novel method of protein separation | |
Wang et al. | Ultrasonic-assisted fabrication of montmorillonite-lignin hybrid hydrogel: Highly efficient swelling behaviors and super-sorbent for dye removal from wastewater | |
Galia et al. | Monodisperse polymer beads as packing material for high‐performance liquid chromotography: Effect of divinylbenzene content on the porous and chromatographic properties of poly (styrene‐co‐divinylbenzene) beads prepared in presence of linear polystyrene as a porogen | |
JP5290604B2 (en) | Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter | |
CN105647159B (en) | A kind of polymer-base foam material and the preparation method and application thereof of graphene ribbon modification | |
Yamaguchi et al. | Solubility and pervaporation properties of the filling-polymerized membrane prepared by plasma-graft polymerization for pervaporation of organic-liquid mixtures | |
KR102058374B1 (en) | Radioactive cesium absorbent and method of the same | |
KR20110115856A (en) | Preparation method of hydrophilic membrane with improved fouling resistance and hydrophilic membrane prepared by the above method | |
US4828701A (en) | Temperature-sensitive method of size-selective extraction from solution | |
US6616825B1 (en) | Electrochromatographic device for use in enantioselective separation, and enantioselective separation medium for use therein | |
JP3158186B2 (en) | Alkyl group-containing porous resin, production method thereof and use thereof | |
Younis et al. | Molecularly imprinted porous beads for the selective removal of copper ions | |
Tokuyama et al. | Preparation of molecular imprinted thermosensitive gels grafted onto polypropylene by plasma-initiated graft polymerization | |
Denizli et al. | New sorbents for removal of heavy metal ions: diamine-glow-discharge treated polyhydroxyethylmethacrylate microspheres | |
Narkkun et al. | Green synthesis of porous polyvinyl alcohol membranes functionalized with l‐arginine and their application in the removal of 4‐nitrophenol from aqueous solution | |
Song et al. | Synthesis and surface gel‐adsorption effect of multidimensional cross‐linking cationic cotton for enhancing purification of dyeing wastewater | |
JPH0474501A (en) | Deaerating agent | |
CA2048484C (en) | Absorbents having enhanced surface area | |
Yamaguchi et al. | Swelling behavior of the filling‐type membrane | |
Gong et al. | Preparation of weak cation exchange packings based on monodisperse poly (glycidyl methacrylate-co-ethylene dimethacrylate) beads and their chromatographic properties | |
US6602928B2 (en) | Packing material and cartridge for solid phase extraction | |
Dong et al. | TiO2/P (AM-co-AMPS) monolith prepared by CO2-in-water HIPEs and its potential application in wastewater treatment | |
US4956095A (en) | Water or gas purification by bulk absorption | |
Temel et al. | Synthesis, characterization and adsorption studies of nano-composite hydrogels and the effect of SiO2 on the capacity for the removal of Methylene Blue dye | |
CN107321330A (en) | Purposes of the PAA acrylamide crosslinking copolymer gel in absorption P elements |